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Abstract

We show that, for a utility function U : R → R having reasonable asymptotic
elasticity, the optimal investment process Ĥ · S is a super-martingale under each
equivalent martingale measure Q, such that E[V (dQdP )] < ∞, where V is conjugate
to U . Similar results for the special case of the exponential utility were recently
obtained by Delbaen, Grandits, Rheinländer, Samperi, Schweizer, Stricker as well
as Kabanov, Stricker.

This result gives rise to a rather delicate analysis of the “good definition” of
“allowed” trading strategies H for the financial market S. One offspring of these
considerations leads to the subsequent — at first glance paradoxical — example.

There is a financial market consisting of a deterministic bond and two risky
financial assets (S1

t , S
2
t )0≤t≤T such that, for an agent whose preferences are modeled

by expected exponential utility at time T , it is optimal to constantly hold one unit
of asset S1. However, if we pass to the market consisting only of the bond and the
first risky asset S1, and leaving the information structure unchanged, this trading
strategy is not optimal any more: in this smaller market it is optimal to invest the
initial endowment into the bond.
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1 Introduction

This paper continues the study of optimal investment in incomplete financial markets,
where we consider a utility function U : R→ R s.t.

U is smooth, strictly concave, U ′(−∞) =∞, U ′(∞) = 0, (1)

and satisfies the condition of reasonable asymptotic elasticity, i.e.,

lim sup
x→∞

xU ′(x)
U(x)

< 1 and lim inf
x→−∞

xU ′(x)
U(x)

> 1, (2)

For the significance of the latter condition in the context of utility maximisation we
refer to [S 01]. The arch-example of a function U satisfying (1) and (2) is the exponential
utility U(x) = −e−γx, for γ > 0.

We adopt the same setting as in [S 01] to which we refer for unexplained notation:
Fixing the time horizon T ∈ ]0,∞[, (St)0≤t≤T will denote a locally bounded Rd-valued
semimartingale, modeling the price process of d financial assets. We work in discounted
terms, i.e., the bond is assumed to be constant. As we consider only the case of a closed
time index set [0, T ], all martingales will be uniformly integrable.

We denote by Me(S) (resp. Ma(S)) the set of probability measures Q which are
equivalent (resp. absolutely continuous with respect) to P and such that S is a local
Q-martingale. We assume that

Me(S) 6= ∅ (3)

The basic problem is to find, for given initial endowment x ∈ R, a trading strategy
(Ht)0≤t≤T such that the expected utility of the terminal wealth x+(H·S)T = x+

∫ T
0
HtdSt

becomes maximal:
E [U (x+ (H ·S)T )] −→ max! (4)

We have been deliberately vague on the set of “allowed” trading strategies H over
which we maximize in (4); in fact, the choice of the “good definition” of this class of
trading strategies is rather subtle and constitutes the main topic of this paper.

The minimal requirement to impose on an “allowed” trading strategy H is that the
stochastic integral (H ·S)t =

∫ t
0
HudSu makes sense. Here the theory of stochastic inte-

gration (see, e.g., [P 90], [J 79], [RW 87]) tells us exactly what to impose on H: it has to
be a predictable S-integrable process.

But, of course, this qualitative requirement is not enough as it does not rule out, e.g.,
doubling strategies, as was noticed by M. Harrison and S. Pliska ([HP 81]). In order to
rule out such strategies, some additional condition is needed.

A strong condition is the subsequent concept of admissible strategies as introduced in
[HP 81], modeling the situation of an agent with a finite credit line.

Definition 1.1 A predictable S-integrable process H is an admissible trading strategy if
the stochastic integral (H ·S)t =

∫ t
0
HudSu is uniformly bounded from below.

This notion turned out to be very useful for no-arbitrage arguments (compare [HP 81],
[DS 94] and [DS 98b]). In the context of utility maximization for functions taking finite
values only on R+, while being −∞ on R− (typical example: U(x) = ln(x)), as analyzed,
e.g., in [KLSX 91] and [KrS 99], this concept also proved to be the appropriate one.
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In the present setting of utility functions taking finite values on all of R, we also may
and do use this class of trading strategies to give a precise meaning to the maximisation
problem (4).

Definition 1.2 We define the value function u associated to the optimization problem
(4) by

u(x) = sup {E[U(x+ (H ·S)T )], H admissible} , x ∈ R. (5)

Note that the expectation is well-defined (taking possibly the value +∞), and that
u(x) is an element of [U(x),∞].

In the present case of utility functions U taking finite values for all x ∈ R, the class
of admissible trading strategies is too narrow to find the optimizer in (5). In general, we
cannot expect to find the optimal solution to (4) such that the random variable (H ·S)T is
uniformly bounded from below. For example, in the classical Merton problem of optimal
investment with respect to exponential utility in the Black-Scholes model, the optimal
solution is not bounded from below.

Hence we have to look for a somewhat broader class of “allowed” trading strategies.
A possible approach is to impose some integrability condition on the process H·S. But

under which measure? Should we use the original measure P, or some specific equivalent
martingale measure Q, or maybe all equivalent martingale measures? This issue was
thoroughly addressed in [DGRSSS 00] and we shall elaborate further on this topic.

For a utility function U : R→ R satisfying (1) we denote by V : R+ → R its conjugate
function

V (y) = sup
x

(U(x)− xy) , y > 0. (6)

For example, for U(x) = −e−γx we have V (y) = y
γ
(ln( y

γ
) − 1). The dual problem to

(5) is given by
v(y) = inf

Q∈Me(S)
E
[
V
(
y dQ
dP

)]
, y > 0. (7)

Throughout the paper we shall make the following assumption:

Assumption 1.3 For each y > 0, the dual value function v(y) is finite and the minimizer

Q̂(y) ∈Me(S) for (7), called the minimax martingale measure, exists.

As shown in [BF 00], Assumption 1.3 is satisfied under rather mild conditions. We
remark that it is easy to verify that conditions (1), (2), (3) and Assumption 1.3 imply the
assumptions of theorem 2.2 of [S 01]; hence under the present assumptions we may apply
this theorem. This fact will repeatedly be used below.

Specializing to the case of exponential utilty, it follows from the work of Cziszar [C 75]
(see also [BF 00] and [S 01, remark 2.3]) that Assumption 1.3 is equivalent to the existence
of Q ∈Me(S) with finite relative entropy

H(Q|P) = EP

[
dQ
dP

ln
(
dQ
dP

)]
= EQ

[
ln
(
dQ
dP

)]
<∞. (8)

In this case the measure Q̂(y) does not depend on y > 0, and minimizes the relative
entropy among all absolutely continuous martingale measures, i.e.,

H(Q̂|P) = min
Q∈Ma(S)

H(Q|P) (9)
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Following [DGRSSS 00] we shall call Q̂ the entropy minimizing local martingale measure.

Turning again to general utility functions U, we shall say that Q ∈ Ma(S) has finite
V -expectation if E[V (dQ

dP
)] < ∞. It follows from the assumption of reasonable elasticity

(2) that in this case E[V (y dQ
dP

)] <∞, for each y > 0 (see [S 01, Corollary 4.2]).

We now can introduce several possible definitions of “allowed” trading strategies.

Definition 1.4 Under the above assumptions, fix the initial endowment x ∈ R.

(i) A predictable, S-integrable process H is in H1(x), if U(x + (H ·S)T ) ∈ L1(P) and

H · S is a super-martingale under the minimax martingale measure Q̂(y), where
y = u′(x).

(ii) A predictable, S-integrable process H is in H2(x), if U(x+(H·S)T ) ∈ L1(P) and H·S
is a super-martingale under each Q ∈Ma(S) with finite V -expectation E[V (dQ

dP
)].

(iii) A predictable, S-integrable process H is in H3(x), if U(x+ (H ·S)T ) ∈ L1(P), H ·S
is a super-martingale under each Q ∈ Ma(S) with finite V -expectation E[V (dQ

dP
)],

and there exists a sequence (Hn)∞n=1 of admissible trading strategies such that

lim
n→∞

E [U (x+ (H ·S)T ∧ (Hn ·S)T )] = E [U (x+ (H ·S)T )] . (10)

The classes H′1(x), H′2(x) and H′3(x) are defined by replacing in (i), (ii) and (iii) above
the term “super-martingale” by the term “martingale”.

We remark that in the case of exponential utility the above concepts do not depend
on the initial endowment x.

The concept H′1 was defined — for the case of exponential utility — under the name
Θ1 in [DGRSSS 00]; it also plays an important role in the results of [KrS 99] and [S 01] for
the case of more general utility functions U . As was remarked in [DGRSSS 00], it is not
very satisfactory to base the definition of the class of allowed strategies on the knowledge
of the dual optimizer.

The concept H′2 corresponds to the class Θ2 defined in [DGRSSS 00], where — for
the exponential utility — it was required that H ·S is a Q-martingale, for each Q with
finite entropy. It follows from [DGRSSS 00] and the recent paper [KaS 00] that this latter
concept works well for the exponential utility; but we shall see in Proposition 3.5 below
that, for more general utility functions U : R → R, the concept of a super-martingale is
more appropriate than that of a martingale. This led us to define the class H2.

