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Abstract. We provide the definition and a complete characterization of reg-
ular affine processes. This type of process unifies the concepts of continuous-

state branching processes with immigration and Ornstein-Uhlenbeck type pro-
cesses. We show, and provide foundations for, a wide range of financial appli-

cations for regular affine processes.
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1. Introduction

This paper provides a definition and complete characterization of regular affine
processes, a class of time-homogeneous Markov processes that has arisen from a
large and growing range of useful applications in finance, although until now without
succinct mathematical foundations. Given a state space of the form D = Rm+ ×Rn
for integers m ≥ 0 and n ≥ 0, the key “affine” property, to be defined precisely
in what follows, is roughly that the logarithm of the characteristic function of the
transition distribution pt(x, · ) of such a process is affine with respect to the initial
state x ∈ D. The coefficients defining this affine relationship are the solutions
of a family of ordinary differential equations (ODEs) that are the essence of the
tractability of regular affine processes. We classify these ODEs, “generalized Riccati
equations,” by their parameters, and state the precise set of admissible parameters
for which there exists a unique associated regular affine process.

In the prior absence of a broad mathematical foundation for affine processes,
but in light of their computational tractability and flexibility in capturing many of
the empirical features of financial time series, it had become the norm in financial
modeling practice to specify the properties of some affine process that would be
exploited in a given problem setting, without assuredness that a uniquely well-
defined process with these properties actually exists.

Strictly speaking, an affine process X in our setup consists of an entire family of
laws (Px)x∈D, and is realized on the canonical space such that Px[X0 = x] = 1, for
all x ∈ D. This is in contrast to the finance literature, where an “affine process”
usually is a single stochastic process defined (for instance as the strong solution
of a stochastic differential equation) on some filtered probability space. If there is
no ambiguity, we shall not distinguish between these two notions and simply say
“affine process” in both cases (see Theorem 2.12 below for the precise connection).

We show that a regular affine process is a Feller process whose generator is
affine, and vice versa. An affine generator is characterized by the affine dependence
of its coefficients on the state variable x ∈ D. The parameters associated with the
generator are in a one-to-one relation with those of the corresponding ODEs.

Regular affine processes include continuous-state branching processes with im-
migration (CBI) (for example, [61]) and processes of the Ornstein-Uhlenbeck (OU)
type (for example, [77]). Roughly speaking, the regular affine processes with state
space Rm+ are CBI, and those with state space Rn are of OU type. For any regular
affine process X = (Y, Z) in Rm+ × Rn, we show that the first component Y is nec-
essarily a CBI process. Any CBI or OU type process is infinitely decomposable, as
was well known and apparent from the exponential-affine form of the characteristic
function of its transition distribution. We show that a regular (to be defined below)
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Markov process with state space D is infinitely decomposable if and only if it is a
regular affine process.

We also show that a regular affine process X is (up to its lifetime) a semimartin-
gale with respect to every Px, a crucial property in most financial applications
because the standard model ([53]) of the financial gain generated by trading a secu-
rity is a stochastic integral with respect to the underlying price process. We provide
a one-to-one relationship between the coefficients of the characteristic function of
a conservative regular affine process X and (up to a version) its semimartingale
characteristics ([56]) (B,C, ν) (after fixing a truncation of jumps), of which B is
the predictable component of the canonical decomposition of X, C is the “sharp-
brackets” process, and ν is the compensator of the random jump measure. The
results justify, and clarify the precise limits of, the common practice in the finance
literature of specifying an affine process in terms of its semimartingale charac-
teristics. In particular, as we show, for any conservative regular affine process
X = (Y,Z) in Rm+ × Rn, the sharp-brackets and jump characteristics of X depend
only on the CBI component Y . We also provide conditions for the existence of
(partial) higher order and exponential moments of Xt. An extension of the main
results for the time-inhomogeneous case is given in [47].

Some common financial applications of the properties of a regular affine process
X include:

• The term structure of interest rates. A typical model of the price pro-
cesses of bonds of various maturities begins with a discount-rate process
{L(Xt) : t ≥ 0} defined by an affine map x 7→ L(x) on D into R. In
Section 11, we examine conditions under which the discount factor

E
[
e−

∫ t
s
L(Xu) du |Xs

]
is well defined, and is of the anticipated exponential-affine form inXs. Some
financial applications and pointers to the large theoretical and empirical
literatures on affine interest-rate models are provided in Section 13.

• The pricing of options. A put option, for example, gives its owner the
right to sell a financial security at a pre-arranged exercise price at some
future time t. Without going into details that are discussed in Section 13,
the ability to calculate the market price of the option is roughly equivalent
to the ability to calculate the probability that the option is exercised. In
many applications, the underlying security price is affine with respect to the
state variable Xt, possibly after a change of variables. Thus, the exercise
probability can be calculated by inverting the characteristic function of the
transition distribution pt(x, · ) of X. One can capture realistic empirical
features such as jumps in price and stochastic return volatility, possibly of a
high-dimensional type, by incorporating these features into the parameters
of the affine process.

• Credit risk. A recent spate of work, summarized in Section 13, on pricing
and measuring default risk exploits the properties of a doubly-stochastic
counting process N driven by an affine process X. The stochastic intensity
of N ([16]) is assumed to be of the form {Λ(Xt−) : t ≥ 0}, for some
affine x 7→ Λ(x). The time of default of a financial counterparty, such
as a borrower or option writer, is modeled as the first jump time of N .
The probability of no default by t, conditional on Xs and survival to s,
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is E
[
e−

∫ t
s

Λ(Xu) du |Xs

]
. This is of the same form as the discount factor

used in interest-rate modeling, and can be treated in the same manner. For
pricing defaultable bonds, one can combine the effects of default and of
discounting for interest rates.

The remainder of the paper is organized as follows. In Section 2 we provide the
definition of a regular affine process X (Definitions 2.1 and 2.5) and the main results
of this paper. In fact, we present three other equivalent characterizations of regular
affine processes: in terms of the generator (Theorem 2.7), the semimartingale char-
acteristics (Theorem 2.12), and by infinite decomposability (Theorem 2.15). We
also show how regular affine processes are related to CBI and OU type processes.
In Section 2.1 we discuss the existence of moments of Xt.

The proof of Theorems 2.7, 2.12, and 2.15 is divided into Sections 3–10. Section 3
is preliminary and provides some immediate consequences of the definiton of a
regular affine process. At the end of this section, we sketch the strategy for the proof
of Theorem 2.7 (which in fact is the hardest of the three). In Section 4 we prove a
representation result for the weak generator of a Markov semigroup, which goes back
to Venttsel’ [88]. This is used in Section 5 to find the form of the ODEs (generalized
Riccati equations) related to a regular affine process. In Section 6 we prove existence
and uniqueness of solutions to these ODEs and give some useful regularity results.
Section 7 is crucial for the existence result of regular affine processes. Here we
show that the solution to any generalized Riccati equation yields a regular affine
transtition function. In Section 8 we prove the Feller property of a regular affine
process and completely specify the generator. In Section 9 we investigate conditions
under which a regular affine process is conservative and give an example where these
conditions fail. Section 10 finishes the proof of the characterization results.

In Section 11 we investigate the behavior of a conservative regular affine pro-
cess with respect to discounting. Formally, we consider the semigroup Qtf(x) =
Ex[exp(−

∫ t
0
L(Xs) dt) f(Xt)], where L is an affine function on D. We use two

approaches, one by the Feynman–Kac formula (Section 11.1), the other by enlarge-
ment of the state space D (Section 11.2). These results are crucial for most financial
applications as was already mentioned above.

In Section 12 we address whether the state space D = Rm+ × Rn that we choose
for affine processes is canonical. We provide examples of affine processes that are
well defined on different types of state spaces.

In Section 13 we show how our results provide a mathematical foundation for a
wide range of financial applications. We provide a survey of the literature in the
field. The common applications that we already have sketched above are discussed
in more detail.

Appendix A contains some useful results on the interplay between the existence
of moments of a bounded measure on RN and the regularity of its characteristic
function.

1.1. Basic Notation. For the stochastic background and notation we refer to [56]
and [74]. Let k ∈ N. We write

Rk+ = {x ∈ Rk | xi ≥ 0, ∀i}, Rk++ = {x ∈ Rk | xi > 0, ∀i},

Ck+ = {z ∈ Ck | Re z ∈ Rk+}, Ck++ = {z ∈ Ck | Re z ∈ Rk++},

and analogously Rk−, Rk−−, Ck− and Ck−−.
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For α, β ∈ Ck we write 〈α, β〉 := α1β1 + · · · + αkβk (notice that this is not
the scalar product on Ck). We let Semk be the convex cone of symmetric positive
semi-definite k × k matrices.

Let U be an open set or the closure of an open set in Ck. We write U for the
closure, U0 for the interior, ∂U = U \ U0 for the boundary and U∆ = U ∪ {∆}
for the one-point compactification of U . Let us introduce the following function
spaces:

• C(U) is the space of complex-valued continuous functions f on U
• bU is the Banach space of bounded complex-valued Borel-measurable func-

tions f on U
• Cb(U) is the Banach space C(U) ∩ bU
• C0(U) is the Banach space consisting of f ∈ C(U) with limx→∆ f(x) = 0
• Cc(U) is the Banach space consisting of f ∈ C(U) with compact support
• Ck(U) is the space of k times differentiable functions f on U0 such that all

partial derivatives of f up to order k belong to C(U)
• Ckc (U) = Ck(U) ∩ Cc(U)
• C∞(U) =

⋂
k∈N C

k(U) and C∞c (U) =
⋂
k∈N C

k
c (U)

By convention, all functions f on U are extended to U∆ by setting f(∆) = 0.
Further notation is introduced in the text.

2. Definition and Characterization of Regular Affine Processes

We consider a time-homogeneous Markov process with state space D := Rm+ × Rn
and semigroup (Pt) acting on bD,

Ptf(x) =
∫
D

f(ξ) pt(x, dξ).

According to the product structure of D we shall write x = (y, z) or ξ = (η, ζ) for
a point in D. We assume d := m+ n ∈ N. Hence m or n may be zero. We do not
demand that (Pt) is conservative, that is, we have

pt(x,D) ≤ 1, pt(x,D∆) = 1, pt(∆, {∆}) = 1, ∀(t, x) ∈ R+ ×D.

We let (X, (Px)x∈D) = ((Y,Z), (Px)x∈D) denote the canonical realization of (Pt)
defined on (Ω,F0, (F0

t )), where Ω is the set of mappings ω : R+ → D∆ and Xt(w) =
(Yt(ω), Zt(ω)) = ω(t). The filtration (F0

t ) is generated by X and F0 =
∨
t∈R+

F0
t .

For every x ∈ D, Px is a probability measure on (Ω,F0) such that Px[X0 = x] = 1
and the Markov property holds,

Ex[f(Xt+s) | F0
t ] = Psf(Xt) = EXt

[f(Xs)], Px-a.s. ∀s, t ∈ R+, ∀f ∈ bD,
(2.1)

where Ex denotes the expectation with respect to Px.
For u = (v, w) ∈ Cm × Cn we define the function fu ∈ C(D) by

fu(x) := e〈u,x〉 = e〈v,y〉+〈w,z〉, x = (y, z) ∈ D.
Notice that fu ∈ Cb(D) if and only if u lies in

U := Cm− × iRn,
and this is why the parameter set U plays a distinguished role. By dominated
convergence, Ptfu(x) is continuous in u ∈ U , for every (t, x) ∈ R+ ×D. We have

U0 = Cm−− × iRn and ∂U = iRm × iRn = iRd.
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Observe that
Rd 3 q 7→ Ptfiq(x)

is the characteristic function of the measure pt(x, ·), that is, the characteristic
function of Xt1{Xt 6=∆} with respect to Px.

Definition 2.1. The Markov process (X, (Px)x∈D), and (Pt), is called affine if,
for every t ∈ R+, the characteristic function of pt(x, ·) has exponential-affine de-
pendence on x. That is, if for every (t, u) ∈ R+ × ∂U there exist φ(t, u) ∈ C and
ψ(t, u) = (ψY(t, u), ψZ(t, u)) ∈ Cm × Cn such that

Ptfu(x) = eφ(t,u)+〈ψ(t,u),x〉

= eφ(t,u)+〈ψY(t,u),y〉+〈ψZ(t,u),z〉, ∀x = (y, z) ∈ D.
(2.2)

Remark 2.2. Since Ptfu ∈ bD, for all (t, u) ∈ R+ × U , we easily infer from
(2.2) that a fortiori φ(t, u) ∈ C− and ψ(t, u) = (ψY(t, u), ψZ(t, u)) ∈ U , for all
(t, u) ∈ R+ × ∂U .

Remark 2.3. Notice that ψ(t, u) is uniquely specified by (2.2). But Imφ(t, u) is de-
termined only up to multiples of 2π. Nevertheless, by definition we have Ptfu(0) 6= 0
for all (t, u) ∈ R+ × ∂U . Since ∂U is simply connected, Ptfu(0) admits a unique
representation of the form (2.2)—and we shall use the symbol φ(t, u) in this sense
from now on—such that φ(t, ·) is continuous on ∂U and φ(t, 0) = 0.

Definition 2.4. The Markov process (X, (Px)x∈D), and (Pt), is called stochasti-
cally continuous if ps(x, ·) → pt(x, ·) weakly on D, for s → t, for every (t, x) ∈
R+ ×D.

If (X, (Px)x∈D) is affine then, by the continuity theorem of Lévy, (X, (Px)x∈D) is
stochastically continuous if and only if φ(t, u) and ψ(t, u) from (2.2) are continuous
in t ∈ R+, for every u ∈ ∂U .

Definition 2.5. The Markov process (X, (Px)x∈D), and (Pt), is called regular if it
is stochastically continuous and the right-hand derivative

Ãfu(x) := ∂+
t Ptfu(x)|t=0

exists, for all (x, u) ∈ D × U , and is continuous at u = 0, for all x ∈ D.
We call (X, (Px)x∈D), and (Pt), simply regular affine if it is regular and affine.

If there is no ambiguity, we shall write indifferently X or (Y,Z) for the Markov
process (X, (Px)x∈D), and say shortlyX is affine, stochastically continuous, regular ,
regular affine if (X, (Px)x∈D) shares the respective property.

Before stating the main results of this paper, we need to introduce a certain
amount of notation and terminology. Denote by {e1, . . . , ed} the standard basis in
Rd, and write I := {1, . . . ,m} and J := {m+ 1, . . . , d}. We define the continuous
truncation function χ = (χ1, . . . , χd) : Rd → [−1, 1]d by

χk(ξ) :=

{
0, if ξk = 0,
(1 ∧ |ξk|) ξk

|ξk| , otherwise.
(2.3)

Let α = (αij) be a d × d-matrix, β = (β1, . . . , βd) a d-tuple and I, J ⊂ {1, . . . , d}.
Then we write αT for the transpose of α, and αIJ := (αij)i∈I, j∈J and βI :=
(βi)i∈I . Examples are χI(ξ) = (χk(ξ))k∈I or ∇I := (∂xk

)k∈I . Accordingly, we have
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ψY(t, u) = ψI(t, u) and ψZ(t, u) = ψJ (t, u) (since these mappings play a distin-
guished role we introduced the former, “coordinate-free” notation). We also write
1 := (1, . . . , 1) without specifying the dimension whenever there is no ambiguity.
For i ∈ I we define I(i) := I \ {i} and J (i) := {i} ∪ J , and let Id(i) denote the
m×m-matrix given by Id(i)kl = δikδkl, where δkl is the Kronecker Delta (δkl equals
1 if k = l and 0 otherwise).

Definition 2.6. The parameters (a, α, b, β, c, γ,m, µ) are called admissible if

• a ∈ Semd with aII = 0 (hence aIJ = 0 and aJI = 0), (2.4)

• α = (α1, . . . , αm) with αi ∈ Semd and αi,II = αi,iiId(i), for all i ∈ I, (2.5)

• b ∈ D, (2.6)

• β ∈ Rd×d such that βIJ = 0 and βiI(i) ∈ Rm−1
+ , for all i ∈ I, (2.7)

(hence βII has nonnegative off-diagonal elements),

• c ∈ R+, (2.8)

• γ ∈ Rm+ , (2.9)

• m is a Borel measure on D \ {0} satisfying

M :=
∫
D\{0}

(
〈χI(ξ),1〉+ ‖χJ (ξ)‖2

)
m(dξ) <∞, (2.10)

• µ = (µ1, . . . , µm) where every µi is a Borel measure on D \ {0} satisfying

Mi :=
∫
D\{0}

(
〈χI(i)(ξ),1〉+ ‖χJ (i)(ξ)‖2

)
µi(dξ) <∞. (2.11)

The following theorems contain the main results of this paper. Their proof is
provided in Sections 3–10. First, we state an analytic characterization result for
regular affine processes.

Theorem 2.7. Suppose X is regular affine. Then X is a Feller process. Let A be
its infinitesimal generator. Then C∞c (D) is a core of A, C2

c (D) ⊂ D(A), and there
exist some admissible parameters (a, α, b, β, c, γ,m, µ) such that, for f ∈ C2

c (D),

Af(x) =
d∑

k,l=1

(akl + 〈αI,kl, y〉)
∂2f(x)
∂xk∂xl

+ 〈b+ βx,∇f(x)〉 − (c+ 〈γ, y〉) f(x)

+
∫
D\{0}

(f(x+ ξ)− f(x)− 〈∇J f(x), χJ (ξ)〉) m(dξ)

+
m∑
i=1

∫
D\{0}

(
f(x+ ξ)− f(x)−

〈
∇J (i)f(x), χJ (i)(ξ)

〉)
yiµi(dξ),

(2.12)
Moreover, (2.2) holds for all (t, u) ∈ R+ × U where φ(t, u) and ψ(t, u) solve the
generalized Riccati equations,

φ(t, u) =
∫ t

0

F (ψ(s, u)) ds (2.13)

∂tψ
Y(t, u) = RY

(
ψY(t, u), eβ

Z tw
)
, ψY(0, u) = v (2.14)

ψZ(t, u) = eβ
Z tw (2.15)
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with

F (u) = 〈au, u〉+ 〈b, u〉 − c+
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈uJ , χJ (ξ)〉

)
m(dξ), (2.16)

RYi (u) = 〈αiu, u〉+
〈
βYi , u

〉
− γi +

∫
D\{0}

(
e〈u,ξ〉 − 1−

〈
uJ (i), χJ (i)(ξ)

〉)
µi(dξ),

(2.17)

for i ∈ I, and

βYi :=
(
βT
)
i{1,...,d} ∈ Rd, i ∈ I, (2.18)

βZ :=
(
βT
)
JJ ∈ Rn×n. (2.19)

Conversely, let (a, α, b, β, c, γ,m, µ) be some admissible parameters. Then there
exists a unique, regular affine semigroup (Pt) with infinitesimal generator (2.12),
and (2.2) holds for all (t, u) ∈ R+×U where φ(t, u) and ψ(t, u) are given by (2.13)–
(2.15).