Definition (iii) is in the spirit of [S 01, Definition 1.3]. In addition to the requirements
of definition (ii) we also impose an approximability of H ·S by a sequence Hn ·S, where
each Hn is admissible. We remark that this concept is also related to the class Θ3 defined
in [DGRSSS 00].

Theorem 2.1 below asserts that it does not matter which of the classes H1, H′1, H2

or H3 (and, in the case of exponential utility, also H′2 and H′3) we choose for the utility

maximization problem (4). We always end up with the same maximizer Ĥ, which in
addition satisfies the proper duality relations with respect to the minimax martingale
measure Q̂(y).
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For the case of exponential utility the analogous result was proved in [DGRSSS 00]

under a mild additional assumption (Q̂ was supposed to satisfy a reverse Hölder condi-
tion RL logL). This assumption was shown to be superfluous in [KaS 00] (compare also
[KaS 01b]).

The main result of the present paper is to establish the analogous result for general
utility functions U : R → R satisfying (1) and (2). For expository reasons, we shall
also indicate how the proof specializes to the case of exponential utility as the present
arguments are somewhat different from those in [DGRSSS 00] and [KaS 00]; we then show
how they may be extended to general utility functions. Roughly speaking, it turns out
that some explicit calculations in the case of exponential utility are replaced by more
conceptual arguments in the general setting (thus avoiding some calculations).

Having established the equivalence of the concepts H1, H′1, H2 and H3 with respect
to the utility maximization problem (4) it will be natural to ask whether other (weaker)
requirements of “allowed” trading strategies also yield the same conclusion. For example,
consider the class of predictable S-integrable processes such that H · S is a martingale
under some element Q ∈Me(S). This class is closely related to the “workable contingent
claims” as introduced in [DS 97]. One also might try variations of this requirement by
imposing that (H ·S) is a martingale — or a super-martingale — under some equivalent
local martingale measure Q ∈Me(S) with finite V -expectation.

Proposition 3.1, which presents the example described in the abstract, shows in a
rather striking way that such hopes are in vain. These concepts do not allow for a good
duality theory and lead to paradoxical results from an economic point of view. Two
similar examples (Propositions 3.3 and 3.5) also show the sharpness of the assertion of
Theorem 2.1.

2 The Main Result

Theorem 2.1 Let S = (St)0≤t≤T be a locally bounded Rd-valued semimartingale, U :
R→ R a utility function satisfying (1), (2), (3) and assumption 1.3. For x ∈ R, consider
the optimization problem

ui(x) = sup E [U (x+ (H ·S)T )] , H ∈ Hi(x). (11)

For i = 1, 2, 3 the optimal solution Ĥi ∈ Hi(x) exists, is unique (in the sense that

the process ((Ĥ ·S)t)0≤t≤T is unique), coincides for all three cases and therefore may be

denoted by Ĥ. In addition, Ĥ is also the unique optimizer in the class H′1(x).
The value function u(x) defined in (5) equals ui(x), for i = 1, 2, 3. Letting y = u′(x),

for i = 1, 2, 3, we have the following duality relation between Ĥ(x) and the dual minimizer

Q̂(y):

x+ (Ĥ ·S)T = −V ′
(
y dQ̂(y)

dP

)
and y dQ̂(y)

dP
= U ′

(
x+ (Ĥ ·S)T

)
. (12)

In the case of the exponential utility function U(x) = −e−γx, Ĥ does not depend on x; it
is also the unique minimizer in the classes H′2 and H′3; relation (12) specializes to

(Ĥ ·S)T = − 1
γ

ln
(
y
γ
dQ̂
dP

)
and dQ̂

dP
= γ

y
e−γ(Ĥ·S)T . (13)

where y = u′(0).

5



The theorem essentially relies on Proposition 2.2 below which, for the case of expo-
nential utility, was proved by Kabanov and Stricker [KaS 00]. Admitting Proposition 2.2
for the moment the argument for Theorem 2.1 goes as follows.

Proof of Theorem 2.1 As remarked after Assumption 1.3 above, the present assump-
tions imply those of [S 01, Theorem 2.2]. In particular, we know that, for x ∈ R and
y > 0, satisfying u′(x) = y, the process

X̂t(x) = EQ̂(y)

[
−V ′

(
y dQ̂(y)

dP

)∣∣∣Ft] , 0 ≤ t ≤ T, (14)

well-defines a Q̂(y)-martingale, which is of the form X̂(x) = x + Ĥ(x) · S, for some

S-integrable predictable process Ĥ(x) and

u(x) = E
[
U
(
x+

(
Ĥ(x) ·S

)
T

)]
. (15)

Proposition 2.2 asserts that X̂t(x) is a super-martingale under each Q ∈Ma(S) with

finite V -expectation. Admitting this result, we shall show that Ĥ(x) is the unique opti-
mizer in the classes H1(x), H′1(x), H2(x) and H3(x).

The fact hat Ĥ(x) belongs to each of these classes is obvious for H1(x), H′1(x) and

H2(x); as regards H3(x), it follows from [S 01, Theorem 2.2] that Ĥ(x) may be approxi-
mated by a sequence of admissible trading strategies in the sense of (10).

To show that Ĥ(x) is the unique optimizer in each of these classes, we only have to
show this for H1(x), as this is the largest class.

We shall show that, in fact, the Q̂(y)-martingale X̂(x) = x+Ĥ(x)·S is optimal among

the class of all Q̂(y)-super-martingales (Xt)0≤t≤T starting at X0 = x. Indeed, let X be a

Q̂(y)-super-martingale and use the duality relation (see [S 01, Theorem 2.2 (i)])

u(x) = E[U(X̂T (x))] = E
[
V
(
y dQ̂(y)

dP

)]
+ xy = v(y) + xy. (16)

Applying the inequality

U(XT (ω)) = inf
η>0
{V (η) +XT (ω)η}

≤ V
(
y dQ̂(y)

dP
(ω)
)

+XT (ω)y dQ̂(y)
dP

(ω), (17)

pointwise for ω ∈ Ω, we get from the Q̂(y)-super-martingale property of X that

E[U(XT )] ≤ E
[
V
(
y dQ̂(y)

dP

)]
+ yEQ̂(y)[XT ]

≤ E
[
V
(
y dQ̂(y)

dP

)]
+ xy

= E[U(X̂T (x))], (18)

where the above estimate shows in particular that E[U(XT )+] < ∞, so that E[U(XT )]

is well-defined. This readily shows that Ĥ is the unique optimizer in the class H1(x).
Hence, for i = 1, 2, 3, the value functions ui(x) coincide with the value function u(x) as
defined in (5).

As regards the fact that Ĥ(x) also is in H′2(x) and H′3(x) for the case of exponential
utility, we refer to [DGRSSS 00] and [KaS 00].

6



Proposition 2.2 Under the assumptions of Theorem 2.1, fix Q ∈ Ma(S) with finite
V -expectation EP[V (dQ

dP
)].

The process X̂(x) = x+ Ĥ(x) ·S, defined by (14), is a super-martingale under Q.

We start with some auxiliary results. The subsequent lemma gives a general characteri-
sation of local martingales X (or, more generally, stochastic integrals of local martingales),
which are super-martingales. On the basis of a preliminary version of the present paper,
Kabanov and Stricker have further elaborated on this topic [KaS 01a].

Lemma 2.3 Let S be a local martingale on (Ω,F , (Ft)0≤t≤T ,Q), H an S-integrable pre-
dictable process and X = H ·S.

If, for every sequence (τn)∞n=1 of [0, T ]∪{∞}-valued stopping times increasing to +∞,
we have

lim sup
n→∞

EQ

[
Xτn1{τn<∞,Xτn≤0}

]
= 0, (19)

then X is a local martingale and a super-martingale under Q.

The proof of the lemma relies on the subsequent sublemma which is a straight forward
consequence of a result of Ansel-Stricker [AS 94, Proposition 3.3] (compare also [KaS 01a]).

Sublemma 2.4 Let S = (St)0≤t≤T be a local martingale and suppose that, for X = H ·S,
there is an integrable random variable ϑ ≥ 0 such that Xt ≥ −ϑ, a.s., for all 0 ≤ t ≤ T .

Then X is a local martingale and a super-martingale.

Proof of Lemma 2.3 Define the sequence of stopping times by σ0 = 0, n ≥ 1, and

σn = inf{t : Xt ≤ −n}, (20)

which increases almost surely to infinity.
We assume that (19) holds true and define the random variables

ϑn = max
(
(Xσn)− 1{σn<∞}, n

)
. (21)

It follows from (19) that, for n sufficiently large, we have EQ[ϑn] <∞.
Note that the stopped process Xσn is bounded from below almost surely by the random

variable ϑn; indeed on {σn = ∞} we have inf0≤t≤T X
σn
t ≥ −n, while on {σn < ∞} we

have inf0≤t≤T X
σn
t ≥ −Xσn1{σn<∞}. Sublemma 2.4 therefore implies that each Xσn , is a

super-martingale and that X is a local martingale under Q.
We now show that (19) implies that, for every [0, T ]-valued stopping time σ, we have

EQ[|Xσ|] <∞. (22)

Indeed, otherwise

∞ = lim
n→∞

EQ

[
|Xσ|1{σn=∞}

]
≤ lim

n→∞
EQ [|Xσ∧σn|]

≤ lim
n→∞

2EQ

[
(Xσ∧σn)−

]
. (23)
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Defining inductively τ0 = 0 and τk = (σnk∧σ)·1{σnk−1
≤σ}+∞·1{σnk−1

>σ}, for (nk)
∞
k=1 in-

creasing sufficiently fast to infinity, we find a sequence (τk)
∞
k=1 of stopping times increasing

almost surely to infinity such that

lim
n→∞

EQ

[
Xτk1{τk<∞,Xτk≤0}

]
= −∞, (24)

in contradiction to assumption (19).
Let us give the argument in some detail: suppose that n0 = 0, n1, . . . , nk−1 and

τ0, . . . , τk−1 are defined. Note that by the super-martingale property of each Xσn we
have that

EQ

[∣∣∣Xσ∧σnk−1

∣∣∣] <∞ (25)

hence, in particular

EQ

[∣∣∣Xσ∧σnk−1

∣∣∣ ·1{σnk−1
>σ}

]
= EQ

[
|Xσ|1{σnk−1

>σ}

]
<∞. (26)

From (23) and

EQ

[
(Xσ∧σn)−1{σnk−1

>σ}

]
= EQ

[
(Xσ)−1{σnk−1

>σ}

]
<∞, for n > nk−1, (27)

we deduce that
lim
n→∞

EQ

[
(Xσ∧σn)− ·1{σnk−1

≤σ}

]
=∞ (28)

and therefore we may choose nk > nk−1 such that, for τk defined as above, we have

EQ

[
Xτk1{τk<∞,Xτk≤0}

]
≤ −k, (29)

which gives (24).

Having thus established (22) we are ready to show the super-martingale property of
X. It suffices to fix stopping times 0 ≤ ρ ≤ σ ≤ T such that ρ ≤ σn0 , for some n0 ∈ N,
and to show that

EQ[Xσ −Xρ] ≤ 0. (30)

We deduce from the super-martingale property of Xσn that, for n ≥ n0,

EQ[Xσ∧σn −Xρ] ≤ 0. (31)

Using EQ[|Xσ|] < ∞, we may deduce (30) from (31) and assumption (19) applied to
the sequence of stopping times ρn = (σ ∧ σn)1{σn≤σ} +∞1{σn>σ}:

EQ[Xσ] = lim
n→∞

EQ

[
Xσ1{σn>σ}

]
= lim

n→∞
EQ

[
Xσ∧σn1{σn>σ}

]
= lim

n→∞

(
EQ [Xσ∧σn ]− EQ

[
Xσ∧σn1{σn≤σ}

])
≤ lim

n→∞

(
EQ [Xσ∧σn ]− EQ

[
Xρn1{ρn<∞,Xρn≤0}

])
≤ EQ[Xρ]. (32)
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Remark 2.5 We remark that the sufficient condition (19) also is necessary for a process
X = (Xt)0≤t≤T to be a super-martingale: indeed, if X = (Xt)0≤t≤T is a super-martingale
and the sequence of [0, T ] ∪ {∞}-valued stopping times (τn)0≤t≤T increases to ∞, the
sequence of random variables (Xτn1{τn<∞,Xτn≤0})

∞
n=1 is uniformly integrable, which implies

(19).
We have formulated Lemma 2.3 for processes indexed by the closed time interval

I = [0, T ]. This result also extends to the case of the open time interval I = [0,∞[; we
then have to require in condition (19) that the sequence (τn)∞n=1 increases stationarily to
∞. Note that in the present case of I = [0, T ] a sequence (τn)∞n=1 of [0, T ] ∪ {∞}-valued
stopping times, increasing to ∞, automatically does so in a stationary way.

We now aboard the proof of Proposition 2.2 for the special case of the exponential
utility U(x) = −e−γx which will rely on the subsequent Lemma 2.6 pertaining to the
well-known technique of “concatenation” (compare [KaS 00, prop. 4.1]).

Lemma 2.6 Under the assumptions of Theorem 2.1 let Q ∈ Ma(S) with H(Q|P) <∞
and τ a [0, T ]∪{∞}-valued stopping time. Denote by (Zt)0≤t≤T and (Ẑt)0≤t≤T the density

processes corresponding to Q and Q̂ respectively, and define the probability measure Qτ

by the following “concatenation operation”:

dQτ

dP
=

{
ZT if τ =∞
Zτ

ẐT
Ẑτ

if τ <∞ (33)

Then Qτ ∈Ma(S) and H(Qτ |P) ≤ H(Q|P).

Proof Note that the random variable Y = ẐT
Ẑτ

1{τ<∞} + 1{τ=∞} solves the conditional

minimization problem

EP [Y ln(Y )| Fτ ] −→ min! a.s. on {τ <∞}, (34)

among all nonnegative random variables Y verifying EP[Y |Fτ ] = 1 a.s., and such that the
process τS := St− St∧τ “starting at τ” is a local martingale with respect to the measure
R defined by dR

dP
= Y .

Indeed, suppose there is such a function Y and an Fτ -measurable subset A ⊆ {τ <∞},
P[A] > 0, such that

EP

[
ẐT
Ẑτ

ln
(
ẐT
Ẑτ

)∣∣∣Fτ] > EP [Y ln (Y )| Fτ ] a.s. on A. (35)

Then the probability measure Q̃ defined by

dQ̃
dP

= Z̃T =

{
ẐT on Ω\A
ẐτY on A

(36)

9



would be an element of Ma(S) with smaller entropy than Q̂:

H(Q̂|P)−H(Q̃|P) (37)

= EP

[
ẐT ln

(
ẐT

)
− Z̃T ln

(
Z̃T

)]
= EP

[(
Ẑτ

ẐT
Ẑτ

ln
(
Ẑτ

ẐT
Ẑτ

)
− ẐτY ln

(
ẐτY

))
1A

]
= EP

[
Ẑτ1A EP

[
ẐT
Ẑτ

(
ln
(
Ẑτ

)
+ ln

(
ẐT
Ẑτ

))
− Y

(
ln
(
Ẑτ

)
+ ln(Y )

)∣∣∣Fτ]]
= EP

[
Ẑτ1A EP

[
ẐT
Ẑτ

ln
(
ẐT
Ẑτ

)
− Y ln(Y )

∣∣∣Fτ]] > 0. (38)

This contradiction to the minimality of Q̂ shows (34).
By the same argument we conclude that Qτ is the element of Ma(S) with minimal

entropy such that Qτ |Fτ = Q|Fτ , which implies the assertion of the lemma.

Proof of Proposition 2.2 for the case of exponential utility
Assume that there is Q ∈ Ma(S), H(Q|P) < ∞, such that X̂ = x + Ĥ · S fails to be
a super-martingale under Q. Without loss of generality we may assume that x = 0 and

that Q ∈Me(S) (consider Q+Q̂
2

).

From Lemma 2.3 we deduce that, if X̂ fails to be a Q-super-martingale, there exists
a sequence (τn)∞n=1 of stopping times increasing to infinity such that

lim sup
n→∞

EQ[X̂τn1{τn<∞,X̂τn≤0}] < 0. (39)

Of course, we may assume that X̂τn ≤ 0 on {τn < ∞} so that we may replace

{τn <∞, X̂τn ≤ 0} simply by {τn <∞} in the above formula.

We know that X̂ is a uniformly integrable martingale under Q̂ and therefore

lim
n→∞

EQ̂

[
X̂τn1{τn<∞}

]
= 0. (40)

It follows that we have

lim inf
n→∞

EP

[
−X̂τnZτn1{τn<∞,Zτn≥Ẑτn}

]
> 0. (41)

Now apply Lemma 2.6 to the probability measures Qn ∈Me(S)

dQn

dP
=

{
Zτn

ẐT
Ẑτn

for τn <∞
ZT for τn =∞

(42)

We shall show that
lim inf
n→∞

H(Qn|P) > H(Q|P), (43)

10



a contradiction to the assertion of Lemma 2.6 which will finish the proof.

lim inf
n→∞

(H(Qn|P)−H(Q|P)) (44)

= lim inf
n→∞

EP

[(
Zτn

ẐT
Ẑτn

ln
(
Zτn

ẐT
Ẑτn

)
− ZT ln(ZT )

)
1{τn<∞}

]
(45)

≥ lim inf
n→∞

(
EP

[
Zτn

ẐT
Ẑτn

ln
(
Zτn

ẐT
Ẑτn

)
1{τn<∞,Zτn≥Ẑτn}

]
+ (46)

(−1
e
)P
[
τn <∞, Zτn < Ẑτn

]
− EP

[
ZT ln(ZT )1{τn<∞}

])
(47)

≥ lim inf
n→∞

EP

[
Zτn1{τn<∞,Zτn≥Ẑτn}EP

[
ẐT
Ẑτn

ln
(
ẐT

)∣∣∣Fτn]] (48)

= lim inf
n→∞

EP

[
Zτn1{τn<∞,Zτn≥Ẑτn}EP

[
ẐT
Ẑτn

(
−γX̂T − ln

(
y
γ

))∣∣∣Fτn]] (49)

= lim inf
n→∞

EP

[
Zτn1{τn<∞,Zτn≥Ẑτn}

(
−γX̂τn − ln

(
y
γ

))]
> 0, (50)

where we have used (13) in (49), and (41) as well as the fact that (ẐtX̂t)0≤t≤T is a
uniformly integrable martingale under P, in (50).