Remark 2.8. To clarify the connections between the objects in Theorem 2.7 let us,
for any f ∈ C2(D)∩Cb(D), define A]f(x) literally as the right hand side of (2.12).
Then we see that F , RY = (RY1 , . . . , R

Y
m) and βZ satisfy

∂+
t Ptfu(x)|t=0 = (F (u) + 〈RY(u), y〉+ 〈βZw, z〉)fu(x) = A]fu(x),

for u = (v, w) ∈ U and x = (y, z) ∈ D.

Equation (2.15) states that ψZ(t, u) depends only on (t, w). Hence, for w = 0,
we infer from (2.2) that the characteristic function of Yt1{Xt 6=∆} with respect to Px,

Ptf(iq,0)(x) =
∫
D

ei〈q,η〉 pt(x, dξ) = eφ(t,iq,0)+〈ψY(t,iq,0),y〉, q ∈ Rm,

depends only on y. We obtain the following

Corollary 2.9. Let X = (Y, Z) be regular affine. Then (Y, (P(y,z))y∈Rm
+

) is a
regular affine Markov process with state space Rm+ , independently of z ∈ Rn.

Theorem 2.7 generalizes and unifies two classical types of stochastic processes.
For the notion of a CBI process we refer to [90], [61] and [81]. For the notion of an
OU type process see [77, Definition 17.2].

Corollary 2.10. Let X = (Y, Z) be regular affine. Then (Y, (P(y,z))y∈Rm
+

) is a CBI
process, for every z ∈ Rn. If m = 0 then X is an OU type process.

Conversely, every CBI and OU type process is a regular affine Markov process.

Remark 2.11. There exist affine Markov processes that are not stochastically con-
tinuous and for which Theorem 2.7 therefore does not hold. This is shown by the
following example, taken from [61]. Let x0 ∈ D. Then

pt(x, dξ) =

{
δx, if t = 0,
δx0 , if t > 0,

(δx = Dirac measure at x)

is the transition function of an affine Markov process with

φ(t, u) =

{
0, if t = 0,
〈u, x0〉, if t > 0,

and ψ(t, u) =

{
u, if t = 0,
0, if t > 0,

which is obviously not of the form as stated in Theorem 2.7.
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On the other hand, if n = 0 then a stochastically continuous affine Markov
process is a fortiori regular, see [61, Lemmas 1.2–1.3]. It is still an open problem
whether this also holds true for n ≥ 1.

Motivated by Theorem 2.7, we give in this paragraph a summary of some classical
results for Feller processes. For the proofs we refer to [74, Chapter III.2]. Let X
be regular affine and hence, by Theorem 2.7, a Feller process. Since we deal with
an entire family of probability measures, (Px)x∈D, we make the convention that
“a.s.” means “Px-a.s. for all x ∈ D”. Then X admits a cadlag modification, and
from now on we shall only consider cadlag versions of a regular affine process X,
still denoted by X. Let

τX := inf{t ∈ R+ | Xt− = ∆ or Xt = ∆}.

Then we have X· = ∆ on [τX ,∞) a.s. Hence X is conservative if and only if
τX = ∞ a.s. Write F (x) for the completion of F0 with respect to Px and (F (x)

t ) for
the filtration obtained by adding to each F0

t all Px-nullsets in F (x). Define

Ft :=
⋂
x∈D

F (x)
t , F :=

⋂
x∈D

F (x).

Then the filtrations (F (x)
t ) and (Ft) are right-continuous, and X is still a Markov

process with respect to (Ft). That is, (2.1) holds for F0
t replaced by Ft, for all

x ∈ D.
By convention, we call X a semimartingale if (Xt1{t<τX}) is a semimartingale on

(Ω,F , (Ft),Px), for every x ∈ D. For the definition of the characteristics of a semi-
martingale with refer to [56, Section II.2]. We emphasize that the characteristics
below are associated to the truncation function χ, defined in (2.3).

Let X ′ be a D∆-valued stochastic process defined on some probability space
(Ω′,F ′,P′). Then P′ ◦X ′−1 denotes the law of X ′, that is, the image of P′ by the
mapping ω′ 7→ X ′

· (ω
′) : (Ω′,F ′) → (Ω,F0).

The following is a characterization result for regular affine processes in the class
of semimartingales. An exposure of conservative regular affine processes is given in
Section 9.

Theorem 2.12. Let X be regular affine and (a, α, b, β, c, γ,m, µ) the related admis-
sible parameters. Then X is a semimartingale. If X is conservative then it admits
the characteristics (B,C, ν),

Bt =
∫ t

0

(
b̃+ β̃Xs

)
ds (2.20)

Ct = 2
∫ t

0

(
a+

m∑
i=1

αiY
i
s

)
ds (2.21)

ν(dt, dξ) =

(
m(dξ) +

m∑
i=1

Y it µi(dξ)

)
dt (2.22)
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for every Px, where b̃ ∈ D and β̃ ∈ Rd×d are given by

b̃ := b+
∫
D\{0}

(χI(ξ), 0) m(dξ), (2.23)

β̃kl :=

{
βkl + (1− δkl)

∫
D\{0} χk(ξ)µl(dξ), if l ∈ I,

βkl, if l ∈ J ,
for 1 ≤ k ≤ d. (2.24)

Moreover, let X ′ = (Y ′, Z ′) be a D-valued semimartingale defined on some fil-
tered probability space (Ω′,F ′, (F ′

t),P′) with P′[X ′
0 = x] = 1. Suppose X ′ admits

the characteristics (B′, C ′, ν′), given by (2.20)–(2.22) where X is replaced by X ′.
Then P′ ◦X ′−1 = Px.

Remark 2.13. The notions (2.23) and (2.24) are not substantial and only intro-
duced for notational compatibility with [56]. In fact, we replaced 〈∇J f(x), χJ (ξ)〉
and 〈∇J (i)f(x), χJ (i)(ξ)〉 in (2.12) by 〈∇f(x), χ(ξ)〉, which is compensated by re-
placing b and β by b̃ and β̃, respectively.

The second part of Theorem 2.12 justifies, and clarifies the limits of, the common
practice in the finance literature of specifying an “affine process” in terms of its
semimartingale characteristics.

There is a third way of characterizing regular affine processes, which generalizes
[81]. Let P and Q be two probability measures on (Ω,F0). We write P ∗Q for the
image of P×Q by the measurable mapping (ω, ω′) 7→ ω+ ω′ : (Ω×Ω,F0 ⊗F0) →
(Ω,F0). Let PRM be the set of all families (P′x)x∈D of probability measures on
(Ω,F0) such that (X, (P′x)x∈D) is a regular Markov process with P′x[X0 = x] = 1,
for all x ∈ D.

Definition 2.14. We call (Px)x∈D infinitely decomposable if, for every k ∈ N,
there exists (P(k)

x )x∈D ∈ PRM such that

Px(1)+···+x(k) = P(k)

x(1) ∗ · · · ∗ P(k)

x(k) , ∀x(1), . . . , x(k) ∈ D. (2.25)

Theorem 2.15. The Markov process (X, (Px)x∈D) is regular affine if and only if
(Px)x∈D is infinitely decomposable.

We refer to Corollary 10.4 below for the corresponding additivity property of
regular affine processes.

We have to admit that “infinitely decomposable” implies “regular affine”, as
stated in Theorem 2.15, only since our definition of “infinitely decomposable” in-
cludes regularity of (P(k)

x )x∈D appearing in (2.25). There exists, however, affine
Markov processes which satisfy (2.25) but are not regular. As an example consider
the non-regular affine Markov process (X, (Px)x∈D) from Remark 2.3. It is easy to
see that, for any k ∈ N,

p
(k)
t (x, dξ) =

{
δx, if t = 0,
δx0/k, if t > 0,

is the transition function of an affine Markov process (X, (P(k)
x )x∈D) which satis-

fies (2.25), but is not regular.
We now give an intuitive interpretation of conditions (2.4)–(2.11) in Defini-

tion 2.6. Without going much into detail we remark that in (2.12) we can dis-
tinguish the three “building blocks” of any jump-diffusion process, the diffusion
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matrix A(x) = a+ y1α1 + · · ·+ ymαm, the drift B(x) = b+ βx and the Lévy mea-
sure (the compensator of the jumps) M(x, dξ) = m(dξ)+y1µ1(dξ)+· · ·+ymµm(dξ),
minus the killing rate C(x) = c+ 〈γ, y〉. An informal definition of an affine process
could consist of the requirement that A(x), B(x), C(x) and M(x, dξ) have affine
dependence on x, see [40]. The particular kind of this affine dependence in the
present setup is implied by the geometry of the state space D.

First, we notice that A(x) ∈ Semd, C(x) ≥ 0 and M(x,D) ≥ 0, for all x ∈ D.
Whence A(x), C(x) and M(x, dξ) cannot depend on z, and conditions (2.8)–(2.9)
follow immediately. Now we consider the respective constraints on drift, diffusion
and jumps for the consistent behavior of X near the boundary of D. For x ∈ D,
we define the tangent cone to D at x ∈ D,

TD(x) :=
{
ξ ∈ Rd | x+ εξ ∈ D, for some ε > 0

}
.

Intuitively speaking, TD(x) consists of all “inward-pointing vectors at x.” Write
I(x) := {i ∈ I | yi = 0}. Then x ∈ ∂D if and only if I(x) 6= ∅, and ξ ∈ TD(x) if and
only if ξi ≥ 0 for all i ∈ I(x). The extreme cases are TD(0) = D and TD(x) = Rd
for x ∈ D0. It is now easy to see that conditions (2.6)–(2.7) are equivalent to

B(x) ∈ TD(x), ∀x ∈ D. (2.26)

Conditions (2.4)–(2.5) yield the diagonal form of AII(x),

AII(x) =
∑
i∈I

yiαi,iiId(i) =

 y1α1,11 0
. . .

0 ymαm,mm

 . (2.27)

Hence the diffusion component in the direction of span{ei | i ∈ I(x)} is zero at x.
Conditions (2.10)–(2.11) express the integrability property∫

D\{0}
〈χI(x)(ξ),1〉M(x, dξ) <∞, ∀x ∈ D. (2.28)

This assures that the jump part in the direction of span{ei | i ∈ I(x)} is of “fi-
nite variation at x”. Theorem 2.7 suggests that (2.26)–(2.28) are the appropriate
conditions for the invariance of D with respect to X.

2.1. Existence of Moments. Criterions for the existence of first or higher order
partial moments of Xt are of vital importance for all kinds of applications. They
are provided by the following theorem. Examples are given in Sections 11 and 13
below.

Theorem 2.16. Suppose that X is conservative regular affine, and let t ∈ R+.
i) Let k ∈ N and 1 ≤ l ≤ d. If ∂2k

λl
φ(t, iλ)|λ=0 and ∂2k

λl
ψ(t, iλ)|λ=0 exist, then

Ex
[(
X l
t

)2k]
<∞, ∀x ∈ D.

ii) Let U be an open convex neighbourhood of 0 in Cd. Suppose that φ(t, ·) and
ψ(t, ·) have an analytic extension on U . Then

Ex
[
e〈q,Xt〉

]
<∞, ∀q ∈ U ∩ Rd, ∀x ∈ D,

and (2.2) holds for all u ∈ U with Reu ∈ U ∩ Rd.

Proof. Combine Lemmas A.1, A.2 and A.4 in the appendix. �
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Notice that finiteness of moments of Xt with respect to Px requires, strictly
speaking, finiteness of Xt, Px-a.s. This is why we assume X to be conservative.

Explicit conditions for Theorem 2.16 in terms of the parameters of X are given
in Lemmas 5.3 and 6.5 below.

3. Preliminary Results

In this section we derive some immediate consequences of Definitions 2.1 and 2.5.
First, we are extending the (t, u)-range of validity of (2.2), which is a priori R+×∂U .
In Lemma 3.1 we fix u ∈ U and see how far we can go in the t-direction. In
Lemma 3.2, conversely, we fix t ∈ R+ and explore the range of possible u in Cd.

Lemma 3.1. Suppose X is regular affine. Then the set

O := {(t, u) ∈ R+ × U | Psfu(0) 6= 0, ∀s ∈ [0, t]} (3.1)

is open in R+ × U , and there exists a unique continuous extension of φ(t, u) and
ψ(t, u) on O such that (2.2) holds for all (t, u) ∈ O.

Proof. Let x ∈ D. We claim that

Psfu(x) → Ptfu(x), for s→ t, uniformly in u on compacts in U . (3.2)

Although the proof of (3.2) is standard (see e.g. [10, Lemma 23.7]) we shall give it
here, for the sake of completeness. Let t ∈ R+ and (tk) a sequence with tk → t,
and ε > 0. Since X is weakly continuous, the sequence (ptk(x, ·)) is tight. Hence
there exists ρ ∈ Cc(D) with 0 ≤ ρ ≤ 1 and

∫
D

(1−ρ(ξ)) ptk(x, dξ) < ε, for all k ∈ N.
Moreover, there exists δ′ > 0 such that for all u, u′ ∈ U with ‖u− u′‖ < δ′ we have

sup
ξ∈supp ρ

|fu(ξ)− fu′(ξ)| ≤ ε.

Hence, for every u, u′ ∈ U with ‖u− u′‖ < δ′,

|Ptkfu(x)− Ptkfu′(x)| ≤
∫
D

|fu(ξ)− fu′(ξ)| ρ(ξ) ptk(x, dξ)

+
∫
D

|fu(ξ)− fu′(ξ)| (1− ρ(ξ)) ptk(x, dξ)

≤ 3ε, ∀k ∈ N.

We infer that the sequence (Ptkfu(x)) is equicontinuous in u ∈ U . Thus there exists
δ > 0 such that

|(Ptkfu(x)− Ptfu(x))− (Ptkfu′(x)− Ptfu′(x))|

≤ |Ptkfu(x)− Ptkfu′(x)|+ |Ptfu(x)− Ptfu′(x)| ≤
ε

2
, (3.3)

for all u, u′ ∈ U with ‖u − u′‖ ≤ δ, for all k ∈ N. Now let U ⊂ U be compact.
Cover U with finitely many, say q, balls of radius δ whose centers are denoted by
u(1), u(2), . . . , u(q). For any u(i) there exists a number N (i) such that

|Ptkfu(i)(x)− Ptfu(i)(x)| ≤
ε

2
, ∀k ≥ N (i). (3.4)
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Now let u ∈ U . Choose a ball, say with center u(i), that contains u. Combining
(3.3) and (3.4) we obtain

|Ptkfu(x)− Ptfu(x)| ≤ |(Ptkfu(x)− Ptfu(x))− (Ptkfu(i)(x)− Ptfu(i)(x))|
+ |Ptkfu(i)(x)− Ptfu(i)(x)|

≤ ε, ∀k ≥ max
i
N (i),

which proves (3.2).
As a consequence of (3.2), Ptfu(x) is jointly continuous in (t, u) ∈ R+×U . Hence

O is open in R+ × U . Notice that O ⊃ {0} × U , which is simply connected, and
every loop in O is equivalent to its projection onto {0} × U . Hence O is simply
connected.

Since X is affine, we have

Ptf(v,w)(x)Ptf(v,w)(ξ) = Ptf(v,w)(x+ ξ)Ptf(v,w)(0), ∀x, ξ ∈ D, (3.5)

for all (t, v, w) ∈ R+ × ∂U . By Lemma A.2 we see that the functions on both sides
of (3.5) are analytic in v ∈ Cm−−. By the Schwarz reflexion principle, equality (3.5)
therefore holds for all v ∈ Cm− . Since O is simply connected, φ(t, u) has a unique
continuous extension on O such that Ptfu(0) = exp(φ(t, u)), for all (t, u) ∈ O.
Hence, for fixed (t, u) ∈ O, the function g(x) = exp(−φ(t, u))Ptfu(x) is measurable
and satisfies the functional equation g(x)g(ξ) = g(x+ξ). Consequently, there exists
a unique continuous extension of ψ(t, u) such that

e−φ(t,u)Ptfu(x) = e〈ψ(t,u),x〉, ∀x ∈ D, ∀(t, u) ∈ O.

Whence the assertion follows. �

The following is a (less important) variation of Lemma 3.1. Let π, ρ ∈ Rd+, and
define V := {q ∈ Rd | −πl ≤ ql ≤ ρl, l = 1, . . . , d} and the strip S := {u ∈ Cd |
Reu ∈ V } ⊃ ∂U .

Lemma 3.2. Let t ∈ R+. Suppose X is affine and∫
D

e〈q,ξ〉 pt(x, dξ) <∞, ∀q ∈ V, ∀x ∈ D. (3.6)

Then O(t) := {u ∈ S | Ptfu(0) 6= 0} is open in S, and for every simply connected
set ∂U ⊂ U ⊂ O(t) there exists a unique continuous extension of φ(t, ·) and ψ(t, ·)
on U such that (2.2) holds for all u ∈ U .