We now aboard the proof of Proposition 2.2 for general utility functions U : R → R

having reasonable asymptotic elasticity, i.e., satisfying (1) and (2). We shall have to
replace the explicit calculations for the “concatenation” above by some more conceptual
arguments. As often encountered in mathematics things become somewhat easier by
passing to a more general framework, as these conceptual arguments make the explicit —
but cumbersome — calculations superfluous, which were used in the above arguments for
the special case of the exponential utility.

For a fixed [0, T ]-valued stopping time τ we shall develop the notion of the conditional
value functions U τ (x) and V τ (y) at time τ , and the corresponding dynamic programing
principles.

We first isolate a slight variation of Theorem 2.2 of [S 01]: in the setting of this
theorem, replace T by an almost surely finite stopping time τ , and the utility function U
by a family (Uω(.))ω∈Ω of utility functions satisfying (1), and depending on ω ∈ Ω in an
F -measurable way.

We suppose that there is a constant C > 0, such that

y |V ′ω(y)| ≤ CVω(y), y > 0, (51)

almost surely, where (Vω(.))ω∈Ω denotes the family of conjugate functions. We refer to
[KrS 99, Corollary 6.1] and [S 01, Corollary 4.2] for the relation of (51) to (2).

Under these assumptions we study the optimisation problem

u(x) = sup {E [Uω (x+ (H ·S)τ )] : H admissible} . (52)

The statement as well as the proof of [S 01, Theorem 2.2] carry over — mutatis mu-

tandis — in a straight-forward way: if u(x) <∞, for some x ∈ R, the optimizer F̂τ (x) to
(52) exists, and the duality relation between the primal and dual optimizer now is given,
for y = u′(x), by

F̂τ (x)(ω) = −V ′ω
(
y dQ̂(y)

dP
(ω)
)
, for a.e. ω ∈ Ω. (53)
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Next we consider the financial market modeled by the process τS = (St − St∧τ )0≤t≤T ,
starting at τ , and the optimisation problem (5), with S replaced by τS:

uτ (x) = sup {E [U (x+ (H · τS)T )] : H admissible} . (54)

Clearly (1), (2), (3), and Assumption (1.3) imply that the assumptions of [S 01, The-

orem 2.2] are still satisfied for the optimisation problem (54). Denote by F̂ τ
T (x) the

optimizer to (54).
We may define the family of conditional value functions (U τ

ω(x))ω∈Ω by

U τ (x) = ess sup {E [U (x+ (H · τS)T )| Fτ ] : H adm.} = E
[
U
(
F̂ τ
T (x)

)∣∣∣Fτ] . (55)

Let us be slightly pedantic on this issue: for each rational number x ∈ Q choose an
Fτ -measurable representant, still denoted by ω 7→ U τ

ω(x), of the equivalence class defined
in (55). Clearly Q 3 x 7→ U τ

ω(x) defines a finite concave function on Q, for almost each
ω ∈ Ω, which therefore may uniquely be extended to a concave function, defined for
all x ∈ R. Therefore (55) defines an (equivalence class of) Fτ -measurable function(s)
ω 7→ U τ

ω(.) taking their values in the set of concave functions defined on R.
For any Fτ -measurable real function Xτ , taking finitely many values {x1, . . . , xN} we

may define

F̂ τ
T (Xτ ) =

n∑
i=1

F̂ τ
T (xi)1{Xτ=xi}, (56)

and this definition extends in an obvious way to general Fτ -measurable real functions Xτ

as F̂ τ
T (xn) → F̂ τ

T (x) almost surely, for xn → x, (compare [S 01, Proof of Theorem 2.2]).
We then have

E [U τ
ω(Xτ )] = E

[
U
(
F̂ τ
T (Xτ )

)]
, (57)

whenever one of these expectations makes sense, and

E [U τ
ω(Xτ )] ≥ E [U (Xτ + (H · τS)T )] , (58)

for each predictable process H such that, conditionally w.r. to Fτ , the process
(Xτ + (H · τS)t)τ≤t≤T is bounded from below.

Hence the value function u(x) defined in (5) satisfies the dynamic programing equation

u(x) = sup {E [U τ
ω (x+ (H ·S)τ )] : H admissible} . (59)

We also formulate the dual problem

v(y) = inf
{
E
[
V τ
ω

(
y dQ
dP

)]
: Q ∈Ma(Sτ )

}
, (60)

where V τ
ω is conjugate to U τ

ω , and Ma(Sτ ) refers to the stopped process (Sτt )0≤t≤T =
(St∧τ )0≤t≤T .

Denote by M(τS) the set of all probability measures Q on F , absolutely continuous
with respect to P such that τS is a local Q-martingale, and Q|Fτ = P|Fτ . We then have

V τ
ω (y) = ess inf

Q∈M(τS)
E
[
V
(
y dQ
dP

)∣∣Fτ] , y > 0. (61)

12



Indeed, (61) is just the conditional version of the conjugacy of the value functions u and
v in [S 01, Theorem 2.2] (the precise interpretation of (61) is similar as after (55) above).

The optimizer Q̂τ (y) ∈M(τS) to (61) uniquely exists, for y > 0, and we again may define

Q̂τ (Zτ ), for an Fτ -measurable R+-valued function Zτ , similarly as in (56), to obtain the
dynamic programing equation

V τ (Zτ ) = E
[
V
(
Zτ

dQ̂(Zτ )
dP

)∣∣∣Fτ] . (62)

In particular, if (Zt)0≤t≤T is the density process of some Q ∈Ma(S), we have

V τ (Zτ ) ≤ E [V (ZT )| Fτ ] , (63)

as ZT
Zτ

is the density of some Q ∈M(τS). This inequality may be viewed as the abstract
version of Lemma 2.6.

We now show that, under the assumption U(0) > 0, the family (V τ
ω (.))ω∈Ω verifies

(51). Indeed, if U satisfies (1) and (2) and U(0) > 0, we have by [S 01, Corollary 4.2] the
existence of C > 0 such that

y |V ′(y)| ≤ CV (y), y > 0. (64)

This inequality carries over to V τ
ω , for ω ∈ Ω:

y
∣∣(V τ

ω )′ (y)
∣∣ = E

[
y dQ̂

τ (y)
dP

V ′
(
y dQ̂

τ (y)
dP

)∣∣∣Fτ] (65)

≤ CE
[
V
(
y dQ̂

τ (y)
dP

)∣∣∣Fτ] = CV τ
ω (y),

where in the first equality we again have applied a conditional version of [S 01, Theorem
2.2(v)].

Denoting by (X̂t(x))0≤t≤T and (Ẑt(y))0≤t≤T the optimal processes associated to the

original problem (5) and (7), the stopped processes (X̂τ
t (x))0≤t≤T and (Ẑτ

t (y))0≤t≤T are
the optimal processes associated to (59) and (60). Indeed, this dynamic programing
principle now follows from (58) and (63). Whence (53) implies that, for y = u′(x),

X̂τ (x) = − (V τ
ω )′
(
Ẑτ (y)

)
, a.s. (66)

Let us resume the essentials of the above discussion, which we shall use in the proof
of Proposition 2.2 below:

Proposition 2.7 Under the assumptions of Theorem 2.1, let τ be a [0, T ]-valued stopping
time, and assume that U(0) > 0.

Define the Fτ -measurable family (U τ
ω(.))ω∈Ω of conditional value functions by (55),

and let (V τ
ω (.))ω∈Ω denote the family of conjugate functions.

Denoting by (X̂t(x))0≤t≤T and (Ẑt(y))0≤t≤T the optimal processes associated to (5) and
(7) we have, for y = u′(x), by (66)

X̂τ (x) = − (V τ
ω )′
(
Ẑτ (y)

)
, a.s. (67)
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For the density process (Zt)0≤t≤T of any Q ∈Ma(S) we have, by (63)

V τ (Zτ ) ≤ E [V (ZT )| Fτ ] . (68)

There is a constant c > 0 such that, for almost all ω ∈ Ω, by (65)

cy |(V τ
ω )′(y)| ≤ V τ

ω (y), for y > 0. (69)

Proof of Proposition 2.2 for the general case
First note that there is no loss of generality in assuming that U(0) > 0, as the assertion
is clearly invariant under adding a constant to U . Suppose that there is Q ∈ Ma(S),

E[V (dQ
dP

)] <∞, and x ∈ R, such that X̂(x) fails to be a Q-super-martingale.
Similarly as in (41) above we conclude from Lemma 2.3 that there is a sequence (τn)∞n=1

of stopping times, increasing to ∞, such that

lim inf
n→∞

EP

[
−X̂τn(x)Zτn1{τn<∞,Zτn≥yẐτn (y)}

]
> 0, (70)

where Zt is the density process of Q, Ẑt(y) the density process of Q̂(y) and u′(x) = y.
Applying Proposition 2.7 to the stopping time τn ∧ T , and using the monotonicity of

y 7→ (V τn
ω )′(y), we obtain

lim inf
n→∞

EP

[
V
(
dQ
dP

)
1{τn<∞,Zτn≥yẐτn (y)}

]
(71)

(68)

≥ lim inf
n→∞

EP

[
V τn
ω (Zτn)1{τn<∞,Zτn≥yẐτn (y)}

]
(72)

(69)

≥ lim inf
n→∞

cEP

[
Zτn(V τn

ω )′(Zτn)1{τn<∞,Zτn≥yẐτn (y)}

]
(73)

≥ lim inf
n→∞

cEP

[
Zτn(V τn

ω )′(yẐτn(y))1{τn<∞,Zτn≥yẐτn (y)}

]
(74)

(67)
= lim inf

n→∞
cEP

[
−X̂τn(x)Zτn1{τn<∞,Zτn≥yẐτn (y)}

] (70)
> 0, (75)

a contradiction to the P-integrability of V (dQ
dP

) and the fact that (τn)∞n=1 increases to∞.

3 The Role of Potential Investments: a Puzzling Ex-

ample

We start by describing the building block of the example.
Let (Ω,F , (Gt)t≥0,Q) be a filtered probability space on which a process W = (Wt)t≥0

and a sequence (ξn)∞n=1 of {0, 1}-valued random variables is defined such that

(i) W is a standard Brownian motion under Q starting at W0 = a0 for a constant a0

to be specified below, and (Gt)t≥0 is the (saturated) filtration generated by W .

(ii) (ξn)∞n=1 is an independent sequence of {0, 1}-valued random variables, independent
of W , such that Q[ξn = 1] = qn, for some sequence qn ∈]0, 1[ to be specified below.
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We also fix sequences of real numbers (an)∞n=0 and (bn)∞n=1 such that (an)∞n=0 is strictly
decreasing to −∞, and (bn)∞n=1 satisfies bn > an−1. In the application below we shall have

an ≈ −2n and bn ≈ ln(n). By the notation f(n) ≈ g(n) we mean that
(
f(n)
g(n)

)∞
n=1
∈ [c−1, c],

for some c > 1.
Define the stopping times (σn)∞n=0 by σ0 = 0 and

σn = inf
{
t ≥ σ 3: Wσn−1 = an−1 and (Wt = an or bn)

}
, for n ≥ 1. (76)

Letting dn = an−1−bn
an−bn ∈]0, 1[ and en =

∏n
j=1 dj, one verifies inductively that

Q [Wσn = an, σn <∞] = en, for n ≥ 0. (77)

Note that for an ≈ −2n, bn ≈ ln(n) we have dn ≈ 1
2

and en ≈ 2−n. If en tends to zero,
the stopping times (σn)∞n=1 increase a.s. to ∞, which we assume from now on.

The filtration (Ft)t≥0 will be the smallest (right continuous and saturated) filtration
containing (Gt)t≥0 and such that ξn1{Wσn=an,σn<∞} is Fσn-measurable. Let

τ = inf
n
{σn : Wσn = bn or ξn = 1}, (78)

and
τn = σn ∧ τ, for n ≥ 0, (79)

so that (τn)∞n=1 defines a sequence of stopping times with respect to the filtration (Ft)t≥0

stationarily increasing to the finite stopping time τ .
We now define the process S which is simply Brownian motion W starting at a0 and

stopped at time τ , i.e.,
St := (W τ )t = Wt∧τ , t ≥ 0. (80)

Note that(Ft∧τ )t≥0 is the (right continuous, saturated) filtration generated by S.
Using the notation

An = {τn = τ and Sτn = an} , Bn = {τn = τ and Sτn = bn} , (81)

we find an almost sure partition ((An)∞n=1, (Bn)∞n=1) of Ω into disjoint sets.

Here is the interpretation for this construction: we obtain the process S by letting a
Brownian motion W start at W0 = a0 and run until time σ1, when it first hits a1 < a0

or b1 > a0. If Sσ1 = Wσ1 = b1, i.e., on the set B1, we stop and everything is over; if
Sσ1 = Wσ1 = a1 we flip a coin modeled by the random variable ξ1. If ξ1 = 1, i.e., on the
set A1, we stop again, but if ξ1 = 0 we continue by letting S run like the Brownian motion
W until it first hits a2 or b2; again we only continue if we hit a2 and, in addition, ξ2 = 0.
Proceeding in an obvious way we stop with probability one at a finite time, namely at
the stopping time τ .

Note that S is a martingale with respect to the measure Q and the filtration (Ft)t≥0.
From now on we suppose that limn→∞ enan 6= 0, and that there is n0 ≥ 0 such that, for

n ≥ n0, we have an < 0, bn > 0 and
∑

n≥n0
bn/|an−1| <∞, which is verified for the choices

of an and bn indicated above. Under these assumptions we have that the sequence of
random variables (Sτn)n≥0 remains bounded in L1(Q). Indeed {Sτn+1 6= Sτn} ⊆ {Sτn = an}
and an elementary calculation reveals that, for n ≥ n0,∥∥Sτn+11{Sτn=an}

∥∥
L1(Q)

≤
(

1 + 2
bn+1(1− dn+1)

|an|

)∥∥Sτn1{Sτn=an}
∥∥
L1(Q)

(82)

15



so that ∥∥Sτn+1

∥∥
L1(Q)

≤
(

1 + 2
bn+1(1− dn+1)

|an|

)
‖Sτn‖L1(Q) , (83)

which readily implies the boundedness of (‖Sτn‖L1(Q))
∞
n=1, and in particular the Q-

integrability of Sτ .

We now pass to the choice of (qn)∞n=1. Under the above assumptions we have that the
martingale S is uniformly integrable with respect to Q iff

∞∑
n=1

qn =
∞∑
n=1

Q[ξn = 1] =∞. (84)

Indeed, this condition is equivalent to the fact that (Sτn)∞n=1 converges to Sτ in the
norm of L1(Q), which in turn is equivalent to

lim
n→∞

E[Sτn1{Sτn 6=Sτ}] = (85)

= lim
n→∞

[
anen

n+1∏
j=1

(1− qj)

]
= 0. (86)

The construction of the building block for the subsequent Proposition 3.1 now is
finished, up to some cosmetics (which may be skipped at a first reading): the reader
might dislike the feature that the time index set for the process S is R+, and not the
compact interval [0, T ]. The remedy is very easy: fix T > 0, and make the deterministic
time change

S̃T (1−e−t) := St, t ≥ 0, (87)

so that S̃ is defined over the time index set [0, T [. By the a.s. finiteness of the stopping

time τ we have that the trajectories of S̃ become eventually constant on [0, T [ a.s. and
may therefore be continuously extended to the time index set [0, T ] thus obtaining a

process (S̃t)0≤t≤T with all the features of the above process S and such that S̃ is a local

Q-martingale. We now have that S̃ is a Q-martingale iff S is uniformly Q-integrable
which was characterized by (84) above. By abuse of notation we shall still write S for the

time-transformed process S̃.

Proposition 3.1 There are semimartingales S1 = (S1
t )0≤t≤T and S2 = (S2

t )0≤t≤T , de-
fined on and adapted to (Ω,F , (Ft)0≤t≤T ,P), and a probability measure Q ∼ P with the
following properties:

(i) H(Q|P) <∞.

(ii) S1 is a martingale under Q and a local martingale, but not a supermartingale, under
P.

(iii) S2 is a martingale under Q, but not a local martingale under P.

(iv) Denoting by Slarge the R2-valued process (S1, S2), we have that Q is the unique
equivalent local martingale measure for Slarge. The equality

S1
T = − ln

(
dQ
dP

)
(88)

16



holds true, and therefore the process (S1
t )0≤t≤T equals the investment process

(X̂t)0≤t≤T , starting at X̂0 = S1
0 , which is optimal with respect to the utility func-

tion U(x) = −e−x.

(v) Denoting by Ssmall the R-valued process S1, we have that P is a local martingale
measure for Ssmall. Therefore the optimal investment process with initial endowment
X̂0 = S1

0 equals X̂t ≡ S1
0 . The optimality pertains to the utility function U(x) =

−e−x (and, in fact, to any increasing, strictly concave utility function U).

Before aboarding the proof, let us comment on the result: In the case of the “large”
financial market Slarge, the optimal investment consists in constantly holding one unit of
the first asset S1 and not touching the second asset S2. Nevertheless by passing to the
“small” financial market Ssmall, which consists of this first asset only, this strategy is not
optimal any more! In this case the optimal strategy is not to invest at all into a risky
asset and to keep the money in the bond Bt ≡ const.

Hence the role of the asset S2 may be compared to a catalyst in chemistry: its sheer
presence changes the situation without entering into the chemical reaction.