Proof. Dominated convergence yields continuity of the function S 3 u 7→ Ptfu(0).
Hence O(t) is open in S, and clearly ∂U ⊂ O(t). Now the assertion follows by the
same arguments as in the proof of the second part of Lemmas 3.1 and A.2. Notice
that we cannot assert continuity of Ptfu(x) in t since fu is unbounded for u ∈ S,
in general. �

For the remainder of this section we assume that X is regular affine. As an
immediate consequence of (2.2) and Remark 2.3 we have

φ(0, u) = 0, ψ(0, u) = u, ∀u ∈ U . (3.7)
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Let (t, u) ∈ O and s > 0 such that (t+s, u) ∈ O and (s, ψ(t, u)) ∈ O. By Lemma 3.1
and the Chapman–Kolmogorov equation,

eφ(t+s,u)+〈ψ(t+s,u),x〉 =
∫
D

ps(x, dξ)
∫
D

pt(ξ, dξ̃)fu(ξ̃)

= eφ(t,u)

∫
D

ps(x, dξ) e〈ψ(t,u),ξ〉

= eφ(t,u)+φ(s,ψ(t,u))+〈ψ(s,ψ(t,u)),x〉, ∀x ∈ D,

hence

φ(t+ s, u) = φ(t, u) + φ(s, ψ(t, u)) (3.8)

ψ(t+ s, u) = ψ(s, ψ(t, u)). (3.9)

In view of Definition 2.5 and Lemma 3.1, the following right-hand derivatives exist,

F (u) := ∂+
t φ(0, u), (3.10)

R(u) = (RY(u), RZ(u)) := ∂+
t ψ(0, u), (3.11)

and we have

Ãfu(x) = (F (u) + 〈R(u), x〉) fu(x), (3.12)

for all u ∈ U , x ∈ D. Combining (3.8)–(3.9) with (3.10)–(3.11) we conclude that,
for all (t, u) ∈ O,

∂+
t φ(t, u) = F (ψ(t, u)), (3.13)

∂+
t ψ(t, u) = R(ψ(t, u)). (3.14)

Equation (3.12) yields

F (u) = Ãfu(0) (3.15)

Ri(u) =
Ãfu(ei)
fu(ei)

− F (u), i = 1, . . . , d, (3.16)

The strategy for the proof of Theorem 2.7 is now as follows. In the next two
sections we specify F , RY and RZ , and show that they are of the desired form,
see (2.15)–(2.17). In view of (3.15)–(3.16) it is enough to know Ãfu on the co-
ordinate axes in D. Then, in Section 8, we can prove that X shares the Feller
property and that its generator is given by (2.12). Conversely, given some ad-
missible parameters (a, α, b, β, c, γ,m, µ), the generalized Riccati equations (2.13)–
(2.15) uniquely determine some mappings φ(t, u) and ψ(t, u) (see Section 6) which
have the following property. For every t ∈ R+ and x ∈ D fixed, the mapping
Rd 3 q 7→ eφ(t,iq)+〈ψ(t,iq),x〉 is the characteristic function of an infinitely divisible
probability distribution, say pt(x, dξ), on D (see Section 7). By the flow property
of φ and ψ it follows that pt(x, dξ) is the transition function of a Markov process
on D, which by construction is regular affine.

4. A Representation Result for Regular Processes

Throughout this section we assume that X is regular.
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Lemma 4.1. Let i ∈ I and r ∈ R+. Then there exist elements

α(i, r) = (αkl(i, r))k,l∈J (i) ∈ Semn+1, (4.1)

β(i, r) ∈ Rd with βI(i)(i, r) ∈ Rm−1
+ , (4.2)

γ(i, r) ∈ R+, (4.3)

and a nonnegative Borel measure ν(i, r; dξ) on D \ {rei} satisfying∫
D\{rei}

(
〈χI(i)(ξ − rei),1〉+ ‖χJ (i)(ξ − rei)‖2

)
ν(i, r; dξ) <∞, (4.4)

such that for all u ∈ U we have

Ãfu(rei)
fu(rei)

= 〈α(i, r)uJ (i), uJ (i)〉+ 〈β(i, r), u〉 − γ(i, r)

+
∫
D\{rei}

(
e〈u,ξ−rei〉 − 1− 〈uJ (i), χJ (i)(ξ − rei)〉

)
ν(i, r; dξ).

(4.5)

Proof. Fix i ∈ I and r ∈ R+, and let u ∈ U . For simplicity we write x = rei,
I = I(i) and J = J (i). The proof, inspired by [85, Theorem 9.5.1], is divided into
four steps.

Step 1: Decomposition. Let t > 0 and write
Ptfu(x)− fu(x)

t
=

1
t

∫
D

(fu(ξ)− fu(x)− 〈∇Jfu(x), χJ(ξ − x)〉) pt(x, dξ)

+
1
t

∫
D

〈∇Jfu(x), χJ(ξ − x)〉 pt(x, dξ) +
1
t

(pt(x,D)− 1) fu(x)

=
1
t

∫
D\{x}

hu(x, ξ)d(x, ξ) pt(x, dξ)

+ 〈βt(x),∇Jfu(x)〉 − γt(x)fu(x),
(4.6)

where

d(x, ξ) := 〈χI(ξ − x),1〉+ ‖χJ(ξ − x)‖2, (4.7)

hu(x, ξ) :=
fu(ξ)− fu(x)− 〈∇Jfu(x), χJ(ξ − x)〉

d(x, ξ)
, (4.8)

and

βt(x) :=
1
t

∫
D

χJ(ξ − x) pt(x, dξ) ∈ Rn+1,

γt(x) :=
1
t

(1− pt(x,D)) ≥ 0.

Notice that

0 ≤ d(x, ξ) ≤ d, ∀ξ ∈ D (d(x, ξ) = 0 ⇔ ξ = x). (4.9)

Hence we can introduce a new probability measure as follows. Set

`t(x) :=
1
t

∫
D

d(x, ξ) pt(x, dξ) ≥ 0.

If `t(x) > 0, define

µt(x, dξ) :=
d(x, ξ)
t`t(x)

pt(x, dξ).
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If `t(x) = 0 we let µt(x, ·) be the Dirac measure at some point in D \ {x}. In
both cases we have that µt(x, ·) is a probability measure on D \ {x}, and we can
rewrite (4.6)

Ptfu(x)− fu(x)
t

= `t(x)
∫
D\{x}

hu(x, ξ)µt(x, dξ) + 〈βt(x),∇Jfu(x)〉 − γt(x)fu(x).

(4.10)

Step 2: Extension of hu(x, ·). Notice that hu(x, ·) ∈ Cb(D \ {x}). But the value
limξ→x hu(x, ξ) depends on the direction from which ξ converges to x. Define the
cuboid

Q(x) := {ξ ∈ D | |ξk − xk| ≤ 1, 1 ≤ k ≤ d} and Q0(x) := Q(x) \ {x}. (4.11)

We shall construct a compactification of Q0(x) to which hu(x, ·) can be continuously
extended.

We decompose the difference ξ − x = (ξ − ξ⊥) + (ξ⊥ − x) where

ξ⊥k :=

{
xk, if k ∈ I,
ξk, if k ∈ J .

Applying Taylor’s formula twice we have

hu(x, ξ) =

(
fu(ξ)− fu(ξ⊥)

)
+
(
fu(ξ⊥)− fu(x)− 〈∇fu(x), ξ⊥ − x〉

)
d(x, ξ)

=
〈∫ 1

0

∇fu(ξ⊥ + s(ξ − ξ⊥)) ds,
ξ − ξ⊥

d(x, ξ)

〉
+

d∑
k,l=1

(∫ 1

0

∂xk
∂xl

fu(x+ s(ξ⊥ − x))(1− s) ds
) (

ξ⊥k − xk
) (
ξ⊥l − xl

)
d(x, ξ)

,

(4.12)
for all ξ ∈ Q0(x).

We let w(x, ξ) := (wk(x, ξ))k∈I and a(x, ξ) := (akl(x, ξ))k,l∈J be given by

wk(x, ξ) :=
ξk − xk
d(x, ξ)

, k ∈ I, (4.13)

akl(x, ξ) :=
(ξk − xk)(ξl − xl)

d(x, ξ)
, k, l ∈ J. (4.14)

Define the compact subset H of [0, 1]m−1 × Semn+1 by

H :=

{
(w, a) ∈ [0, 1]m−1 × Semn+1 | 〈w,1〉+

∑
k∈J

akk = 1

}
. (4.15)

Then it is easy to see that

Γ(x, ξ) := (ξ,w(x, ξ),a(x, ξ)) ∈ Q0(x)×H, ∀ξ ∈ Q0(x), (4.16)

and that Γ(x, ·) : Q0(x) → Λ(x) := Γ(x,Q0(x)) ⊂ Q0(x)×H is a homeomorphism.



AFFINE PROCESSES AND APPLICATIONS IN FINANCE 17

Now the function h̃u(x, ·) := hu(x,Γ−1(x, ·)) : Λ(x) → C can be continuously
extended to the compact closure Λ(x). In fact, by (4.12) we have

h̃u(x,Γ(x, ξ)) =
∑
k∈I

wk(x, ξ)
∫ 1

0

∂xk
fu(ξ⊥ + s(ξ − ξ⊥)) ds

+
∑
k,l∈J

akl(x, ξ)
∫ 1

0

∂xk
∂xl

fu(x+ s(ξ⊥ − x))(1− s) ds

→
∑
k∈I

wk∂xk
fu(x) +

1
2

∑
k,l∈J

akl∂xk
∂xl

fu(x),

(4.17)

if Γ(x, ξ) → (x,w, a) ∈ Λ(x).
Denote by µ̃t(x, ·) the image of µt(x, ·) by Γ(x, ·). Then µ̃t(x, ·) is a bounded

measure on Λ(x) (giving mass zero to Λ(x) \ Λ(x)) and we have∫
Q0(x)

hu(x, ·) dµt(x, ·) =
∫

Λ(x)

h̃u(x, ·) dµ̃t(x, ·). (4.18)

In particular
µ̃t(x,Λ(x)) + µt(x,D \Q(x)) = 1. (4.19)

Notice that hu(x, ξ) = fu(ξ) − fu(x) − 〈∇Jfu(x),1〉 for ξ ∈ D \ Q(x). Hence we
can rewrite (4.10)

Ptfu(x)− fu(x)
t

= `t(x)

(∫
Λ(x)

h̃u(x, ·) dµ̃t(x, ·) +
∫
D\Q(x)

fu dµt(x, ·)

)
− `t(x) (fu(x) + 〈∇Jfu(x),1〉)µt(x,D \Q(x))

+ 〈βt(x),∇Jfu(x)〉 − γt(x)fu(x).

(4.20)

Step 3: Limiting. We pass to the limit in equation (4.20). We introduce the
nonnegative numbers

θj(x) := `1/j(x) +
∑
k∈J

|βk1/j(x)|+ γ1/j(x) ≥ 0, j ∈ N. (4.21)

We have to distinguish two cases:

Case i): lim infj→∞ θj(x) = 0. In this case there exists a subsequence of (θj(x))
converging to zero. Because of (4.19) we conclude from (4.20) that Ãfu(x) = 0, for
all u ∈ U , and the lemma is proved.

Case ii): lim infj→∞ θj(x) > 0. There exists a subsequence, denoted again by
(θj(x)), converging to θ(x) ∈ (0,∞]. By (4.21) the following limits exist

1
θ1/j(x)

→ δ(x) ∈ R+,
`1/j(x)
θ1/j(x)

→ `(x) ∈ [0, 1],

β1/j(x)
θ1/j(x)

→ β(x) ∈ [−1, 1]n+1,
γ1/j(x)
θ1/j(x)

→ γ(x) ∈ [0, 1]

and satisfy
`(x) +

∑
k∈J

|βk(x)|+ γ(x) = 1. (4.22)



18 D. DUFFIE, D. FILIPOVIĆ, AND W. SCHACHERMAYER

If `(x) = 0 then we have

δ(x)Ãfu(x) = 〈β(x),∇Jfu(x)〉 − γ(x)fu(x), ∀u ∈ U . (4.23)

Suppose now that `(x) > 0. After passing to a subsequence if necessary, the
sequence (µ̃1/j(x, ·)) converges weakly to a bounded measure µ̃(x, ·) on Λ(x), and
limj→∞ µ1/j(x,D \ Q(x)) =: c(x) ∈ [0, 1] exists. Dividing both sides of equation
(4.20) by θj(x) we get in the limit

lim
j→∞

∫
D\Q(x)

fu dµ1/j(x, ·) =
1
`(x)

(
δ(x)Ãfu(x)− 〈β(x),∇Jfu(x)〉+ γ(x)fu(x)

)
−
∫

Λ(x)

h̃u(x, ·) dµ̃(x, ·)

+ c(x) (fu(x) + 〈∇Jfu(x),1〉) .
(4.24)

Notice that (4.24) holds simultaneously for all u ∈ U . Since X is regular, the right
hand side of (4.24) is continuous at u = 0 (see (3.12)). The continuity theorem
of Lévy (see e.g. [44]) implies that the sequence of restricted measures (µ1/j(x, · ∩
D \ Q(x))) converges weakly to a bounded measure µ′(x, ·) on D with support
contained in D \Q(x). In particular, c(x) = µ′(x,D \Q(x)) and

lim
j→∞

∫
D\Q(x)

fu dµ1/j(x, ·) =
∫
D\Q(x)

fu dµ
′(x, ·), ∀u ∈ U . (4.25)

Note that by (4.19) we have

µ̃(x,Λ(x)) + µ′(x,D \Q(x)) = 1. (4.26)

We introduce the projections

W : D ×H →W (D ×H) ⊂ [0, 1]m−1, W (ξ, w, a) := w

A : D ×H → A(D ×H) ⊂ Semn+1, A(ξ, w, a) := a,

see (4.15). In view of (4.17) we have∫
Λ(x)

h̃u dµ̃(x, ·) =
∫

Λ(x)\Λ(x)

h̃u dµ̃(x, ·) +
∫

Λ(x)

h̃u dµ̃(x, ·)

=
∑
k∈I

(∫
Λ(x)\Λ(x)

Wk dµ̃(x, ·)

)
∂xk

fu(x)

+
1
2

∑
k,l∈J

(∫
Λ(x)\Λ(x)

Akl dµ̃(x, ·)

)
∂xk

∂xl
fu(x)

+
∫
Q0(x)

hu dµ̃(x,Γ(x, ·)).

(4.27)

Define the bounded measure µ(x, ·) on D \ {x} by

µ(x, ·) := µ̃(x,Γ(x,Q0(x) ∩ ·)) + µ′(x, ·). (4.28)
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Combining (4.24), (4.25) and (4.27), we conclude that

δ(x)Ãfu(x) =
`(x)
2

∑
k,l∈J

(∫
Λ(x)\Λ(x)

Akl dµ̃(x, ·)

)
∂xk

∂xk
fu(x)

+ `(x)
∑
k∈I

(∫
Λ(x)\Λ(x)

Wk dµ̃(x, ·)

)
∂xk

fu(x) + 〈β(x),∇Jfu(x)〉

− γ(x)fu(x) + `(x)
∫
D\{x}

hu dµ(x, ·), ∀u ∈ U .

Hence

δ(x)
Ãfu(x)
fu(x)

= 〈α(x)uJ , uJ〉+ 〈β̃(x), uI〉+ 〈β(x), uJ〉 − γ(x)

+
∫
D\{x}

(
e〈u,ξ−x〉 − 1− 〈uJ , χJ(ξ − x)〉

)
ν(x, dξ), ∀u ∈ U ,

(4.29)
where

α(x) :=
`(x)
2

∫
Λ(x)\Λ(x)

Adµ̃(x, ·) ∈ Semn+1,

β̃(x) := `(x)
∫

Λ(x)\Λ(x)

W dµ̃(x, ·) ∈ Rm−1
+ ,

ν(x, dξ) :=
`(x)
d(x, ξ)

µ(x, dξ).

Step 4: Consistency. It remains to verify that δ(x) > 0. Since then we can divide
(4.23) and (4.29) by δ(x), and the lemma follows also for case ii).

We show that the right hand side of (4.29) is not the zero function in u. Assume
that β(x) = 0, γ(x) = 0 and ν(x,D \ {x}) = 0. Equality (4.22) implies that
`(x) = 1. Hence we have µ(x,D \ {x}) = 0, and by (4.26) and (4.28) therefore
µ̃(x,Λ(x) \ Λ(x)) = 1. It follows from (4.15) that

〈β̃(x),1〉+ 2
∑
k∈J

akk(x) =
∫

Λ(x)\Λ(x)

(
〈W,1〉+

∑
k∈J

Akk

)
dµ̃(x, ·) = 1.

Hence α(x) and β̃(x) cannot both be zero at the same time. But the representation
of the function in u on the right hand side of (4.29) by α(x), β̃(x), β(x), γ(x) and
ν(x, dξ) is unique (see [77, Theorem 8.1]). Whence it does not vanish identically in
u and therefore δ(x) = 0 is impossible. The same argument applies for (4.23). �

The fact that only uJ (i) appears in the quadratic term in (4.5) and that (4.2)–
(4.4) hold is due to the geometry of D, which makes d(x, ·) a measure for the
distance from x (see (4.9) and (4.7)). By a slight variation of the preceding proof
we can derive the following lemma.
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Lemma 4.2. Let j ∈ J and s ∈ R. Then there exist elements

α(j, s) = (αkl(j, s))k,l∈J ∈ Semn, (4.30)

β(j, s) ∈ D, (4.31)

γ(j, s) ∈ R+,

and a nonnegative Borel measure ν(j, s; dξ) on D \ {sej} satisfying∫
D\{sej}

(
〈χI(ξ − sej),1〉+ ‖χJ (ξ − sej)‖2

)
ν(j, s; dξ) <∞, (4.32)

such that for all u ∈ U we have

Ãfu(sej)
fu(sej)

= 〈α(j, s)uJ , uJ 〉+ 〈β(j, s), u〉 − γ(j, s)

+
∫
D\{sej}

(
e〈u,ξ−sej〉 − 1− 〈uJ , χJ (ξ − sej)〉

)
ν(j, s; dξ).

(4.33)

Proof. Fix j ∈ J and s ∈ R. Write x = sej , I = I and J = J . Now the lemma
follows line by line as in the proof of Lemma 4.1. �

5. The Mappings F (u) and R(u)

Let βYi ∈ Rd, i ∈ I, and βZ ∈ Rn×n. Then (2.18)–(2.19) together with βIJ := 0
uniquely defines a matrix β ∈ Rd×d.

Definition 5.1. The parameters (a, α, b, βY , βZ , c, γ,m, µ) are called admissible if
(a, α, b, β, c, γ,m, µ) are admissible. Hence

βY = (βY1 , . . . , β
Y
m) with βYi ∈ Rd and βYi,I(i) ∈ Rm−1

+ , for all i ∈ I, (5.1)

βZ ∈ Rn×n. (5.2)

Combining (3.15)–(3.16) and Lemmas 4.1 and 4.2 we can now calculate F (u),
RY(u) and RZ(u), see (3.10)–(3.11).

Proposition 5.2. Suppose X is regular affine. Then F (u) and RY(u) are of the
form (2.16) and (2.17), respectively, and

RZ(u) = βZw, (5.3)

where (a, α, b, βY , βZ , c, γ,m, µ) are admissible parameters.

Proof. We derive (2.16), (2.17) and (5.3) separately in three steps.
Proof of (2.16). Form = 0 the assertion follows directly from (3.15) and Lemma 4.2.
Suppose (m,n) = (1, 0). We already know from (3.15) and Lemma 4.1 that there
exist ã, c ∈ R+, b̃ ∈ R and a nonnegative Borel measure m(dη) on R++, integrating
|χ(η)|2, such that

F (v) = ãv2 + b̃v − c+
∫

R++

(evη − 1− vχ(η))m(dη), ∀v ∈ C−. (5.4)

It remains to show that ã = 0 and∫
R++

χ(η)m(dη) ≤ b̃.
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Since F is analytic on C−− (this follows from Lemma A.2) and by uniqueness of
the representation (5.4), see [77, Theorem 8.1], it is enough to consider v ∈ R−.
But then we have

F (v) = lim
t→0

eφ(t,v) − 1
t

= lim
t→0

(∫
R+

(evη − 1)
pt(0, dη)

t
+
pt(0,R+)− 1

t

)
.

It is well known that, for fixed t, the function in v on the right hand side is the
exponent of the Laplace transform of an infinitely divisible substochastic measure on
R+ (see [77, Section 51]). Hence eF (v), being the point-wise limit of such Laplace
transforms, is itself the Laplace transform of an infinitely divisible substochastic
measure on R+. Thus F (v) is of the desired form.

Suppose now that m ≥ 1 and (m,n) 6= (1, 0). By (3.15), (4.5) and (4.33) we
have

F (u) = 〈α(i, 0)uJ (i), uJ (i)〉+ 〈β̃(i, 0), u〉 − γ(i, 0)

+
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈u, χ(ξ)〉

)
ν(i, 0; dξ) (5.5)

= 〈α(j, 0)uJ , uJ 〉+ 〈β̃(j, 0), u〉 − γ(j, 0)

+
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈u, χ(ξ)〉

)
ν(j, 0; dξ), ∀u ∈ U , (5.6)

for all (i, j) ∈ I × J , where β̃(i, 0), β̃(j, 0) ∈ Rd are given by

β̃k(i, 0) :=
{
βk(i, 0) +

∫
D\{0} χk(ξ) ν(i, 0; dξ) ∈ R+, if k ∈ I(i),

βk(i, 0), if k ∈ J (i),

β̃k(j, 0) :=
{
βk(j, 0) +

∫
D\{0} χk(ξ) ν(j, 0; dξ) ∈ R+, if k ∈ I,

βk(j, 0), if k ∈ J .

By uniqueness of the representation in (5.5) and (5.6) we obtain

αik(i, 0) = αki(i, 0) = 0, ∀k ∈ J (i),

αkl(i, 0) = αkl(j, 0) =: akl, ∀k, l ∈ J ,

β̃(i, 0) = β̃(j, 0) =: b,

γ(i, 0) = γ(j, 0) =: c,

ν(i, 0; dξ) = ν(j, 0; dξ) =: m(dξ),

for all (i, j) ∈ I × J , and the assertion is established.
Proof of (2.17). Let i ∈ I. For r ∈ R+, we define α̃(i, r) ∈ Semd by

α̃kl(i, r) :=

{
αkl(i, r), if k, l ∈ J (i),
0, else,
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see (4.1). Combining (3.16), (4.5) and (2.16) we obtain

RYi (u) =
Ãfu(ei)
fu(ei)

− F (u)

= 〈(α̃(i, 1)− a)u, u〉+ 〈β(i, 1)− b, u〉 − (γ(i, 1)− c)

+
∫
D̃\{0}

(
e〈u,ξ〉 − 1−

〈
uJ (i), χJ (i)(ξ)

〉)
dν(i, 1; ei + ξ)

−
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈uJ , χJ (ξ)〉

)
m(dξ)

= 〈αiu, u〉+ 〈βYi , u〉 − γi +
∫
D̃\{0}

(
e〈u,ξ〉 − 1−

〈
uJ (i), χJ (i)(ξ)

〉)
µi(dξ),

(5.7)
where

αi := α̃(i, 1)− a,

βYi,k :=
{
β(i, 1)i − bi −

∫
D\{0} χi(ξ)m(dξ), if k = i,

β(i, 1)k − bk, if k ∈ {1, . . . , d} \ {i},
γi := γ(i, 1)− c,

D̃ := D − ei,

µi(·) := ν(i, 1; ei + ·)−m(D ∩ ·), (5.8)

which is a priori a signed measure on D̃ \ {0}. On the other hand, by (3.12), we
have

Ãfu(rei)
fu(rei)

= F (u) +RYi (u)r, ∀r ∈ R+. (5.9)

Insert (5.7) in (5.9) and compare with (4.5) to conclude that, for all r ∈ R+,

α̃(i, r) = a+ rαi,

β(i, r) = b+ rβYi ,

γ(i, r) = c+ rγi,

ν(i, r; rei + ·) = m(D ∩ ·) + r µi(·), on D̃ \ {0}.

By letting r → ∞ we obtain conditions (2.5), (5.1) and (2.9) from (4.1)–(4.3),
and that µi is nonnegative. Letting r → 0 yields µi(D̃ \ D) = 0, and (2.11) is a
consequence of (4.4), (2.10) and (5.8).
Proof of (5.3). Let j ∈ J . For s ∈ R, we define α̃(j, s) ∈ Semd by

α̃kl(j, s) :=

{
αkl(j, s), if k, l ∈ J ,
0, else,

see (4.30). Combining (3.16), (4.33) and (2.16) we obtain

RZj−m(u) =
Ãfu(ej)
fu(ej)

− F (u)

= 〈(α̃(j, 1)− a)u, u〉+ 〈β(j, 1)− b, u〉 − (γ(j, 1)− c)

+
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈uJ , χJ (ξ)〉

)
µj(dξ), (5.10)
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where we write µj(·) := ν(j, 1; ej + ·) − m(·), which is a priori a signed measure
on D \ {0} (notice that D − ej = D). But RZj−m(u) ∈ iR, therefore the right
hand side of (5.10) is purely imaginary. This yields immediately α̃(j, 1) − a = 0,
(β(j, 1)− b)I = 0 and γ(j, 1)− c = 0. On the other hand, by (3.12), we have

Ãfu(sej)
fu(sej)

= F (u) +RZj−m(u)s, ∀s ∈ R. (5.11)

Insert (5.10) in (5.11) and compare with (4.33) to conclude that, for all s ∈ R,

ν(j, s; sej + ·) = m(·) + s µj(·), on D \ {0}.

But this is possible only if µj = 0. Hence RZj−m(v, w) = 〈(β(j, 1)− b)J , w〉, and the
proposition is established. �

We end this section with a regularity result. Let Q0(0) = Q(0) \ {0} where Q(0)
is given by (4.11). Decompose the integral term, say I(u), in F (u) as follows

I(u) =
∫
Q0(0)

(
e〈u,ξ〉 − 1− 〈uJ , ξJ 〉

)
m(dξ) +H(u)− (1 + 〈uJ ,1〉) m(D \Q(0))

where H(u) :=
∫
D\Q(0)

e〈u,ξ〉m(dξ), see (2.16). In view of Lemma A.2, the first
integral on the right hand side is analytic in u ∈ Cd, and so is the last term. Hence
the degree of regularity of I(u), and thus of F (u), is given by that of H(u). The
same reasoning applies for RYi , see (2.17). From Lemmas A.1 and A.2 we now
obtain the following result.

Lemma 5.3. Let k ∈ N and i ∈ I.

i) F (·, w) and RYi (·, w) are analytic on Cm−−, for every w ∈ iRn.
ii) If ∫

D\Q(0)

‖ξ‖km(dξ) <∞ and
∫
D\Q(0)

‖ξ‖k µi(dξ) <∞

then F ∈ Ck(U) and RYi ∈ Ck(U), respectively.
iii) Let V ⊂ Rd be open. If∫
D\Q(0)

e〈q,ξ〉m(dξ) <∞ and
∫
D\Q(0)

e〈q,ξ〉 µi(dξ) <∞, ∀q ∈ V, (5.12)

then F and RYi are analytic on the open strip S = {u ∈ Cd | Reu ∈ V },
respectively.

Remark 5.4. A sufficient condition for Lemma 5.3.iii) is, for example,∫
D\Q(0)

e
∑d

l=1 ρl|ξl|m(dξ) <∞,

for some ρ ∈ Rd++. Then V = {q ∈ Rd | |ql| < ρl, l = 1, . . . , d} and (5.12) holds for
m(dξ), and analogously for µi(dξ).
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6. Generalized Riccati Equations

Let (a, α, b, βY , βZ , c, γ,m, µ) be admissible parameters, and let F (u) and R(u) =
(RY(u), RZ(u)) be given by (2.16), (2.17) and (5.3). In this section we discuss the
generalized Riccati equations

∂tΦ(t, u) = F (Ψ(t, u)), Φ(0, u) = 0, (6.1)

∂tΨ(t, u) = R(Ψ(t, u)), Ψ(0, u) = u. (6.2)

Observe that (6.1) is a trivial differential equation. A solution of (6.1)–(6.2) is a pair
of continuously differentiable mappings Φ(·, u) and Ψ(·, u) = (ΨY(·, u),ΨZ(·, u))
from R+ into C and Cd, respectively, satisfying (6.1)–(6.2) or, equivalently,

Φ(t, u) =
∫ t

0

F (Ψ(s, u)) ds, (6.3)

∂tΨY(t, u) = RY
(
ΨY(t, u), eβ

Z tw
)
, ΨY(0, u) = v, (6.4)

ΨZ(t, u) = eβ
Z tw, (6.5)

for u = (v, w) ∈ Cd. We shall see in Lemma 9.2 and Example 9.3 below that RY(u)
may fail to be Lipschitz continuous at u ∈ ∂U . The next proposition evades this
difficulty.

Proposition 6.1. For every u ∈ U0 there exists a unique solution Φ(·, u) and
Ψ(·, u) of (6.1)–(6.2) with values in C− and U0, respectively. Moreover, Φ and Ψ
are continuous on R+ × U0.

Proof. There is nothing to prove if m = 0. Hence suppose that m ≥ 1.
Since (6.5) is decoupled from (6.4), we only have to focus on the latter equation.

For every fixed w ∈ iRn, (6.4) should be regarded as an inhomogeneous ODE for
ΨY(·, v, w), with ΨY(0, v, w) = v. Notice that the mapping

(t, v, w) 7→ RY
(
v, eβ

Z tw
)

: R× U → Cm (6.6)

is analytic in v ∈ Cm−− with jointly, on R × U0, continuous v-derivatives, see
Lemma 5.3. In particular, (6.6) is locally Lipschitz continuous in v ∈ Cm−−, uni-
formly in (t, w) on compact sets. Therefore, for any u = (v, w) ∈ U0, there exists a
unique Cm−−-valued local solution ΨY(t, u) to (6.4). Its maximal lifetime in Cm−− is

Tu := lim inf
n→∞

{
t | ‖ΨY(t, u)‖ ≥ n or ΨY(t, u) ∈ iRm

}
≤ ∞.

We have to show that Tu = ∞.
An easy calculation yields

ReRYi (u) = αi,ii (Re vi)
2 − 〈αi Imu, Imu〉+ 〈βYi,I ,Re v〉 − γi

+
∫
D\{0}

(
e〈Re v,η〉 cos〈Imu, ξ〉 − 1− Re viχi(ξ)

)
µi(dξ).

(6.7)
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We recall definition (4.11) and write Q0(0) := Q(0) \ {0}. From conditions (2.5),
(5.1) and (6.7) we deduce

ReRYi (u) ≤ αi,ii (Re vi)
2 + βYi,i Re vi − γi

+
∫
D\{0}

(
e〈Re v,η〉 cos〈Imu, ξ〉 − eRe viηi

)
µi(dξ)

+
∫
D\{0}

(
eRe viηi − 1− Re viχi(ξ)

)
µi(dξ)

≤ αi,ii (Re vi)
2 + βYi,i Re vi − γi

+ (Re vi)
2
∫
Q0(0)

(∫ 1

0

(1− t)etRe viηi dt

)
η2
i µi(dξ)− µi(D \Q(0))Re vi

≤ Ci

(
(Re vi)

2 − Re vi
)
− γi

(6.8)
where Ci ≥ 0 does not depend on u. The first decomposition of the integral is
justified and the second inequality in (6.8) follows since

I(u, ξ) := e〈Re v,η〉 cos〈Imu, ξ〉 − eRe viηi ≤ 0, ∀ξ ∈ D \ {0},
and

|I(u, ξ)| ≤
∣∣∣e〈Re vI(i),ηI(i)〉 − 1

∣∣∣+ |cos〈Imu, ξ〉 − 1|

≤ C
(∣∣Re vI(i)

∣∣ ∣∣ηI(i)

∣∣+ |〈Imu, ξ〉|2
)
,

for ‖ξ‖ small enough, for some C, see condition (2.11). Hence we have shown that
Re ΨY

i (t, u) satisfies the differential inequality, for t ∈ (0, Tu),

∂tRe ΨY
i (t, u) ≤ Ci

((
Re ΨY

i (t, u)
)2 − Re ΨY

i (t, u)
)
− γi

Re ΨY
i (0, u) = Re vi.

(6.9)

A comparison theorem (see [12]) and condition (2.9) yield

Re ΨY
i (t, u) ≤ gi(t, u), ∀t ∈ [0, Tu), (6.10)

where
∂tgi(t, u) = Ci

(
(gi(t, u))2 − gi(t, u)

)
gi(0, u) = Re vi (< 0).

(6.11)

But −∞ < gi(t, u) < 0 for all t ∈ R+. Thus ΨY(t, u) never hits iRm and

Tu = lim inf
n→∞

{
t | ‖ΨY(t, u)‖ ≥ n

}
.

It remains to derive an upper bound for ‖ΨY(t, u)‖. For every t ∈ (0, Tu) we
have

∂t‖ΨY(t, u)‖2 = 2Re
〈
ΨY(t, u), RY

(
ΨY(t, u), eβ

Z tw
)〉

. (6.12)

A calculation shows that
Re
(
viR

Y
i (u)

)
= αi,ii|vi|2Re vi +K(u)

+ Re

(
vi

∫
D\{0}

(
e〈u,ξ〉 − 1−

〈
uJ (i), χJ (i)(ξ)

〉)
µi(dξ)

)
,

(6.13)
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where

K(u) := Re vi〈αi,JJw,w〉+ Re
(
vi
(
〈βYi , u〉 − γi

))
.

Hence

|K(u)| ≤ C
(
‖v‖‖w‖2 + ‖v‖2 + ‖v‖‖w‖+ ‖v‖

)
, ∀u = (v, w) ∈ U . (6.14)

The first term on the right hand side in (6.13) which could cause growth problems
has the right sign. Hence, combining (6.13) and (6.14) with Lemma 6.2 below, we
derive

Re
(
viR

Y
i (u)

)
≤ C

(
1 + ‖w‖2

) (
1 + ‖v‖2

)
, ∀u = (v, w) ∈ U . (6.15)

We insert (6.15) in (6.12) and obtain

∂t‖ΨY(t, u)‖2 ≤ C

(
1 +

∥∥∥eβZ tw∥∥∥2
)(

1 + ‖ΨY(t, u)‖2
)
, ∀t ∈ (0, Tu).

Gronwall’s inequality (see [1]) yields

‖ΨY(t, u)‖2 ≤
(
‖v‖2 + C

∫ t

0

(
1 +

∥∥∥eβZsw∥∥∥2
)
ds

)
× exp

(
C

∫ t

0

(
1 +

∥∥∥eβZsw∥∥∥2
)
ds

)
, ∀t ∈ [0, Tu).

(6.16)

Thus the solution cannot explode and we have Tu = ∞.
The continuity of Φ and Ψ on R+×U0 is a standard result, see [12, Chapter 6]. �

Lemma 6.2. For every i ∈ I and u = (v, w) ∈ U , we have

Re

(
vi

∫
D\{0}

(
e〈u,ξ〉 − 1−

〈
uJ (i), χJ (i)(ξ)

〉)
µi(dξ)

)
≤ C

(
1 + ‖v‖2

) (
1 + ‖w‖2

)
,

(6.17)
where C only depends on µi.

Proof. Let i ∈ I. We recapture the notation of Steps 1 and 2 in the proof of
Lemma 4.1. Write I = I(i) and J = J (i), and let

d(ξ) := d(0, ξ) = 〈χI(ξ),1〉+ ‖χJ(ξ)‖2,

hu(ξ) := hu(0, ξ) =
fu(ξ)− 1− 〈uJ , χJ(ξ)〉

d(ξ)
,

see (4.7) and (4.8). By condition (2.11), µi(dξ) := d(ξ)µi(dξ) is a bounded measure
on D \ {0}. Now the integral in (6.17) can be written as∫

D\{0}
hu(ξ)µi(dξ). (6.18)
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We proceed as in (4.12), and perform a convenient Taylor expansion,

hu(ξ) =
1
d(ξ)

(
e〈u,ξ〉 − e〈uJ ,ξJ 〉 + eviηi

(
e〈w,ζ〉 − 1− 〈w, ζ〉

)
+ 〈w, ζ〉 (eviηi − 1) + eviηi − 1− viηi

)
= e〈uJ ,ξJ 〉

(∫ 1

0

et〈uI ,ξI〉 dt

)
〈uI ,w(ξ)〉

+ eviηi

(∫ 1

0

(1− t)et〈w,ζ〉 dt
)
〈aJJ (ξ)w,w〉

+
(∫ 1

0

etviηi dt

)
vi〈aiJ (ξ), w〉

+
(∫ 1

0

(1− t)etviηi dt

)
aii(ξ)(vi)2, ∀ξ = (η, ζ) ∈ Q0(0),

(6.19)

where we have set w(ξ) := w(0, ξ) and akl(ξ) := akl(0, ξ), see (4.13) and (4.14).
Now we compute

Re (vihu(ξ)) = K(u, ξ) + L(vi, ηi)aii(ξ)|vi|2, ξ = (η, ζ) ∈ Q0(0), (6.20)

where we have set

L(vi, ηi) :=
∫ 1

0

(1− t)Re
(
vie

tviηi
)
dt

=
∫ 1

0

(1− t)etRe viηi (Re vi cos (tIm viηi)− Im vi sin (tIm viηi)) dt
(6.21)

and K(u, ξ) satisfies, in view of (4.16),

|K(u, ξ)| ≤ C
(
‖v‖+ ‖w‖2 + ‖v‖2‖w‖

)
, ∀u = (v, w) ∈ U , ∀ξ ∈ Q0(0). (6.22)

We claim that
L(vi, ηi) ≤ 0, ∀vi ∈ C−, ∀ηi ∈ [0, 1]. (6.23)

Indeed, since L(vi, ηi) is symmetric in Im vi, we may assume that Im vi in (6.21) is
nonnegative. Now (6.23) follows by Lemma 6.3 below.