As we shall see below, one reason for this seemingly paradoxical result is that in the
former case the optimal strategy H = (1, 0) of holding one unit of the first asset can be
approximated by a sequence Hn = (Hn,1, Hn,2) of admissible strategies in the sense of
Definition 1.4 (iii) and (iii’) above. The second asset is needed for these approximating
strategies and such an approximation is not possible by only dealing in the first asset.

Proof of Proposition 3.1 To define the process S1 we shall do the construction pre-
ceding the statement of Proposition 3.1, where we shall specify the numbers an, bn ap-
propriately: let a0 = −1 and

an := − ln

(
e2n

n(n+ 1)
∏n−1

j=1 (1− e−2j)

)
≈ −2n, n ≥ 1, (89)

bn := − ln

(
1

n
∏n−1

j=1 (1− e−2j)

)
≈ ln(n), n ≥ 1, (90)

where
∏0

j=1 := 1. Note that (an)∞n=0 decreases to −∞ and (bn)∞n=1 increases to +∞ and
−1 = a0 < b1 = 0.

The measure Q will be defined by letting

qn = Q[ξn = 1] =
1

n+ 1
, n ≥ 1, (91)

while the measure P will be defined in an analogous way by letting

pn = P[ξn = 1] = e−2n , n ≥ 1. (92)

Let dn = an−1−bn
an−bn ∈]0, 1[ and en =

∏n
j=1 dn be as above (so that we have dn ≈ 1

2
and

en ≈ 2−n). We then obtain the subsequent quantities for the measures Q and P:

P[An] = ene
−2n

n−1∏
j=1

(
1− e−2j

)
≈ 2−ne−2n , (93)

P[Bn] = en−1(1− dn)
n−1∏
j=1

(
1− e−2j

)
≈ 2−n, (94)
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and

Q[An] = en
1

n+ 1

n−1∏
j=1

(
1− 1

j + 1

)
=

en
n(n+ 1)

≈ 2−n

n2
(95)

Q[Bn] = en−1(1− dn)
n−1∏
j=1

(
1− 1

j + 1

)
=
en−1(1− dn)

n
≈ 2−n

n
. (96)

Observe that we have arranged things in such a way that we have

an = − ln

(
Q[An]

P[An]

)
, bn = − ln

(
Q[Bn]

P[Bn]

)
, for n ≥ 1. (97)

Next we define the random variable S1
T such that (88) holds true. Noting that dQ

dP
is

constant on each An and Bn this amounts to

S1
T =

{
an on An
bn on Bn.

(98)

The process (S1
t )0≤t≤T is defined by

S1
t = EQ[S1

T |Ft], 0 ≤ t ≤ T. (99)

It now is obvious that this process starts at S1
0 = a0 = −1 and equals the continuous

process S described in the construction preceding the proposition. Indeed, this process
is a Q-martingale with terminal value S1

T . We infer from (84), (91) and (92) that S1 is a
(uniformly integrable) Q-martingale, but only a local martingale under P.

The process (S2
t )0≤t≤T is defined by

S2
t =

∞∑
n=1

2−n(ξn − qn)1[[τn,T ]](t) 1{Wτn=an}, 0 ≤ t ≤ T. (100)

Clearly S2 is a bounded martingale under Q as EQ[ξn] = qn. It is also obvious that Q
is the unique equivalent martingale measure for the process Slarge = (S1, S2) on the sigma-
algebra Fτ generated by Slarge. Indeed, a local martingale measure Q for the process S in
the construction preceding the proposition is unique up to the choice of qn (which may, in
general, be any Fτn-measurable ]0, 1[-valued function, defined on {τn < ∞,Wτn = an}).
The requirement that S2 is a Q-martingale and the predictability of the stopping time
ρn := inf{t : S1

t = an} forces these function to equal qn = 1
n+1

a.s. on {τn <∞,Wτn = an}.
We now turn to the verification of assertions (i)–(v):

(i) We have

H(Q|P) =
∞∑
n=1

(
Q[An] ln

(
Q[An]

P[An]

)
+ Q[Bn] ln

(
Q[Bn]

P[Bn]

))
(101)

≈
∞∑
n=1

(
2−n

n2
2n +

2−n

n
ln

(
1

n

))
<∞. (102)
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(ii) S1 is a uniformly integrable martingale under Q by (99); on the other hand, the fact
that

∑∞
j=1 pn =

∑∞
n=1 e

−2n < ∞ implies that S1 fails to be a uniformly integrable
martingale under P by (84) above.

(iii) obvious.

(iv) We have already observed that Q is the unique equivalent martingale measure for
Slarge and that (88) holds true. Hence it follows from the general theory (see [S 01,

theorem 2.1]) that X̂t := S1
t is the optimal investment process for the exponential

utility function U(x) = −e−x and initial endowment X̂0 = a0.

(v) For Ssmall we have that P ∈ Me(Ssmall) and therefore it is the entropy-minimizing
local martingale measure for Ssmall. Again it follows from the general theory that
X̂t ≡ S0 is the optimal investment process for the initial endowment X̂0 = S0.

Indeed, in this case the assertion reduces to a triviality, using only the monotonicity
and concavity of U and Jensen’s inequality. If H is any admissible trading stategy,
we have EP[S0 + (H ·S)T ] ≤ S0, and therfore EP[U(S0 + (H ·S)T )] ≤ U(S0).

Remark 3.2 It is interesting to explicitly identify an approximating sequence of admissi-
ble strategies (Hn)∞n=1 for the optimal investment Ĥ = (1, 0) in the case of Slarge = (S1, S2)
(which we know to exist by Theorem 2.1) and to give some economic interpretation for
it.

Let us start by considering H̃n = (1[[0,τn]], 0), i.e., the strategy of holding one unit of
asset S1 up to time τn and then selling it. Clearly this is an admissible strategy and we
have (

H̃n ·Slarge
)
T

=


ai on Ai, for i ≤ n
bi on Bi, for i ≤ n
an on Aj ∪Bj, for j > n.

(103)

But this is a very poor investment from the point of view of exponential utility U(x) =
−e−x. Indeed, P[

⋃
j>n(Aj ∪Bj)] ≈ 2−n and therefore

E
[
U
(
Ĥn ·Slarge

)
T

]
≤ P

(⋃
j>n

(Aj ∪Bj)

)
(−e−an) ≈ 2−n

(
−e2n

)
≈ −e2n . (104)

How to remedy this situation? By only considering investments in S1, i.e., in the
“small” financial market Ssmall, there is little one can do about it. This should be intu-
itively clear and is formally implied by Proposition 3.1.

But in the case of the “large” financial market Slarge it is possible to find a remedy by
trading on S2.

The stopping time ρn = inf{t : S1
t = an} is predictable and therefore it does make

sense to invest into the asset S2 at time (ρn)− an appropriate quantity and to sell it again
at time ρn. In other words, in the “large” financial market we are allowed to make bets
on the outcome of the random variable ξn. These bets are priced by the measure Q for
which we have

EQ[ξn = 1] = qn =
1

n+ 1
. (105)
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In other words, it is possible to make a bet which pays −an in the case {ξn = 0}, i.e.,
on the sets

⋃
j>n(Aj ∪Bj), and nan in the case {ξn = 1}, i.e., on the set An.

In fact, the good remedy for the above trading strategy H̃n is slightly more tricky, as
it does not suffice to make a bet on ξn, but rather on ξN for some N � n.

To be more precise: fix n ∈ N and, for N > n, consider the contingent claim

fN = −aN1{⋃j>N Aj∪Bj} − εN1An , (106)

where we choose εN > 0 such that EQ[fN ] = 0, which yields

εNQ[An] = −aNQ

[⋃
j>N

Aj ∪Bj

]
, (107)

so that
εN ≈ n22n/N, (108)

which tends to zero for N →∞. Denote by LN = (LN,1, LN,2) the trading strategy which
replicates the contingent claim fN . This is possible as the market Slarge is complete.

Defining the trading strategy KN as H̃n + LN , where H̃n = (1[[0,τn]], 0), note that KN

is admissible and satisfies

(
KN ·Slarge

)
T

=


ai on Ai, for i ≤ N, i 6= n

an − εN on An
bi on Bi, for i ≤ N
0 on Aj ∪Bj, for j > N.

(109)

Hence EP[U((KN ·Slarge)T )] tends to the optimal EP[U(S1
T )], as N tends to infinity.

Speaking economically: after having followed the optimal trading strategy S1 up to time
τn the investor operating in the large financial market may continue to invest with a finite
credit line in S1 and S2, in such a way, to finally obtaining almost the optimal expected
utility.

Here is another observation on this puzzling example: the optimal investment process
X̂ = S1 for Slarge fails to be a P-martingale on the time index set [0, T ]; but it is easily
verified that it is a P-martingale on the open time index set [0, T [. In particular we have

EP[X̂t] = a0 = −1, for 0 ≤ t < T, and EP[X̂T ] > −1. (110)

By passing to the utility process (U(X̂t))0≤t≤T we deduce from Jensen’s inequality

that EP[U(X̂t)] is a decreasing function of t ∈ [0, 1[. It is not hard to verify that

limt↗T EP[U(X̂t)] = −∞; on the other hand we have EP[U(X̂T )] > U(X̂0) = −e.
Speaking economically, the optimal investor is not bothered by the fact that her ex-

pected utility is continuously decreasing in time t ∈ [0, T [ and in very bad shape at time
T −ε, as she knows that it will jump up in a discontinuous way at time T . An explanation
for this apparently dangerous attitude is that — potentially — she always has the possi-
bility of the above described bets on ξn which can save her. In the absence of these bets,
she cannot dare to follow the investment strategy X̂. Nevertheless, in the large market
Slarge it is optimal for her never to bet on ξn.
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Another feature of this example is the following: the reader might have wondered
whether one may weaken the requirements of “allowability” or “permittedness” of a trad-
ing strategy H as given in Definition 1.4 by only requiring that the process H · S is a
uniformly integrable martingale for some equivalent martingale measure Q ∈ Me(S).
This class of trading strategies is closely related to the class of trading strategies studied
in [DS 97] under the name of “workable” trading strategies.

The present example shows in a rather striking way that such hopes are in vain (even
when we are requiring in addition that the above Q has finite entropy): by consider-
ing Ssmall and the process Xt = S1

t , we find a process which is a uniformly integrable
martingale under the measure Q ∈Me(S), and such that, for U(x) = −e−x,

E[U(X1)] > U(−1) = −e. (111)

However, item (v) asserts that the optimal investment equals X̂t ≡ −1.
This shows in particular that the duality theory for the optimization problem breaks

down if we would weaken the requirement on the “permitted” trading strategies to al-
low for all trading strategies such that the stochastic integral is a uniformly integrable
martingale with respect to some equivalent martingale measure.

A closely related topic is the following: A basic feature in portfolio optimization, which
we implicitly encountered above, and which sometimes is referred to as the “Fundamental
Theorem of Utility Maximization” [K 00, corr. 2.7], states — roughly speaking — that
a trading strategy H is optimal iff U ′((H · S)T ) is — up to a normalizing factor y > 0
— the density of a local martingale measure for S. The present example shows that one
has to be rather careful when trying to make a precise theorem of this general principle:
for Ssmall = S1 we have the situation that H ≡ 1 is a trading strategy such that, for
H ·S1 = S1 and dQ

dP
= U ′((H ·S)T ) = exp(−S1

T ), we have that Q is a martingale measure
for S1 and that H ·S1 is a uniformly integrable Q-martingale. Nevertheless the trading
strategy H ≡ 1 is not optimal, as H ≡ 1 is not permitted.

In [GR 00, lemma 3.3 and proposition 3.4] additional conditions were isolated, which
are sufficiently strong to rule out the above example, and under which the above “Funda-
mental Theorem of Utility Maximization” becomes a precise mathematical theorem (for
the case of exponential utility and a locally bounded semimartingale S).

One more observation: in the context of Definition 1.4 (iii) and (iii’) one might ask
whether the approximating trading strategies (Hn)∞n=1 for the optimal trading strategy

Ĥ can be chosen by stopping Ĥ, i.e., by letting Hn = Ĥ · 1[[0,τn]] for a suitable chosen
sequence of stopping times increasing to infinity. The example of Slarge shows that — in
general — this is not possible; in fact, we deduce from (v) that, even allowing to multiply

Ĥ = (1, 0) by more general predictable processes than 1[[0,τn]], this does not help to find
an approximating sequence (Hn)∞n=1 of admissible integrands.

Let us now discuss the role of the process S2, in more detail, which mainly serves
to “make the martingale measure Q unique”. For convenience we have modeled it as
a process with jumps at predictable times: the idea of the above construction is most
intuitively explained by “flipping a coin”. This modelization leads to the above trading
strategies of “buying at (ρn)− and selling at ρn”.

For readers who don’t like discontinuous processes and trading strategies as above
we point out that the phenomenon of the above example has nothing to do with these
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features: instead of flipping a coin one can just as well run a Brownian motion until it
first hits plus or minus one.

This is the modification of the above construction we have in mind: define S1 up to
time σ1 just as above. Now define the process S2 to equal zero up to time σ1 and then to
run like the Brownian motion W on the event {S1

σ1
= a1} (otherwise S2 remains equal to

zero for ever). Let S2 run until the stopping time ν1 > σ1 when S2 first hits +1 or −1.
On the stochastic interval [[σ1, ν1]] the process S1 is kept constant; after ν1 the process S1

runs again like the Brownian motion W on the set {S2
ν1

= −1} (which now corresponds
to {ξ1 = 0}) while S2 remains constant; on the set {S2

ν1
} we stop everything.

Continuing in an obvious way we obtain a continuous process S2 which plays exactly
the same role as the discontinuous process S2 constructed above (we can also make S2

bounded by replacing +1 and−1 by +2−n and−2−n at the n’th step to define the stopping
time νn). The different weight on the outcomes of ξn under P and Q now is achieved by
Girsanov’s theorem which allows to give different probabilities to the events {S2

ν1
= 1}

and {S2
ν1

= −1}. We leave the details to the energetic reader.
Summing up, we have sketched a modification of the above construction such that S2 is

a continuous bounded process; also note that we thus may base the above construction on
a filtered probability space (Ω,F , (Ft)t≥0,P) generated by the one-dimensional Brownian
motion W .

In the next example we show that, under the assumptions of Theorem 2.1 and for the
case of exponential utility, it may happen that there is some Q ∈Me(S) under which the

optimal investment process X̂ = Ĥ ·S fails to be a supermartingale. Hence the condition
on the finiteness of H(Q|P), or, more generally, of E[V (dQ

dP
)] <∞, cannot be dropped in

Definition 1.4 (ii) and (ii’).

Example 3.3 There is a continuous R-valued financial market (St)0≤t≤T such that the

entropy-minimal element Q̂ ∈ Me(S) exists, and there is some equivalent martingale

measure Q ∈ Me(S), with H(Q|P) = ∞, for which the optimal investment process X̂

with initial endovment X̂0 = 0 is only a local Q-martingale, but not a Q-supermartingale.

The construction is similar in spirit to the above one, but somewhat simpler. Again we
have a stochastic base (Ω,G, Q̂) on which there is defined a standard Q̂-Brownian motion
W = (Wt)t≥0, this time starting at W0 = 0, and a sequence (ξn)∞n=1 of independent
{0, 1}-valued random variables which are independent of W .

The stopping times (σn)∞n=1 are defined inductively by σ0 = 0 and

σn = inf
{
t ≥ σn−1 : Wσn−1 = −(2n−1 − 1)

and (Wt = −(2n − 1) or 1)} . (112)

Let τ = infn{σn : Wσn = 1 or ξn = 1} and

τn = σn ∧ τ, for n ≥ 0. (113)

The process S = (St)t≥0 again is defined as the stopped Brownian motion W τ ,
(Ft∧τ )t≥0 as the natural filtration generated by S and F = Fτ . We also make a de-
terministic time change, so that S, is defined over the closed finite time interval [0, T ].

22



We have not yet specified the probabilities q̂n = Q̂[ξn = 1]; note that we again have

that S is a uniformly integrable martingale under Q̂ iff

∞∑
n=1

q̂n =
∞∑
n=1

Q̂[ξn = 1] =∞. (114)

We now define q̂n = 1 − e−2n , for each n ∈ N, so that S is a uniformly integrable
Q̂-martingale. We also define a measure Q on (Ω,F) in a similar way, but letting qn =
Q[ξn = 1] = 2−n, so that S is only a local Q-martingale but not uniformly Q-integrable,
and therefore not a Q-supermartingale.

We still have to define the measure P on (Ω,F). We do this via

dP

dQ̂
= c−1eST , (115)

where the normalizing constant c is chosen such that

c = EQ̂[eST ]. (116)

The above expectation is well-defined as ST is bounded from above; hence P is a
probability measure.

Clearly the measures Q̂ and P are equivalent. It is slightly less obvious that Q also is
equivalent to Q̂. To verify this, let An = {ST = −(2n − 1)}, Bn = {ST = 1 = Wσn} and
B = ∪∞n=1Bn = {ST = 1}. We then have

Q[An] = 2−n
∏n−1

i=1 (1− qi)qn ≈ 2−2n, Q[Bn] = 2−n
∏n−1

i=1 (1− qi) ≈ 2−n

Q̂[An] = 2−n
∏n−1

i=1 (1− q̂i)q̂n ≈ 2−ne−2n , Q̂[Bn] = 2−n
∏n−1

i=1 (1− q̂i) ≈ 2−ne−2n

P[An] = c−1 · e−(2n−1)Q̂[An] ≈ 2−ne−2n+1
, P[Bn] = c−1e Q̂[Bn] ≈ 2−ne−2n

Under all three measures, the sequence ((An)∞n=1, (Bn)∞n=1) forms an almost sure par-
tition of (Ω,F) into sets of strictly positive measure.

For each fixed An (resp. Bn), the measures Q and Q̂, restricted to F|An (resp. F|Bn)

are equivalent. Indeed, Q and Q̂ are clearly equivalent on each Fτn . Note that Fτn|An
(resp. Fτn|Bn) coincides with F|An (resp. F|Bn). Hence Q and Q̂ are equivalent measures
on (Ω,F).