On the other hand we have, by inspection,

|vihu(ξ)| ≤ C(1 + ‖v‖2 + ‖v‖‖w‖), ∀u = (v, w) ∈ U , ∀ξ ∈ D \Q(0). (6.24)

Combining (6.20), (6.22), (6.23) and (6.24) we finally derive∫
D\{0}

Re (vihu(ξ))µi(dξ) ≤ C
(
1 + ‖v‖2)(1 + ‖w‖2

)
, ∀u = (v, w) ∈ U ,

which is (6.17). �

Lemma 6.3. For all p, q ∈ R+, we have∫ 1

0

(1− t)e−pt cos(qt) dt ≥ 0 (6.25)∫ 1

0

(1− t)e−pt sin(qt) dt ≥ 0. (6.26)
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Proof. Estimate (6.26) is trivial, since
∫ s
0
f(t) sin(t) dt ≥ 0, for all t ∈ R+, for any

nonnegative non-increasing function f . Similarly, it is easy to see that (6.25) holds
for all q ∈ [0, π]. It remains to prove (6.25) for q > π. Straightforward verification
shows that∫ s

0

(1− t)e−pt cos(qt) dt =
e−ps

(p2 + q2)2
(
eps
(
p2(p− 1) + q2 + pq2

)
+
(
(s− 1)(p3 + pq2) + p2 − q2

)
cos(qs)

+
(
(1− s)(p2 + q2)− 2p

)
q sin(qs)

)
.

Now the claim follows by taking into account that

ep
(
p2(p− 1) + q2

)
≥
∣∣p2 − q2

∣∣ ,
eppq2 ≥ 2pq,

for all p ∈ R+ and q > π.
A more elegant proof of (6.25) is based on Pólya’s criterion (see [44]), which

implies that (1−|t|)+e−p|t| is the characteristic function of an absolutely continuous,
symmetric probability distribution on R. Now (6.25) follows immediately by Fourier
inversion. �

Now let X be regular affine. Equations (3.7), (3.13)–(3.14) and Proposition 5.2
suggest that φ(t, u) and ψ(t, u) solve the generalized Riccati equations (6.1)–(6.2).

Proposition 6.4. There exists a unique continuous extension of φ(t, u) and ψ(t, u)
to R+×U such that (2.2) holds for all (t, u) ∈ R+×U . Moreover, φ(·, u) and ψ(·, u)
solve (6.1)–(6.2), for all u ∈ U .

Proof. Let u ∈ U0 and define t∗ := sup{t | (t, u) ∈ O}. From the definition of O,
see (3.1), we infer limt↑t∗ |φ(t, u)| = ∞. Every continuous function with continuous
right-hand derivatives on [0, t∗) is continuously differentiable on [0, t∗). Therefore
and by (3.7), (3.13)–(3.14) and Proposition 6.1 the equalities

φ(t, u) = Φ(t, u), ψ(t, u) = Ψ(t, u) (6.27)

hold for all t ∈ [0, t∗). But |Φ(t, u)| is finite for all finite t. Hence t∗ = ∞. This
way, and since R+ × ∂U ⊂ O, we see that O = R+ × U and (6.27) holds for
all (t, u) ∈ R+ × U0. Now φ(t, u) and ψ(t, u) are jointly continuous on R+ × U .
By a limiting argument it follows that φ(·, u) and ψ(·, u) solve (6.1)–(6.2) also for
u ∈ ∂U . �

Next we recall some well-known conditions for higher regularity of the solution
Φ and Ψ of (6.1)–(6.2). These results are strongly connected to the existence of
the k-th and exponential moments of Xt, as shown in Theorem 2.16. See also
Lemma 5.3.

Lemma 6.5. i) Let k ∈ N. If F and RYi are in Ck(U) for all i ∈ I, then Φ
and ΨY

i are in Ck(R+ × U), for all i ∈ I.
ii) Suppose that F and RY are analytic on some open set U in Cd. Let T ≤ ∞

such that, for every u ∈ U , there exists a U -valued local solution Ψ(t, u) of
(6.1) for t ∈ [0, T ). Then Φ and Ψ have a unique analytic extension on
(0, T )× U .
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Proof. i) It follows from [33, Theorem 10.8.2] that Φ and ΨY
i are in Ck(R+ × U0).

Moreover, for 1 ≤ l ≤ m and u ∈ U0, the mapping gu(t) := ∂ul
ΨY(t, u) solves the

linear equation

gu(t) =
∫ t

0

DvR
Y
(
ΨY(s, u), eβ

Zsw
)
gu(s) ds, t ∈ R+,

where DvR
Y(v, w) denotes the derivative of the mapping v 7→ RY(v, w), which is

continuous on U by assumption. In view of Proposition 6.4, the mapping u 7→ gu(t)
can therefore be continuously extended to U . A similar argument works for m <
l ≤ d, and induction for higher derivatives yields the assertion for ΨY . We conclude
by (6.3).

ii) This follows from a classical approximation argument and a well-known result
on convergent sequences of analytic functions, see [33, Theorem 10.8.2]. �

7. C × C(m,n)-Semiflows

The following concepts are the tools for proving the existence of regular affine
processes. We denote by C the convex cone of continuous functions φ : U → C+ of
the form

φ(u) = 〈Aw,w〉+ 〈B, u〉 − C +
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈w,χJ (ξ)〉

)
M(dξ), (7.1)

for u = (v, w) ∈ U , where A ∈ Semn, B ∈ D, C ∈ R+ and M(dξ) is a nonnegative
Borel measure on D \ {0} integrating 〈χI(ξ),1〉+ ‖χJ (ξ)‖2.

The following result is classical.

Lemma 7.1. There exists a unique and infinitely divisible sub-stochastic measure
µ on D such that ∫

D

fu dµ = eφ(u), ∀u ∈ U , (7.2)

if and only if φ ∈ C. Moreover, the representation (7.1) of φ(u) by A, B, C and M
is unique.

Proof. Consider first only u ∈ ∂U . Then the lemma is essentially the Lévy–
Khintchine representation theorem for infinitely divisible distributions on Rd (see
[77, Theorem 8.1]). Note that µ(Rd) = µ(D) = e−C . The special properties of the
parameters follow by [77, Proposition 11.10 and Theorem 24.7]. Analytic extension
by the Schwarz reflexion principle yields the validity of (7.2) for all u ∈ U . �

Define the convex cone C(m,n) ⊂ Cm × Cn of mappings ψ : U → U by

C(m,n) :=
{
ψ = (ψY , ψZ) | ψY ∈ Cm and ψZ(v, w) = Bw, for some B ∈ Rn×n

}
.

Here are some elementary properties of C and C(m,n).

Proposition 7.2. Let φ, φk ∈ C and ψ,ψk ∈ C(m,n), k ∈ N.
i) For every x ∈ D there exists a unique and infinitely divisible sub-stochastic

measure µ(x, dξ) on D such that∫
D

fu(ξ)µ(x, dξ) = e〈ψ(u),x〉, ∀u ∈ U .

ii) The composition φ ◦ ψ is in C.
iii) The composition ψ1 ◦ ψ is in C(m,n).
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iv) If φk converges pointwise to a continuous function φ∗ on U0, then φ∗ has
a continuous extension on U and φ∗ ∈ C.

v) If ψk converges pointwise to a continuous mapping ψ∗ on U0, then ψ∗ has
a continuous extension on U and ψ∗ ∈ C(m,n).

Proof. i): Since 〈ψ, x〉 ∈ C, for all x ∈ D, the claim follows from Lemma 7.1.
ii): By Lemma 7.1 and part i) there exist two infinitely divisible sub-stochastic
measures m and µ(x, ·) on D specified by∫

D

fu(ξ)m(dξ) = eφ(u),

∫
D

fu(ξ)µ(x, dξ) = e〈ψ(u),x〉.

Set ν(dξ) =
∫
D
m(dx)µ(x, dξ), which is a sub-stochastic measure on D. For k ∈ N,

denote by m(k) the k-th root of m, that is, m = m(k) ∗ · · · ∗m(k) (k times). Then
we have ∫

D

fu(ξ)
∫
D

m(k)(dx)µ(x, dξ) = e
1
kφ(ψ(u)), ∀u ∈ U .

Hence ν is infinitely divisible with ν(k) =
∫
D
m(k)(dx)µ(x, dξ). Now the claim

follows by Lemma 7.1.
iii): Immediate by part ii).
iv): Let λ ∈ Rm++ and write

U(−λ) := {(v, w) ∈ U | Re v = −λ} ⊂ U0.

By (7.2) there corresponds a unique infinitely divisible measure, say µk, to φk.
With a slight abuse of notation,

U(−λ) 3 u 7→ eφk(u),

is the characteristic function of the measure e−〈λ,η〉µk(dη, dζ). Since φk → φ∗

pointwise on U(−λ), the continuity theorem of Lévy (see e.g. [44]) implies that
e−〈λ,η〉µk(dη, dζ) → µ∗(dη, dζ) weakly on D, for some sub-stochastic measure µ∗.
On the other hand, there exists a subsequence µkl

which converges vaguely on D
to a sub-stochastic measure µ. By uniqueness of the vague limit we conclude that
µ∗(dη, dζ) = e−〈λ,η〉µ(dη, dζ) and the entire sequence (µk) converges weakly to µ.
Hence µ is infinitely divisible and∫

D

fu dµ = eφ
∗(u), ∀u ∈ U0.

Now Lemma 7.1 yields the assertion.
v): Immediate by parts i) and iv). �

In view of Proposition 7.2.ii)–iii) the next definition makes sense.

Definition 7.3. A one parameter family {(φt, ψt)}t∈R+ of elements in C × C(m,n)

is called a C × C(m,n)-semiflow if, for all t, s ∈ R+ and u ∈ U ,

φt+s(u) = φt(u) + φs (ψt(u)) and φ0 = 0,

ψt+s(u) = ψt (ψs(u)) and ψ0(u) = u.

It is called a regular C×C(m,n)-semiflow if φt(u) and ψt(u) are continuous in t ∈ R+,
and the right hand derivatives ∂+

t φt(u)|t=0 and ∂+
t ψt(u)|t=0 exist for every u ∈ U

and are continuous at u = 0.

Here is the link to regular affine processes and the generalized Riccati equations.
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Proposition 7.4. i) Suppose {(φt, ψt)}t∈R+ is a regular C×C(m,n)-semiflow.
Then there exists a unique regular affine Markov process with state-space
D and exponents φ(t, u) = φt(u) and ψ(t, u) = ψt(u) (which in turn solve
the corresponding generalized Riccati equations (6.1)–(6.2), see Proposi-
tion 6.4).

ii) Conversely, the solution Φ and Ψ of (6.1)–(6.2) uniquely defines a regular
C × C(m,n)-semiflow {(φt, ψt)}t∈R+ by φt = Φ(t, ·) and ψt = Ψ(t, ·).

Proof. By Lemma 7.1 and Proposition 7.2.i) there exists, for every (t, x) ∈ R+×D,
a unique, infinitely divisible sub-stochastic measure pt(x, ·) on D with∫

D

fu(ξ) pt(x, dξ) = eφ(t,u)+〈ψ(t,u),x〉, ∀u ∈ U .

A simple calculation shows that pt(x, ·) satisfies the Chapman-Kolmogorov equation

pt+s(x, ·) =
∫
D

pt(x, dξ)ps(ξ, ·), ∀t, s ∈ R+, ∀x ∈ D.

Hence pt(x, ·) is the transition function of a Markov process on D, which by con-
struction is regular affine. This proves i).

For part ii) we first suppose that∫
D\{0}

χi(ξ)µi(dξ) <∞, (7.3)

αi,ik = αi,ki = 0, ∀k ∈ J (i), (7.4)

for all i ∈ I. Consequently, RYi can be written in the form

RYi (u) = R̃Yi (u)− civi with R̃Yi ∈ C, ci ∈ R+, i ∈ I.

Then equation (6.4) is equivalent to the following integral equations

ΨY
i (t, u) = e−citvi +

∫ t

0

e−ci(t−s)R̃Yi (Ψ(s, u)) ds, i ∈ I.

By a classical fixed point argument, the solution ΨY
i (t, u) is the pointwise limit of

the sequence (ΨY,(k)
i (t, u))k∈N0 , for (t, u) ∈ R+ × U0, obtained by the iteration

ΨY,(0)
i (t, u) = vi

ΨY,(k+1)
i (t, u) = e−citvi +

∫ t

0

e−ci(t−s)R̃Yi

(
ΨY,(k)(s, u), eβ

Zsw
)
ds.

Proposition 7.2.ii) and the convex cone property of C yield ΨY,(k)
i (t, ·) ∈ C, for all

k ∈ N0. In view of Proposition 7.2.iv) there exists a unique continuous extension
of ΨY

i on R+ × U , and ΨY
i (t, ·) ∈ C. Hence Ψ(t, ·) ∈ C(m,n). Since F ∈ C, by

Proposition 7.2.ii) also Φ(t, ·) =
∫ t
0
F (Ψ(s, ·)) ds ∈ C and the proposition is proved

if (7.3)–(7.4) hold. For the general case it is enough to notice that the solution of
(6.4) depends continuously on the right hand side of (6.4) with respect to uniform
convergence on compacts. Now Lemma 7.5 below completes the proof. �

Lemma 7.5. Let i ∈ I. There exists a sequence of functions (gk)k∈N which con-
verges uniformly on compacts to RYi . Moreover, every gk is of the form (2.17) and
satisfies (7.3)–(7.4).
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Proof. We use the same notation as in the proof of Lemma 6.2. Introduce the
restricted measures

µ
(k)
i := µi|{ξ∈D|‖ξ‖> 1

k }
, k ∈ N,

and denote by g̃k the corresponding map given by (2.17) with µi replaced by µ(k)
i .

It is easy to see that every µ
(k)
i satisfies (7.3) and that the sequence of bounded

measures µ(k)
i (dξ) := d(ξ)µ(k)

i (dξ), k ∈ N, converges weakly to µi(dξ) := d(ξ)µi(dξ)
on D \ {0}. Write

f (k)(u) :=
∫
D\{0}

hu(ξ)µ
(k)
i (dξ), k ∈ N.

Let ε > 0 and K a compact subset of D. By (4.12) there exists δ > 0 such that for
all u, u′ ∈ U with ‖u− u′‖ < δ we have

sup
ξ∈K

|hu(ξ)− hu′(ξ)| ≤ ε. (7.5)

As in the proof of (3.2) one now can show that

f (k)(u) → f(u) :=
∫
D\{0}

hu(ξ)µi(dξ), for k →∞,

uniformly in u on compacts. By construction it follows hat g̃k converges uniformly
on compacts to RYi .

It remains to show that, for all k ∈ N, there exists a sequence (g̃(l)
k )l∈N of functions

that are of the form (2.17) and satisfy (7.3)–(7.4), such that g̃(l)
k → g̃k uniformly

on compacts. The lemma is then proved by choosing an appropriate subsequence
g̃
(lk)
k =: gk, k ∈ N.

To simplify the notation we suppress the index k in what follows and assume
that µi already satisfies (7.3). We recapture some of the analysis from Step 2 in
the proof of Lemma 4.1 (see (4.12)–(4.18)). Instead of expanding the integrand in
(6.18) we decompose the integral∫

D\{0}
hu(ξ)µi(dξ) =

∫
Λ

h̃u dµ̃i +
∫
D\Q(0)

hu(ξ)µi(dξ), (7.6)

where h̃u := hu◦Γ−1, µ̃i is the image of µi by Γ, Λ := Γ(Q0(0)), and Γ(ξ) := Γ(0, ξ)
is given by (4.16). See also (4.18). Recall that I = I(i), J = J (i). We can assume
that αi,ii > 0 since otherwise (7.4) is already satisfied. Hence ξ∗ ∈ Q0(0), defined
by

ξ∗I := 0, ξ∗J :=
αi,iJ
‖αi,iJ‖

,

satisfies
d(ξ∗) = 1 and ξ∗i ξ

∗
J = p∗αi,iJ for p∗ :=

αi,ii
‖αi,iJ‖2

.

This implies that

αi,ik =
1
p∗

aik(ξ∗), ∀k ∈ J,

where akl(ξ∗) = akl(0, ξ∗) is defined in (4.14). Since

akl(rξ∗) = akl(ξ∗) =: Akl ∀r > 0, k, l ∈ J,
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we get that

λl := Γ
(
ξ∗

l

)
=
(
ξ∗

l
, 0, A

)
→ λ∞ := (0, 0, A) in Λ, for l→∞,

where in fact λ∞ ∈ Λ \ Λ. As seen from (4.17) we therefore can write
1
2
〈AuJ , uJ〉 = h̃u(λ∞).

On the other hand, by construction we have

〈αi,JJuJ , uJ〉 =
1
p∗
〈AuJ , uJ〉+

〈(
αi,JJ −

1
p∗
AJJ

)
uJ , uJ

〉
, u ∈ Cd.

We claim that
α̃ := αi,JJ −

1
p∗
AJJ ∈ Semn. (7.7)

Indeed, by construction we have

α̃kl = αi,kl −
1
p∗
Akl = αi,kl −

αi,ki
αi,ii

αi,il, k, l ∈ J ,

which simply is Gaussian elimination with Pivot element αi,ii. Now let q ∈ Rn.
Then

〈α̃q, q〉 = 〈αi,JJ q, q〉 −
(∑

k∈J αi,ikqk
)2

αi,ii
= 〈αi,JJ q, q〉 −

〈αi,JJe1, q̃〉2

〈αi,JJe1, e1〉

≥ 〈αi,JJ q, q〉 −
〈αi,JJe1, e1〉〈αi,JJ q̃, q̃〉

〈αi,JJe1, e1〉
= 0,

by the Cauchy–Schwarz inequality, where e1 = (1, 0, . . . , 0), q̃ = (0, q) ∈ Rn+1.
Whence (7.7).

We now define the measure on Λ,

µ̃
(∞)
i := µ̃i +

2
p∗
δλ∞ (δλ∞ denotes the Dirac measure in λ∞),

then we can write

RYi (u) =
∫

Λ

h̃u dµ̃
(∞)
i + 〈α̃uJ , uJ 〉+

∫
D\Q(0)

hu(ξ)µi(dξ) + 〈βYi , u〉 − γi.

That is, the relevant terms αi,iJ are now “absorbed” in the integral over Λ.
On the other hand, the measures

µ̃
(l)
i := µ̃i +

2
p∗
δλl
, l ∈ N,

satisfy µ̃(l)
i (Λ \ Λ) = 0. Hence, in view of (7.6) and (7.7),

g̃(l)(u) := 〈α̃uJ , uJ 〉+ 〈βYi , u〉 − γi +
∫

Λ

h̃u dµ̃
(l)
i +

∫
D\Q(0)

hu(ξ)µi(dξ)

is of the form (2.17) and satisfies (7.3)–(7.4). Taking into account

g̃(l)(u)−RYi (u) =
2
p∗

(
h̃u(λl)− h̃u(λ∞)

)
,

(7.5) and the simple fact that

sup
λ∈Λ

∣∣∣h̃u(λ)− h̃u′(λ)
∣∣∣ = sup

ξ∈Q0(0)

|hu(ξ)− hu′(ξ)| ,
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it is obvious that g̃(l) converge to RYi uniformly on compacts, and the lemma is
proved. �

8. Feller Property

Let X be regular affine and (a, α, b, β(βY , βZ), c, γ,m, µ) the corresponding admis-
sible parameters, given by Proposition 5.2. In this section we show that X shares
the Feller property, and we provide a strong connection between the admissible
parameters and the infinitesimal generator of X.

We start with some preliminary considerations. Let U be an open set or the
closure of an open set in RN , N ∈ N. For f ∈ C2(U) we write

‖f‖2;U := sup
x∈U

|f(x)|+ ‖∇f(x)‖+
N∑

k,l=1

∣∣∣∣ ∂2f(x)
∂xk∂xl

∣∣∣∣
 . (8.1)

Let U be a closed set in D. For f ∈ C2(D) we write

‖f‖];U := ‖f‖Y;U + ‖f‖Z;U ,

where

‖f‖Y;U := sup
x=(y,z)∈U

(1 + ‖y‖)

|f(x)|+ ‖∇f(x)‖+
d∑

k,l=1

∣∣∣∣ ∂2f(x)
∂xk∂xl

∣∣∣∣


‖f‖Z;U := sup
x=(y,z)∈U

∣∣〈z, βZ∇J f(x)
〉∣∣ .

The product rule yields

‖fg‖Y;U ≤ KY‖f‖Y;U‖g‖2;U , ∀f, g ∈ C2(D), (8.2)

where KY = KY(m,n) is a universal constant.
For f ∈ C2(D) ∩ Cb(D) we define A]f(x) literally as the right hand side of

(2.12). A straightforward verification shows that ∂tPtfu(x) = A]Ptfu(x), for all
(t, u, x) ∈ R+ × U ×D, see (3.10)–(3.11). The connection between A] and ‖ · ‖];D
becomes clear with the next lemma. Notice that f(x + ·) ∈ C2(D) if f ∈ C2(D),
for any x ∈ D.

Lemma 8.1. For any f ∈ C2(D) ∩ Cb(D) we have

|A]f(x)| ≤ C

(
‖a‖+ ‖α‖+ ‖b‖+ ‖β‖+ |c|+ ‖γ‖+M +

∑
i∈I

Mi

)
‖f(x+ ·)‖];D,

for all x ∈ D (see (2.10), (2.11)), where C only depends on d.
Hence, if (gk) is a sequence in D(A) with Agk = A]gk and ‖gk − g‖];D → 0,

for some g ∈ C2(D) ∩ C0(D), then A]gk → A]g in C0(D). Since A is closed we
conclude g ∈ D(A) and Ag = A]g.

Proof. We let Q(0) and Q0(0) be as in (4.11). Let i ∈ I and write ξ⊥ for the
projection of ξ ∈ D onto the subspace of Rd spanned by {ek | k ∈ J (i)}, that is,

ξ⊥k :=

{
0, if k ∈ I(i),
ξk, if k ∈ J (i).
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Taylor’s formula gives

f(x+ ξ)− f(x)− 〈∇J (i)f(x), ξJ (i)〉 = f(x+ ξ)− f(x+ ξ⊥)

+ f(x+ ξ⊥)− f(x)− 〈∇f(x), ξ⊥〉

=
〈∫ 1

0

∇I(i)f(x+ s(ξ − ξ⊥)) ds, ξI(i)

〉
+

∑
k,l∈J (i)

(∫ 1

0

∂f(x+ sξ⊥)
∂xk∂xl

(1− s) ds
)
ξkξl

for x, ξ ∈ D. Notice the simple fact that |yi| ≤ ‖y + η‖ for all y, η ∈ Rm+ . Hence∫
D\{0}

|f(x+ ξ)− f(x)− 〈∇J f(x), χJ (ξ)〉| yi µi(t, dξ)

≤ C1‖f(x+ ·)‖Y;D

∫
Q0(0)

(
‖ξI(i)‖+ ‖ξJ (i)‖2

)
µi(t, dξ)

+
∫
D\Q(0)

‖y + η‖|f(x+ ξ)|µi(dξ)

+ C2 (|f(x)|+ ‖∇f(x)‖) ‖y‖µi(D \Q(0))

≤ 3(1 + C1 + C2)Mi‖f(x+ ·)‖Y;D,

where C1, C2 only depend on d. A similar inequality can be shown for the integral
with respect to m(dξ). The rest of the assertion is clear. �

Proposition 8.2. The process X is Feller. Let A be its infinitesimal generator.
Then C∞c (D) is a core of A, C2

c (D) ⊂ D(A) and (2.12) holds for f ∈ C2
c (D).

Proof. Let Sn denote the Fréchet space of rapidly decreasing C∞-functions on Rn
(see [76, Chapter 7]). Define the set of functions on D

Θ :=
{
f(y, z) = e〈v,y〉g(z) | v ∈ Cm−−, g ∈ Sn

}
,

and denote its complex linear hull by L(Θ).
It is well known (see [76, Chapter 7]) that C∞c (Rn) is dense in Sn, and that the

Fourier transform is a linear homeomorphism on Sn. Hence there exists a subset
Θ0 ⊂ Θ such that its complex linear hull L(Θ0) is ‖ · ‖];D-dense in L(Θ), and every
f ∈ Θ0 can be written as

f(y, z) = e〈v,y〉
∫

Rn

ei〈q,z〉g̃(q) dq =
∫

Rn

f(v,iq)(y, z)g̃(q) dq, (8.3)

for some g̃ ∈ C∞c (Rn). Let t ∈ R+. From Proposition 6.4 and (6.5) we infer

Ptf(y, z) =
∫

Rn

Ptf(v,iq)(y, z)g̃(q) dq

=
∫

Rn

ei〈exp(βZ t)q,z〉eφ(t,v,iq)+〈ψY(t,v,iq),y〉g̃(q) dq.
(8.4)
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Since ψ(t, u) is continuous on R+ ×U0 we obtain, by dominated convergence, that
Ptf ∈ C∞(D) and

∂tPtf(x) =
∫

Rn

∂tPtf(v,iq)(x)g̃(q) dq

=
∫

Rn

(F (ψ(t, v, iq)) + 〈R(ψ(t, v, iq)), x〉)Ptf(v,iq)(x)g̃(q) dq

=
∫

Rn

A]Ptf(v,iq)(x)g̃(q) dq

= A]Ptf(x), ∀(t, x) ∈ R+ ×D.

(8.5)

In particular,
lim
t↓0

Ptf(x) = f(x), ∀x ∈ D. (8.6)

Let y ∈ Rm+ and consider the function

q 7→ h(q) := eφ(t,v,iq)+〈ψY(t,v,iq),y〉g̃(q) ∈ Cc(Rn).

Denote by h̃ its Fourier transform,

h̃(z) =
∫

Rn

ei〈q,z〉h(q) dq.

By the Riemann–Lebesgue theorem the functions h̃, ∂zk
h̃ and ∂zk

∂zl
h̃ are in C0(Rn).

However, it is not clear at this stage whether ‖h̃‖Z;D is finite or not (it is finite, as
will be shown below), since h(q) might not be differentiable. But from the identity

Ptf(y, z) = h̃

((
eβ

Z t
)T

z

)
and (8.4) we obtain, by dominated convergence,

(1 + ‖y‖)

|Ptf(x)|+ ‖∇Ptf(x)‖+
d∑

k,l=1

∣∣∣∣∂2Ptf(x)
∂xk∂xl

∣∣∣∣
 ∈ C0(D). (8.7)

In particular, Ptf ∈ C0(D). From Lemma 8.4 below we now infer that (8.6) holds
for every f ∈ C0(D) and PtC0(D) ⊂ C0(D). This implies that X is Feller (see [74,
Section II.2]).

Obviously A]f ∈ C0(D) for every f ∈ L(Θ0). A nice result for Feller processes
([77, Lemma 31.7]) now states that the pointwise equality (8.5), for t = 0, already
implies that f ∈ D(A) and Af = A]f . Hence L(Θ0) ⊂ D(A). By the closedness of
A therefore L(Θ) ⊂ D(A) and (2.12) holds for f ∈ L(Θ).

Let h ∈ C2
c (D) and (hk) a sequence in L(Θ0) with εk := ‖hk − h‖2;D → 0,

given by Lemma 8.4. We modify (hk) such that we can assert ‖ · ‖];D-convergence.
Therefore, choose a function ρ ∈ C∞c (R+) with

ρ(t) =

{
1, if t ≤ 1,
0, if t > 5,

and 0 ≤ ρ(t) ≤ 1, |∂tρ(t)| ≤ 1 and |∂2
t ρ(t)| ≤ 1, for all t ∈ R+. Such a function

obviously exists. Define

gk(y, z) := e−
√
εk〈1,y〉ρ

(
εk‖z‖2

)
.
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Then gkhk ∈ L(Θ) and it is easily verified that ‖gk‖Y;D ≤ C/
√
εk, where C does

not depend on k. With regard to (8.2) we derive

‖gkhk − h‖Y;D ≤ ‖gk(hk − h)‖Y;D + ‖h(gk − 1)‖Y;D

≤ KY‖gk‖Y;D‖h− hk‖2;D + ‖h(gk − 1)‖Y;supph

≤ KYC
√
εk +KY‖h‖Y;supph‖gk − 1‖2;supph

→ 0, for k →∞.

On the other hand, for x = (y, z) ∈ D,

‖z‖ ‖∇J (gkhk − h)(x)‖
≤ ‖z‖ (‖∇J gk(x)hk(x)‖+ ‖gk(x)∇J (hk − h)(x)‖+ ‖∇J h(x)(gk(x)− 1)‖)

≤ 2εk‖z‖2∂tρ
(
εk‖z‖2

)
(|hk(x)− h(x)|+ |h(x)|) +

√
5

√
εk
‖hk − h‖2;D

+ sup
x∈supph

(‖z‖‖∇h(x)‖) ‖gk − 1‖2;supph

≤ 10‖hk − h‖2;D +
√

5εk + C‖gk − 1‖2;supph

for k large enough such that {x = (y, z) | εk‖z‖2 ≤ 1} ⊃ supph, since ∂tρ(t) = 0
for t ≤ 1. Hence ‖gkhk − h‖Z;D → 0 and thus ‖gkhk − h‖];D → 0, for k →∞. By
the closedness of A therefore h ∈ D(A) and Ah = A]h. Hence C2

c (D) ⊂ D(A) and
(2.12) holds for f ∈ C2

c (D).
It remains to consider cores. Define

D(A])

:=

{
f ∈ C2(D)

∣∣∣∣∣ (1 + ‖y‖)
(
|f(x)|+ ‖∇f(x)‖+

∑d
k,l=1

∣∣∣ ∂2f(x)
∂xk∂xl

∣∣∣) ∈ C0(D),〈
z, βZ∇J f(x)

〉
∈ C0(D)

}
.

In view of Lemma 8.1, f ∈ D(A]) implies A]f ∈ C0(D).
We show that C2

c (D) is ‖·‖];D-dense in D(A]). Let f ∈ D(A]) and ρ(t) as above.
Define fk(x) := f(x)ρ(‖x‖2/k) ∈ C2

c (D). We have, for x = (y, z) ∈ D,∣∣〈z, βZ∇J (fk − f)(x)
〉∣∣ ‖ ≤ ∣∣〈z, βZ∇J f(x)

〉∣∣ (1− ρ

(
‖x‖2

k

))
+ 2

∥∥βZ∥∥ |f(x)| ‖x‖
2

k
∂tρ

(
‖x‖2

k

)
≤ 10

(
1 +

∥∥βZ∥∥) sup
‖x‖≥

√
k

{∣∣〈z, βZ∇J f(x)
〉∣∣+ |f(x)|

}
→ 0, for k →∞.

Similarly we see that ‖fk− f‖Y;D → 0, and hence ‖fk− f‖];D → 0, for k →∞. As
a consequence we obtain D(A]) ⊂ D(A) and Af = A]f , for all f ∈ D(A]).

Next we claim that PtL(Θ0) ⊂ D(A]) for all t ∈ R+. Indeed, since PtD(A) ⊂
D(A) we know that PtL(Θ0) ⊂ D(A). Let f ∈ Θ0 be given by (8.3). With regard
to (8.5) we have

APtf(x) = I(x) +
∫

Rn

〈
βZeβ

Z tiq, z
〉
Ptf(v,iq)(x)g̃(q) dq

= I(x) +
〈
z, βZ∇JPtf(x)

〉
,
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where

I(x) :=
∫

Rn

(
F (ψ(t, v, iq)) + 〈RY(ψ(t, v, iq)), y〉

)
Ptf(v,iq)(x)g̃(q) dq.

Using the same arguments as for (8.7) we see that I is in C0(D). But so is APtf ,
hence 〈

z, βZ∇JPtf(x)
〉
∈ C0(D).

Combining this with (8.7) gives Ptf ∈ D(A]).
From Lemma 8.3 below, with D0 = L(Θ0) and D1 = D(A]), we now infer that

D(A]) is a core of A. But C∞c (D) is ‖ · ‖];D-dense in C2
c (D), which is ‖ · ‖];D-dense

in D(A]). This yields the assertion. �

Lemma 8.3. Let D0 and D1 be dense linear subspaces of C0(D) such that

PtD0 ⊂ D1 ⊂ D(A), ∀t ≥ 0,

then D1 is a core of A.

Proof. See [77, Lemma 31.6]. �

Lemma 8.4. For every h ∈ C2
c (D) there exists a sequence (hk) in L(Θ0) with

lim
k→∞

‖hk − h‖2;D = 0. (8.8)

Consequently, L(Θ0) is dense in C0(D).

Proof. Let h ∈ C2
c (D) and define h∗ on D∗ := (0, 1)m × (−1, 1)n by

h∗(η, θ) := h
(
log(η−1

1 ), . . . , log(η−1
m ), tanh−1(θ1), . . . , tanh−1(θn)

)
.

By construction h∗ ∈ C2(D∗), and h∗(η, θ) = 0 if θ is a boundary point of [−1, 1]n.
Introduce the coordinates

υj = ρj cos(πθj), ζj = ρj sin(πθj), ρj ∈ R+, θj ∈ [−1, 1], j = 1, . . . , n.

The inverse transforms ρj = ρj(υj , ζj) and θj = θj(υj , ζj) are smooth on R2 and
R2 \ {(r, 0) | r ≤ 0}, respectively. By smooth extension, the function

h∗∗(η, υ, ζ) := ρ1 · · · ρn h∗(η, θ)

is well-defined on D∗∗ := (0, 1)m× (−2, 2)2n and satisfies h∗∗ ∈ C2(D∗∗). A version
of the Stone–Weierstrass approximation theorem yields a sequence of polynomials
(pk) with

lim
k→∞

‖pk − h∗∗‖2;D∗∗ = 0,

see [29, Section II.4]. This convergence holds in particular on the subset [0, 1]m ×
{(υ, ζ) | ρ1 = · · · = ρn = 1}, which can be identified with D∆ by the preceding
transforms. Indeed, for z ∈ Rn write short hand

c(z) := (cos(π tanh(z1)), . . . , cos(π tanh(zn))) ,

s(z) := (sin(π tanh(z1)), . . . , sin(π tanh(zn))) .

Then we have h(y, z) = h∗∗ (e−y1 , · · · , e−ym , c(z), s(z)). Hence the functions

h̃k(y, z) := pk
(
e−y1 , · · · , e−ym , c(z), s(z)

)
, k ∈ N,
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satisfy limk→∞ ‖h̃k − h‖2;D = 0. Now let K be a compact subset in Rn such that
supph ⊂ Rm+ ×K, and let σ ∈ C∞c (Rn) with σ = 1 on K. Each h̃k is a complex
linear combination of terms of the form

e−〈v,y〉
n∏
j=1

cosκj (π tanh(zj)) sinλj (π tanh(zj)), v ∈ Nm0 , κj , λj ∈ N0.

Hence hk(y, z) := e−2−k〈1,y〉σ(z)h̃k(y, z) ∈ L(Θ), for every k ∈ N, and (8.8) holds.
Since L(Θ0) is ‖ · ‖2;D-dense in L(Θ), and C2

c (D) is dense in C0(D), the lemma
is proved. �

9. Conservative Regular Affine Processes

Let X be regular affine and (a, α, b, β, c, γ,m, µ) the corresponding admissible pa-
rameters, given by Proposition 5.2. In this section we investigate under which
conditions X is conservative.