To check that H(Q̂|P) is finite, we may explicitly calculate it:

H
(
Q̂|P

)
=

∞∑
n=1

Q̂ [An] ln

(
Q̂ [An]

P [An]

)
+ Q̂ [B] ln

(
Q̂ [B]

P [B]

)
(117)

≈
∞∑
n=1

2−ne−2n ln
(
e2n
)

+ Q̂ [B] (ln (c)− 1) <∞

A similar calculation reveals that H(Q|P) =∞. More generally, for any local martin-

gale measure Q̃ ∈Ma(S), such that S fails to be a Q̃-martingale, we have H(Q̃|P) =∞.

Indeed, letting En = ∪∞i=n+1(Ai ∪ Bi) = {Sτn = −2n − 1 and ξn = 0}, the local Q̃-

martingale S is a martingale iff limn7→∞(2n − 1)Q̃[En] = 0. As Sτn+1 is bounded, it is
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a Q̃-martingale, which implies that Q̃[Bn+1] = Q̃[En]/2. Hence, if S fails to be a Q̃-

martingale, we may find α > 0 and an infinite subset I ⊆ N such that Q̃[Bn] ≥ α2−n, for
n ∈ I. This implies

H
(
Q̃|P

)
≥

∑
n∈I

Q̃ [Bn] ln
Q̃[Bn]

P[Bn]
− e−1 (118)

≈ α
∑
n∈I

2−n ln

(
α ·2−n

2−ne−2n

)
=∞.

Next we show that Q̂ is indeed the entropy-minimal element in Ma(S), as indicated

by the notation, and that X̂(0) = S is the optimal process starting at S0 = 0.

Fixing again Q̃ ∈ Ma(S) we shall show that H(Q̃|P) ≥ H(Q̂|P). To do so, we may

obviously assume that H(Q̃|P) < ∞ so that S is a Q̃-martingale. Therefore, letting
V (y) = y(ln(y)− 1) and U(x) = −e−x we find

H(Q̃|P)− 1 = E

[
V

(
dQ̃

dP

)]
(119)

= E

[
sup
ξ∈R

(
U(ξ)− ξ dQ̃

dP

)]

≥ E

[
U(ln(c−1) + ST )− (ln(c−1) + ST )

dQ̃

dP

]
= cE[exp(−ST )]− EQ̃[ST ] + ln(c)

= cE[exp(−ST )] + ln(c), (120)

with equality holding true iff Q̃ = Q̂, i. e., iff −V ′(dQ̃
dP

) = −V ′(dQ̂
dP

) = − ln(dQ̂
dP

) =
ln(c−1) + ST holds true almost surely.

Having established that Q̂ is the entropy-minimal element ofMa(S), we now show the

optimality of X̂(0) = S. By Theorem 2.1 it suffices to show that E[U(ST )] ≥ E[U(XT )]
for every random variable XT satisfying EQ̂[XT ] ≤ 0. This is done via the dual version
of the above argument.

E [U (XT )] = E

[
inf
η>0

(V (η) + ηXT )

]
(121)

≤ E

[
V

(
c−1

(
dQ̂

dP

))
+ c−1dQ̂

dP
XT

]

≤ E

[
V

(
c−1

(
dQ̂

dP

))]
= c−1

(
H(Q̂|P)− ln(c)− 1

)
,

with equality holding true iff XT = ST almost surely.
We now have proved all the assertions in the statement of Example 3.3.
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Remark 3.4 The process S above fails to be a Q-supermartingale but it is a Q-
submartingale as it is a local martingale bounded from above. This raises the ques-
tion, whether one can produce a similar example as above such that S fails to be a
Q-submartingale. The answer is yes: it suffices to define the measures Q, Q̂ and the
process S precisely as above. The only difference is that we now change the sign in the
Definition (115) of P, i.e.

dP

dQ̂
= c−1e−ST , (122)

where the normalizing constant c now is given by c = EQ̂[e−ST ]. As we have Q̂[An] ≈
2−ne−2n , the expectation is indeed finite. We again have H(Q̂|P) <∞ while H(Q|P) =
∞.

In this setting Q̂ again is the entropy-minimal element of Ma(S) and the optimal

process X̂(0) equals X̂(0) = −S, which therefore is a martingale under Q̂, but only a
local martingale, and not a sub-martingale under Q.

The verification is analogous to the above arguments and left to the reader.

The subsequent final example is somewhat related to the preceding remark and
shows that, for utility functions U different from the exponential one, the term “Q-
supermartingale” in Definition 1.4 (ii) and (iii) cannot be replaced by the term “Q-
martingale”. Hence the result shown in [DGRSSS 00] for the case of exponential utility,

that the optimal investment process Ĥ ·S also is a Q-submartingale, for each Q ∈Me(S)
with finite relative entropy H(Q|P), is a special feature of the exponential utility.

However, the fact that this result does not extend to other utility functions should not
be viewed as a drawback: indeed, the question whether a real-valued local martingale X
is a submartingale is related to the behaviour of the process X when Xt assumes values
close to +∞, while the supermartingale property is related to the behaviour of X when
Xt assumes values close to −∞. It is the latter aspect which — in the present context
— is the delicate issue from an economic point of view, as this aspect is related to the
situation when the agent’s wealth is deep into the red. On the other hand, there seems to
be no obstacle from an economic point of view, when the investment process (Xt)0≤t≤T
assumes values close to +∞, i.e., when the agent becomes very rich. In other words, it is
the Q-supermartingale property asserted in Theorem 2.1 which is economically relevant,
and the failure of the Q-submartingale property displayed by the subsequent example
does not lead to any major economic paradoxes.

Example 3.5 There is a utility function U : R → R satisfying (1) and (2), and a
continuous R-valued financial market (St)0≤t≤T , such that there is Q ∈Me(S) with finite
V -expectation E[V (dQ

dP
)] < ∞, and there is x ∈ R, such that the optimal investment

process X̂t(x) = x+ (Ĥ ·S)t fails to be a Q-submartingale.

The example will mainly depend on the values of the utility function U(x) for x ≥ 1

as we shall do the construction such that X̂t ≥ 1. We define U by U(x) = ln(x), for
x ≥ 1, and extend the definition of U(x) in an arbitrary manner to the entire real line
such that (1) and (2) hold true. This implies that the conjugate function V satisfies
V (y) = − ln(y)−1, for 0 < y ≤ 1. We may and do also assume that

∑∞
n=1 2−n·V (n) <∞;

indeed, it suffices, e.g., to choose the extension of U such that U(x) = −e−x, for x
sufficiently close to −∞, so that V (y) = y(ln(y)− 1), for y sufficiently large.
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Now we proceed similarly as in Example 3.3 and remark 3.4: let W = (Wt)t≥0 be a
standard Brownian motion, starting this time at W0 = 2, define σ0 = 0,

σn = inf{t ≥ σn−1 : Wσn−1 = 2n−1 + 1 and (Wt = 2n + 1 or 1)}, n ≥ 1, (123)

and
τ = inf

n
{σn : Wσn = 1 or ξn = 1} . (124)

Again we let S = W τ and note that St ≥ 1, for all t, so that U(St) = ln(St). Define

the probability measure Q and Q̂ similarly as above by

q̂n = Q̂ [ξn = 1] =
1

2
and qn = Q [ξn = 1] = 2−n, (125)

so that S is a local martingale under Q and Q̂ which, by the same token as in (86) above,

is uniformly integrable under Q̂ but not under Q. Hence S fails to be a Q-submartingale.
Define P by

dP

dQ̂
= c−1ST (126)

which is the formula corresponding to (115) for the present utility function U as in this
case U ′(x) = x−1 , for x ≥ 1. The normalizing constant c > 0 is chosen such that P is a
probability measure i.e., c = EQ̂[ST ], which is easily seen to be finite.

Letting again An = {ST = 2n + 1}, for n ≥ 1, Bn = {ST = 1 = Wσn} and B = {ST =
1} we find

Q[An] ≈ 2−2n Q[Bn] ≈ 2−n

Q̂[An] = 2−2n Q̂[Bn] = 2−2n+1

P[An] ≈ 2−n P[Bn] ≈ 2−2n

Hence we have

E
[
V
(
dQ
dP

)]
=
∞∑
n=1

P [An]V

(
Q [An]

P [An]

)
+
∞∑
n=1

P [Bn]V

(
Q[Bn]

P[Bn]

)
<∞ (127)

and

E

[
V

(
dQ̂

dP

)]
=
∞∑
n=1

P [An]V

(
Q̂[An]

P[An]

)
+
∞∑
n=1

P [Bn]V

(
Q̂[Bn]

P[Bn]

)
<∞. (128)

A similar reasoning as in Example (3.3) above reveals that Q̂ minimizes E[V (dQ
dP

)] over

Q ∈Ma(S) and that X̂(2) = S is the optimal process starting at S0 = 2.
This time, however, we have exhibited a measure Q ∈Me(S) with finite V -expectation

such that S fails to be a Q-submartingale.

This finishes the proof of the assertions on Example 3.5.
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