Proposition 9.1. If c = 0, γ = 0, and g = 0 is the only Rm− -valued solution of

∂tg(t) = ReRY(g(t), 0)

g(0) = 0,
(9.1)

then X is conservative.
On the other hand, if X is conservative then c = 0, γ = 0 and there exists no

solution g of (9.1) with g(t) ∈ Rm−−, for all t > 0.

Proof. Observe that X is conservative if and only if φ(t, 0) = 0 and ψ(t, 0) = 0, for
all t ∈ R+. In view of Proposition 6.4 and since

Imφ(t, (v, 0)) = 0, Imψ(t, (v, 0)) = 0, ∀v ∈ Rm− , ∀t ∈ R+,

X is conservative if and only

lim
v→0, v∈Rm

−

Reφ(t, (v, 0)) = 0, lim
v→0, v∈Rm

−

Reψ(t, (v, 0)) = 0, ∀t ∈ R+. (9.2)

Suppose c = 0 and γ = 0. Then Reψ(·, (v, 0)) converges to an Rm− -valued
solution of (9.1), for v → 0. Under the stated assumptions we conclude that (9.2)
holds, and X is conservative.

Now suppose X is conservative. From (2.16) and conditions (2.4), (2.8) we see
that ReF (v, 0) ≤ −c and thus

Reφ(t, (v, 0)) ≤ −ct, ∀v ∈ Rm− .

Together with (6.9) this implies that (9.2) only can hold if c = 0 and γ = 0. Now
let g be a solution of (9.1) with g(t) ∈ Rm−−, for all t > 0. By the uniqueness
result from Proposition 6.1 we have g(t + s) = Reψ(s, (g(t), 0)), for all s, t > 0.
But g(t) → 0 and thus Reψ(s, (g(t), 0)) → Reψ(s, 0) = g(s), for t → 0, which
contradicts (9.2). �

We can give sufficient conditions for conservativity in terms of the parameters
of X directly.

Lemma 9.2. Suppose∫
D\{0}

(
‖η‖ ∧ ‖η‖2

)
µi(dξ) <∞, ∀i ∈ I. (9.3)
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Then RY(v, w) is locally Lipschitz continuous in v ∈ Cm− , uniformly in w on compact
sets in Rn.

Consequently, if in addition c = 0 and γ = 0 then X is conservative.

Proof. As in Lemma 5.3 we derive that ∇IR
Y
i ∈ C(U), for all i ∈ I. Whence

the first part of the lemma follows. Consequently, if γ = 0, the unique Rm− -valued
solution of (9.1) is g = 0. Now Proposition 9.1 yields the assertion. �

We now give an example of a non-conservative regular affine Markov process.

Example 9.3. Let (m,n) = (1, 0), that is D = R+. We suppress the index i and
set

µ(dξ) =
1

2
√
π

dξ

ξ3/2
.

Then condition (9.3) is not satisfied. A calculation shows∫
D\{0}

(
evξ − 1− vχ(ξ)

)
µ(dξ) = −

√
−v − 2√

π
v, v ∈ R−.

Choose F = 0 and α = 0, β = 2/
√
π, γ = 0. Hence R(v) = −

√
−v (where

√
· is

the unique holomorphic square root function on C++ with
√

1 = 1), which is not
Lipschitz continuous at v = 0. The solution to (6.1) is ψ(t, v) = −(2

√
−v + t)2/4,

for Re v < 0. The limit for v → 0 is ψ(t, 0) = −t2/4. Hence

Pt1(x) = e−(t2/4)x

and X is not conservative. Its infinitesimal generator is

Af(x) =
∫
D\{0}

(f(x+ ξ)− f(x))
x

2
√
π

dξ

ξ3/2
.

Thus X is a pure jump process with increasing (in time along every path) jump
intensity such that explosion occurs in finite time, for X0 = x > 0.

10. Proof of the Main Results

10.1. Proof of Theorem 2.7. The first part of Theorem 2.7 is a summary of
Propositions 5.2, 6.4 and 8.2. The second part follows from Propositions 6.1 and
7.4.

10.2. Proof of Theorem 2.12. We first prove that X is a semimartingale. Write
X̃t = (Ỹt, Z̃t) := Xt1{t<τX} and let x ∈ D. For every u ∈ U and T > 0, we see that

eφ(T−t,u)+〈ψ(T−t,u),Xt〉1{t<τX} = Ex [fu(XT ) | Ft] , t ∈ [0, T ],

is a Px-martingale. Therefore,

e〈ψ
Y(T−t,(v,w)),Ỹt〉+〈eβZ (T−t)w,Z̃t〉 and 〈ψY(T − t, (v, 0)), Ỹt〉, t ∈ [0, T ],

are Px-semimartingales, for all (v, w) ∈ U . There exists T ∗ > 0 such that

ψY(t, (e1, 0)), . . . , ψY(t, (em, 0))

are linearly independent vectors in Rm, for every t ∈ [0, T ∗). By induction we obtain
that (Ỹt1{t<kT∗}) is a Px-semimartingale, for all k ∈ N. Since being a semimartin-
gale is a local property (see [56, Proposition I.4.25]), Ỹ is a Px-semimartingale.
Now let T > 0 and write Ẑt := e−β

Z(T−t)Z̃t. From the above we obtain that
(sin(qjẐ

j
t ))t∈[0,T ] are Px-semimartingales, for all qj ∈ R, j ∈ J . Define the stopping
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time Tk := inf{t | |Ẑjt | > k} ∧ τX . Then Ẑj coincides with the Px-semimartingale
k arcsin(sin(Ẑj/k)) on the stochastic interval [0, Tk). But Tk ↑ τx and the above
localization argument ([56, Proposition I.4.25]) implies that Ẑ and hence Z̃ are
Px-semimartingales. Therefore X is a semimartingale.

Now let X be conservative. Theorem 2.7 tells us that

f(Xt)− f(x)−
∫ t

0

Af(Xs) ds, t ∈ R+, (10.1)

is a Px-martingale, for every f ∈ C2
c (D) and x ∈ D. Conversely, by Itô’s formula

we see that

f(X ′
t)− f(x)−

∫ t

0

Af(X ′
s) ds, t ∈ R+, (10.2)

is a P′-martingale, for every f ∈ C2
c (D). Theorem 2.12 now follows from Lem-

mas 10.1 and 10.2 below.

Lemma 10.1. Suppose X is conservative. Then the following two conditions are
equivalent.

i) X admits the characteristics (2.20)–(2.22) on (Ω,F , (Ft),Px).
ii) For every f ∈ C2

c (D), the process (10.1) is a Px-martingale.

Proof. The implication i)⇒ii) is a consequence of Itô’s formula. Now suppose ii)
holds. For every u ∈ U , there exists a sequence (gk) in C2

c (D) such that

lim
k→∞

‖gk − fu‖2;K = 0

(see (8.1)) for every compact set K ⊂ D. Hence the set C2
c (D) completely (up

to modification) determines the characteristics of a semimartingale, as it is shown
in [56, Lemma II.2.44]. Since X is conservative we have c = 0 and γ = 0 by
Proposition 9.1, and i) now follows as in the proof of [56, Theorem II.2.42 (a)]. �

Condition ii) of Lemma 10.1 defines X as a solution of the martingale problem
for (A,Px), see [42, Section 4.3]. We recall a basic uniqueness result for Markov
processes.

Lemma 10.2. Let X ′ be a D-valued, right-continuous, adapted process defined on
some filtered probability space (Ω′,F ′, (F ′

t),P′) with P′[X ′
0 = x] = 1 such that (10.2)

is a martingale, for every f ∈ C2
c (D). Then P′ ◦X ′−1 = Px.

Proof. Combine Theorem 2.7 and [42, Theorem 4.1, Chapter 4]. �

10.3. Proof of Theorem 2.15. We proceed as in [81].

Lemma 10.3. Let (P(i)
x )x∈D ∈ PRM , for i = 1, 2, 3. Then

P(1)
x ∗ P(2)

ξ = P(3)
x+ξ, ∀x, ξ ∈ D, (10.3)

if and only if for all t = (t0, . . . , tN ) ∈ RN+1
+ and u = (u(0), . . . , u(N)) ∈ UN+1,

N ∈ N0, there exist ρ(i)(t,u) ∈ C and ψ(t,u) ∈ Cd such that ρ(1)(t,u)ρ(2)(t,u) =
ρ(3)(t,u) and

E(i)
x

[
e
∑N

k=0〈u
(k),Xtk

〉
]

= ρ(i)(t,u)e〈ψ(t,u),x〉, ∀x ∈ D, i = 1, 2, 3. (10.4)
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Proof. Notice that (10.3) holds if and only if, for all t, u and N ∈ N0 as above, we
have

g(1)(x)g(2)(ξ) = g(3)(x+ ξ), ∀x, ξ ∈ D, (10.5)

where g(i)(x) := E(i)
x [e

∑N
k=0〈u

(k),Xtk
〉]. From (10.5) it follows that g(1)(x)g(2)(0) =

g(1)(0)g(2)(x) = g(3)(x). Hence g(i)(0) = 0 for some i if and only if g(i) = 0
for all i, and (10.4) holds for ρ(i)(t,u) = 0. Now suppose g(i)(0) > 0 for all i.
Then g(i)(x)/g(i)(0) = g(3)(x)/(g(1)(0)g(2)(0)) =: g(x), for i = 1, 2. The function
g is measurable and satisfies the functional equation g(x)g(ξ) = g(x + ξ). Hence
there exists ρ′ ∈ C \ {0} and ψ(t,u) ∈ Cd such that g(x) = ρ′e〈ψ(t,u),x〉. Define
ρ(i)(t,u) := g(i)(0)ρ′, i = 1, 2, and ρ(3)(t,u) := g(1)(0)g(2)(0)ρ′, then (10.4) follows.
Since conversely (10.4) implies (10.5), the lemma is proved. �

Let (X, (Px)x∈D) be regular affine with parameters (a, α, b, β, c, γ,m, µ) and ex-
ponents φ(t, u) and ψ(t, u). Let k ∈ N. Then (a/k, α, b/k, β, c/k, γ,m/k, µ) are
admissible parameters, which induce a regular affine Markov process (X, (P(k)

x )x∈D)
with exponents φ′(t, u) = φ(t, u)/k and ψ′(t, u) = ψ(t, u), see Theorem 2.7. Now
let t, u and N as in Lemma 10.3. Without loss of generality we may assume
∆tl := tl − tl−1 > 0, for all l = 1, . . . , N . By the Markov property we have

Ex
[
e
∑N

l=0〈u
(l),Xtl

〉
]

= eφ(∆tN ,u
(N))Ex

[
e
∑N−1

l=0 〈u(l),Xtl
〉e〈ψ

(1)(t,u),XtN−1 〉
]

= · · · = e−φ(t,u)+〈ψ(N)(t,u),x〉,

where we have defined inductively

ψ(0)(t,u) := uN ,

ψ(l+1)(t,u) := ψ(∆tN−l, ψ(l)(t,u)) + uN−l, l = 0, . . . , N − 1,

φ(t,u) :=
N∑
l=1

φ(∆tl, ψ(l)(t,u)).

Similarly, we obtain E(k)
x [e

∑N
l=0〈u

(l),Xtl
〉] = eφ

′(t,u)+〈ψ(N)(t,u),x〉, with φ′(t,u) =
φ(t,u)/k. Now Lemma 10.3 yields (2.25).

Conversely, let (Px)x∈D be infinitely decomposable. By definition, we have
(Px)x∈D ∈ PRM , and Px ◦ X−1

t is an infinitely divisible (sub-stochastic) distri-
bution on D, for all (t, x) ∈ R+ × D. It is well known that the characteristic
function of an infinitely divisible distribution on Rd has no (real) zeros, see e.g. [10,
Chapter 29]. Hence Ptfu(x) 6= 0, for all (t, u, x) ∈ R+ × ∂U ×D. Set N = 0. From
(10.4) we now obtain that (X, (Px)x∈D) is affine, and Theorem 2.15 is proved.

As an immediate consequence of Lemma 10.3 and the preceding proof we obtain
the announced additivity property of regular affine processes.

Corollary 10.4. Let (X, (P(i)
x )x∈D) be regular affine Markov processes with param-

eters (a(i), α, b(i), β, c(i), γ,m(i), µ), for i = 1, 2. Then

(a(1) + a(2), α, b(1) + b(2), β, c(1) + c(2), γ,m(1) +m(2), µ)

are admissible parameters generating a regular affine Markov process (X, (P(3)
x )x∈D)

such that (10.3) holds.
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11. Discounting

For the entire section we suppose that X is conservative regular affine with param-
eters (a, α, b, β, 0, 0,m, µ) (we recall that Proposition 9.1 yields c = 0 and γ = 0).
We shall investigate the behavior of X under a particular transformation that is in-
evitable for financal applications: discounting. Let ` ∈ R, λ = (λY , λZ) ∈ Rm×Rn
and define the affine function L(x) := `+ 〈λ, x〉 on Rd. In many applications L(X)
is a model for the short rates. The price of a claim of the form f(Xt), where f ∈ bD,
is given by the expectation

Qtf(x) := Ex
[
e−

∫ t
0 L(Xs) ds f(Xt)

]
. (11.1)

Suppose that, for fixed x ∈ D and t ∈ R+, we have Ex[e−
∫ t
0 L(Xs) ds] < ∞. Then

Rd 3 q 7→ Qtfiq(x) is the characteristic function of Xt with respect to the bounded
measure e−

∫ t
0 L(Xs) ds Px. Hence if one knows Qtfu(x) for all u ∈ ∂U , the integral

(11.1) can be (explicitly or numerically) calculated via Fourier inversion.
Depending on whether L is nonnegative on D or not there are two approaches

for the calculation of Qtfu(x). The first one is based on an analytic version of
the Feynman–Kac formula. The second one uses martingale methods and is more
general. But it requires an enlargement of the state space and an analytic exten-
sion of the exponents φ′(t, ·) and ψ′(t, ·) of some (d+ 1)-dimensional regular affine
process X ′.

11.1. The Feynman–Kac Formula. Suppose L(x) ≥ 0 for all x ∈ D. This is
equivalent to ` ∈ R+ and λ = (λY , 0) ∈ Rm+ ×{0}. The function L induces a closed
linear operator L on bD with D(L) = {f ∈ bD | Lf ∈ bD} by Lf(x) := L(x)f(x).

Proposition 11.1. The family (Qt)t∈R+ forms a regular affine semigroup with
infinitesimal generator

Bf = Af − Lf, f ∈ C2
c (D).

The corresponding admissible parameters are (a, α, b, β, `, λ,m, µ).

Proof. Define the shift operators θt : Ω → Ω by θt(ω)(s) = ω(t + s). Then by the
Markov property of X,

Qt+sf(x) = Ex
[
e−

∫ t+s
0 L(Xr) dr f(Xt+s)

]
= Ex

[
e−

∫ t
0 L(Xr) dr Ex

[(
e−

∫ s
0 L(Xr) drf(Xs)

)
◦ θt | Ft

]]
= Ex

[
e−

∫ t
0 L(Xr) dr Qsf(Xt)

]
= QtQsf(x), ∀f ∈ bD.

Since Q0f = f and 0 ≤ Qt1 ≤ 1, we conclude that (Qt) is a positive contraction
semigroup on bD.

By the right-continuity of X it follows from (11.1) that (t, x) 7→ Qtf(x) is mea-
surable on R+ ×D. Hence, for every q > 0, the resolvent of (Qt),

RLq g(x) :=
∫

R+

e−qtQtg(x) dt,

is well defined bounded operator from bD into bD. Denote by B0 the set of elements
h ∈ bD with limt→0Qth = h in bD. It is well known that RLq bD ⊂ B0, and
RLq : B0 → D(B) is one-to-one with (RLq )−1 = qI −B, where we consider B a priori
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as the infinitesimal generator of the semigroup (Qt) acting on bD. We denote the
resolvent of the Feller semigroup (Pt) by Rq. We claim that

Rqg = RLq (g + L(Rqg)) , (11.2)

for all g ∈ C0(D) with Rqg ∈ D(L). Indeed, since Rq is a positive operator we
may assume g ≥ 0. Using Tonelli’s theorem and following [75, Section III.19], we
calculate

Rqg(x)−RLq g(x) = Ex

[∫
R+

e−qtg(Xt)
(
1− e−

∫ t
0 L(Xr) dr

)
dt

]

= Ex

[∫
R+

e−qtg(Xt)
(∫ t

0

L(Xs)e−
∫ s
0 L(Xr) dr ds

)
dt

]

= Ex

[∫
R+

e−
∫ s
0 L(Xr) drL(Xs)

(∫
R+

e−q(t+s)g(Xt+s) dt

)
ds

]

= Ex

[∫
R+

e−qse−
∫ s
0 L(Xr) drL(Xs)

(∫
R+

e−qtPtg(Xs) dt

)
ds

]

= Ex

[∫
R+

e−qse−
∫ s
0 L(Xr) drL(Rqg)(Xs) ds

]
= RLq L(Rqq)(x),

whence (11.2).
Let f ∈ C2

c (D). There exists a unique g ∈ C0(D) with Rqg = f , in fact
g = (qI −A)f . From (11.2) we obtain

f = RLq (g + Lf). (11.3)

Hence C2
c (D) ⊂ B0. But C2

c (D) is dense in C0(D) and B0 closed in bD, hence
C0(D) ⊂ B0. Since g and Lf are in C0(D), we infer from (11.3) that C2

c (D) ⊂
RLq C0(D) ⊂ D(B). Moreover, by (11.3) again, (qI−B)f = g+Lf = (qI−A)f+Lf .
Whence

B = A− L, on C2
c (D), (11.4)

and Proposition 8.2 yields the assertion. �

11.2. Enlargement of the State Space. The preceding approach requires non-
negativity of L. But there is a large literature on affine term structures for which the
short rate is not necessarily nonnegative. See for example [86] and [31]. We shall
provide a different approach using the martingale argument from Theorem 2.12.
Let L be as at the beginning of Section 11. For r ∈ R write

Rrt := r +
∫ t

0

L(Xs) ds.

It can be shown that (X,Rr) is a Markov process on (Ω,F , (Ft),Px), for every x ∈ D
and r ∈ R. In fact, we enlarge the state spaceD ; D×R and U ; U×iR, and write
accordingly (x, r) = (y, z, r), (ξ, ρ) = (η, ζ, ρ) ∈ D×R and (u, q) = (v, w, q) ∈ U×iR.
Let X ′ = (Y ′, Z ′, R′) be the regular affine process with state space D×R given by



AFFINE PROCESSES AND APPLICATIONS IN FINANCE 45

the admissible parameters

a′ =
(
a 0
0 0

)
, α′i =

(
αi 0
0 0

)
, i ∈ I,

b′ = (b, `), β′ =
(
β 0
λ 0

)
,

c′ = c = 0, γ′ = γ = 0,

m′(dξ, dρ) = m(dξ)× δ0(dρ), µ′i(dξ, dρ) = µi(dξ)× δ0(dρ), i ∈ I.
The existence of X ′ is guaranteed by Theorem 2.7. We let X ′ be defined on the
canonical space (Ω′,F ′, (F ′

t), (P′(x,r))(x,r)∈D×R), as described in Section 1. The cor-

responding mappings F ′ and R′ = (R′Y , R′Z , R′R) satisfy

F ′(u, q) = F (u) + `q

R′
Y(u, q) = RY(u) + λYq,

R′
Z(u, q) = RZ(u) + λZq,

R′
R(u, q) = 0,

see (2.16), (2.17) and (5.3). Let φ′ and ψ′ = (ψ′Y , ψ′Z , ψ′R) be the solution of the
corresponding generalized Riccati equations (6.1)–(6.2). The variation of constants
formula yields

ψ′
Z(t, u, q) = eβ

Z tw + q

∫ t

0

eβ
Z(t−s)λZ ds, (11.5)

and clearly ψ′
R(t, u, q) = q. The dependence of φ′(t, u, q) and ψ′

Y(t, u, q) on q is
more implicit. In fact,

φ′(t, u, q) =
∫ t

0

F
(
ψ′
Y(s, u, q), ψ′Z(s, u, q)

)
ds+ t`q, (11.6)

ψ′
Y(t, u, q) =

∫ t

0

RY
(
ψ′
Y(s, u, q), ψ′Z(s, u, q)

)
ds+ tλYq. (11.7)

Proposition 11.2. Let (x, r) ∈ D × R. We have Px ◦ (X,Rr)−1 = P′(x,r), and in
particular,

Ex
[
eqR

r
t fu(Xt)

]
= E′(x,r)

[
eqR

′
tfu(Y ′

t , Z
′
t)
]

= eφ
′(t,u,q)+〈ψ′Y(t,u,q),y〉+〈ψ′Z(t,u,q),z〉+qr,

(11.8)

for all (t, u, q) ∈ R+ × U × iR.

Proof. First notice that the restriction A′] of the infinitesimal generator A′ of X ′ on
C2
c (D×R) is A′]f(x, r) = A]f(x, r)+L(x)∂rf(x, r), see (2.12). On the other hand,

the process X ′′ = (X,Rr) is a D×R-valued semimartingale on (Ω,F , (Ft),Px) with
characteristics (B′′, C ′′, ν′′) given by

B′′
t = (Bt, Rt)

C ′′t =
(
Ct 0
0 0

)
ν′′(dt, dξ, dρ) = ν(dt, dξ)× δ0(dρ).

Now Theorem 2.12 yields the assertion. �
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In view of (11.1) we have to ask whether (11.8) has a meaning for q = −1.
Theorem 2.16.ii) provides conditions which justify an extension of equality (11.8)
for q = −1. This conditions have to be checked from case to case, using Lemmas 5.3
and 6.5. We do not intend to give further general results in this direction but refer
to a forthcoming paper in which we proceed by means of explicit examples.

We end this section by giving (implicit) conditions which are equivalent to the
existence of a continuous extension of φ′(t, ·) and ψ′(t, ·) in (11.8). If

E′(x,0)
[
e−R

′
t

]
<∞, ∀x ∈ D, (11.9)

then Qtfu(x) = E′(x,0)[e
−R′tfu(Y ′

t , Z
′
t)] is well defined. Condition (11.9) holds true

if, for instance, λY ∈ Rm+ and λZ = 0. Indeed, if in addition ` ∈ R+, we are
back to the situation from Section 11.1. It is easy to see that then φ′(t, u,−1)
and (ψ′Y(t, u,−1), ψ′Z(t, u,−1)), well-defined solutions of (11.5)–(11.7) for q =
−1, are the exponents which correspond to the regular affine semigroup (Qt) from
Proposition 11.1.

In general, Lemma 3.2 tells us the following. Let t ∈ R+. Suppose (11.9) is
satisfied and

E′(0,0)
[
e−sR

′
tfu(Y ′

t , Z
′
t)
]
6= 0, ∀(u, s) ∈ U × [0, 1].

Then there exists a unique continuous extension of φ′(t, ·) and ψ′(t, ·) on U ′ :=
U×(iR∪ [−1, 0]) such that (11.8) holds for all (x, r, u, q) ∈ D×R×U ′, in particular
for q = −1 (notice that E′(x,r)[e

−R′t ] = e−rE′(x,0)[e
−R′t ]).

For the price of a bond (f ≡ 1 in (11.1), see Section 13.1) we then have

Qt1(x) = eA(t)+〈B(t),x〉, (11.10)

where A(t) := φ′(t, 0,−1), B(t) := (ψ′Y(t, 0,−1), ψ′Z(t, 0,−1)), and we have set
r = 0, see (11.8).

12. The Choice of the State Space

We have, throughout, assumed that the state space D is Rm+ × Rn. Among
other reasons for this choice, it allows for a unified treatment of CBI and OU
type processes. We shall see in Section 13 that this state space covers essentially
all applications appearing in the finance literature. Indeed, in modeling the term
structure of interest rates with affine processes that are diffusions, Dai and Singleton
[31] propose Rm+ × Rn as the natural state space to consider.

In this section, we briefly analyze whether this state space for an affine process
is actually canonical. We therefore denote by D an a priori arbitrary subset of Rd,
and start by extending Definition 2.1 of an affine process to this setting.

Definition 12.1. Let D be an arbitrary subset of Rd and (X, (Px)x∈D) the canon-
ical realization of a time-homogeneous Markov process with state space D. We
call this process affine if, for each t ≥ 0, and u ∈ Rd, there is an affine function
x 7→ h(t, u)(x), defined for x ∈ D, such that

Ex[ei〈u,Xt〉] = eh(t,u)(x) (12.1)

For the case of d = m + n and D = Rm+ × Rn, the above definition is merely a
reformulation of Definition 2.1.
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Slightly more generally, let T : Rd → Rd be an affine isomorphism, that is,
T (x) = x0 + S(x), where x0 ∈ Rd and S is a linear isomorphism of Rd onto itself,
and let D = T (Rm+ × Rn). It is rather obvious that a time-homogeneous Markov
process X on D is affine, if and only if T−1(X) is affine on the state space Rm+×Rn.
Hence the above analysis carries over verbatim to images D = T (Rm+ × Rn) of the
canonical state space Rm+ × Rn under an affine isomorphism T . By a convenient
rotation, for instance, we obtain an affine process with non-diagonal diffusion matrix
for the CBI part, see (2.27). Or, by a translation, we can construct an affine term
structure model with negative short rates which are bounded from below, etc.

12.1. Degenerate Examples. Now, we pass to state spaces of a different form
than the image under an affine isomorphism of Rm+ × Rn. We begin with some
relatively easy and degenerate examples.

Example 12.2. Let (X, (Px)x∈Rd) be the deterministic process

pt(x, dξ) = δ(e−t||x||x), for x ∈ Rd, t ≥ 0,

which simply describes a homogeneous radial flow towards zero on Rd. The infini-
tesimal generator A of the process X is given by

Af = −
d∑
i=1

xi
∂f

∂xi
.

This process is affine on Rd, as we have

Ex[ei〈u,Xt〉] = ei〈u,e
−t||x||x〉 = eh(t,u)(x).

In this—rather trivial—example, the state space D = Rd is, of course, not
unique. In fact, each D ⊆ Rd that is star-shaped around the origin is invariant
under X, and therefore X induces a Markov process on D. Clearly, for each such
set D, the induced process is still affine on D. What is slightly less obvious is that,
if D affinely spans Rd, the process (X, (Px)x∈Rd) is determined already (as an affine
Markov process) by its restriction to D. This fact is isolated in the subsequent
lemma.

Lemma 12.3. Let D1, D2 be subsets of Rd, D1 ⊆ D2, and suppose that D1 affinely
spans Rd. Let (X, (Px)x∈D2) be an affine time-homogeneous Markov process on D2,
so that D1 is invariant under X. Then the affine Markov process (X, (Px)x∈D2) is
already determined by its restriction to D1, that is, by the family (Px)x∈D1 .

Proof. If suffices to remark that an affine function x 7→ h(t, u)(x) defined on Rd,
is already specified by its values on a subset D1 that affinely spans Rd. This
determines the values Ex[ei〈u,Xt〉], for x ∈ D2, t ≥ 0 and u ∈ Rd, which in turn
determines the time-homogeneous Markov process (X, (Px)x∈D2). �

We now pass to an example of a Markov process X whose “maximal domain”
D ⊆ R3 is not of the form Rm+ × Rn.

Example 12.4. Let d = 3, D = [0, 1]× R2, and define the infinitesimal generator
A by

Af(x1, x2, x3) = −x1
∂f

∂x1
+ x1

∂2f

∂x2
2

+ (1− x1)
∂2f

∂x2
3

,

defined for f ∈ C∞c (D).
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The corresponding time-homogeneous Markov process X is most easily described
in prose, as follows. In the first coordinate x1, this process is simply a determin-
istic flow towards the origin, as in Example 12.2 above. In the second and third
coordinate, the process is a diffusion with zero drift, and with volatility equal to x1

and (1− x1), respectively.
It is straightforward to check that A well-defines an affine Markov process X on

D. The point of the above example is that the set D is the maximal domain on
which X may be defined. Indeed, the volatility of the second and third coordinate
of X must clearly be non-negative, which forces x1 to be in [0, 1]. This can also
be verified by calculating explicitly the characteristic functions of the process X, a
task left to the energetic reader (compare the calculus in the subsequent example
below).

12.2. Non-Degenerate Example. The above examples are somewhat artificial,
as they have, at least in one coordinate, purely deterministic behavior. The next
example does not share this feature.

Let (Wt)t≥0 denote standard Brownian motion, and define the R2-valued process
(X(0,0)

t )t≥0 = (Y (0,0)
t , Z

(0,0)
t )t≥0, starting at X(0,0)

0 = (0, 0), by

X
(0,0)
t = (W 2

t ,Wt), t ≥ 0.

This process satisfies the stochastic differential equation

dYt = 2Zt dWt + dt

dZt = dWt

and takes its values in the parabola P = {(z2, z) : z ∈ R}.
Obviously (X(0,0)

t )t≥0 is a time-homogeneous Markov process, and we may cal-
culate the associated characteristic function

E(0,0)[ei〈u,Xt〉] = E[ei(vW
2
t +wWt)] =

1√
1− 2ivt

e
−tw2

2(1−2ivt) , u = (v, w) ∈ R2.

More generally, fixing a starting point (z2, z) ∈ P , we obtain for

(X(z2,z)
t )t≥0 = ((Wt + z)2, (Wt + z))t≥0

the characteristic function

E(z2,z)[ei〈u,Xt〉] = E[ei(v(Wt+z)
2+w(Wt+z))]

=
1√

1− 2ivt
e

1
2(1−2ivt) (−tw

2+2ivz2+2iwz). (12.2)

Now, one makes the crucial observation that the last expression is exponential-affine
in the variables (y, z) = (z2, z), as (y, z) ranges through P . In other words, the
process (X, (Px)x∈P ) is affine.

What is the maximal domain D ⊆ R2, to which this affine Markov process can
be extended?

We know from Lemma 12.3 that, if such an extension to a set D ⊇ P is possible,
then it is uniquely determined, and, for x = (y, z) ∈ D, we necessarily have

E(y,z)

[
ei〈u,Xt〉

]
=

1√
1− 2ivt

e
1

2(1−2ivt) (−tw
2+2ivy+2iwz) (12.3)

=: eh(t,u)(y,z).
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If y < z2, then one verifies that—at least for t > 0 sufficiently small—the
expression on the righthand side of (12.3) is not the characteristic function of a
probability distribution on R2. Indeed, letting u = ( 1

2 ,−z) we may estimate

|eh(t,u)(y,z)|2 =
1√

1 + t2
exp

[
− t

1 + t2
(
y − z2

)]
= 1− (y − z2)t+O(t2),

which is strictly bigger than 1, for t > 0 small enough. Hence, the process X
cannot have a state space extending below the parabola P . The maximal remaining
candidate for an extension is D = {(y, z) : y ≥ z2}, that is, the epigraph of the
parabola P .

We shall now show that X may indeed be extended to D. In order to do so,
let (Bt)t≥0 denote another standard Brownian motion, independent of (Wt)t≥0,
and define the R+-valued Feller diffusion process (Ft)t≥0 (which is just the Bessel-
squared process of dimension zero in the terminology of [74]) by

dFt = 2
√
Ft dBt.

The characteristic function of Ft, starting at F0 = f ≥ 0, is given by

Ef [eivFt ] = e
ivf

1−2ivt , v ∈ R. (12.4)

After this preparation, we define theD-valued processX(y,z) starting atX(y,z)
0 =

(y, z) ∈ D in the following way. The point (y, z) ∈ D may be uniquely written as
(y, z) = (z2 + f, z), where f ≥ 0. We define (X(y,z)

t )t≥0 = (Y (y,z)
t , Z

(y,z)
t )t≥0 by

Y
(y,z)
t = (Wt + z)2 + F

(f)
t , (12.5)

Z
(y,z)
t = (Wt + z).

Calculating the characteristic function of X(y,z)
t , we obtain from (12.4), (12.2), and

the independence of (Ft)t≥0 and (Wt)t≥0, that

E(y,z)[ei〈u,Xt〉] =
1√

1− 2ivt
e

1
2(1−2ivt) (−tw

2+2ivz2+2iwz+2ivf),

which is the desired expression (12.3).
Hence, (12.5) defines an affine Markov process with maximal state space D =

{(y, z) : y ≥ z2}, extending the process (12.2) from P to D. This affine process
obeys the stochastic differential equation

dYt = 2Zt dWt + 2
√
Yt − Z2

t dBt + dt (12.6)

dZt = dWt.

The coefficient matrix of the diffusion term

σ(y, z) =
(

2z 2
√
y − z2

1 0

)
satisfies

σ(y, z)σT (y, z) =
(

2z 2
√
y − z2

1 0

)(
2z 1

2
√
y − z2 0

)
=
(

4y 2z
2z 1

)
,
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so that σ(y, z)σT (y, z) indeed is an affine function in (y, z) ∈ R2. One also notes
that σ(y, z)σT (y, z) is non-negative definite if and only if y ≥ z2, that is, (y, z) ∈ D.

Summing up, we have exhibited a diffusion process, driven by a two-dimensional
Brownian motion via (12.6), which is an affine Markov process with maximal state
space D = {(y, z) : y ≥ z2}. This shows that there are non-trivial situations in
which the natural domain of an affine process is not of the form Rm+ ×Rn. A more
systematic investigation of this phenomenon is left to future research.

We end this section by formulating a rather bold conjecture. For diffusion pro-
cesses in R2 (or, maybe, even in Rd, for d ≥ 3) this last example is “essentially” the
only situation of an affine Markov process whose maximal state space is not (up to
the image an affine isomorphism) of the form Rm+ ×Rn. We are deliberately vague
about the meaning of the word “essentially.” What we have in mind is excluding
counter-examples of a trivial kind, as considered in Examples 12.2 and 12.4 above.

13. Financial Applications

Several strands of financial modeling have made extensive use of the special
properties of affine processes, both for their tractability and for their flexibility in
capturing certain stochastic properties that are apparent in many financial markets,
such as jumps and stochastic volatility in various forms. In addition to applications
summarized below regarding the valuation of financial assets in settings of affine
processes, recent progress [17, 22, 65, 66, 78, 89] in the modeling of optimal dynamic
portfolio and consumption choice has exploited the special structure of controlled
affine state-process models.

We fix a conservative regular affine process X with semigroup (Pt), as in Sec-
tion 2, and a “discounting” semigroup (Qt)t∈R+ based, as in Section 11, on a short-
rate process L(X). We shall view Qtf(Xs) as the price at time s of a financial asset
paying the amount f(Xs+t) at time s+ t. This implies a particular “risk-neutral”
interpretation ([52, 32]) of the semi-group (Pt) that we shall not detail here. We
emphasize, however, that statistical analysis of time series of X, or measurement
of the risk of changes in market values of financial assets, would be based on the
distribution of X under an “actual” probability measure that is normally distinct
from that associated with the “risk-neutral” semigroup (Pt).

13.1. The Term Structure of Interest Rates. A central object of study in
finance is the term structure t 7→ Qt1 of prices of “bonds,” assets that pay 1 unit of
account at a given maturity t. (From these, the prices of bonds that make payments
at multiple dates, and other “fixed-income” securities, can be built up.)

Early prominent models of interest-rate behavior were based on such simple
models of the short rate L(X) as the Vasicek (Gaussian Ornstein-Uhlenbeck) pro-
cess [86], or the Cox-Ingersoll-Ross process [30], which is the continuous branching
diffusion of Feller [43]. Both of these short-rate processes are of course themselves
affine (L(x) = x), as are many variants [20, 23, 30, 49, 57, 58, 71, 86, 73].

In general, because 1 = e〈0,x〉, the bond price

Qt1(x) = eA(t)+〈B(t),x〉 (13.1)

is easily calculated from the generalized Riccati equations for a broad range of
affine processes (see (11.10)). Indeed, given the desire to model interest rates with
ever increasing realism, various higher-dimensional (d > 1) variants have appeared
[5, 6, 11, 14, 23, 30, 31, 63, 68], and efforts [13, 18, 31, 39, 46, 45], including
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this paper, have been directed to the classification and unification of affine term-
structure models. Beyond the scope of our analysis here, there are in fact “infinite-
dimensional affine term-structure models” [51, 26, 28].

Empirical analyses of interest-rate behavior based on the properties of affine
models include [19, 25, 31, 34, 36, 50, 54, 64, 73, 87], with a related analysis of
foreign-currency forwards in [2]. Statistical methods developed specifically for the
analysis of time-series data from affine models have been based on approximation
of the likelihood function [67, 40], on generalized method of moments [48] or on
spectral properties, making use of the easily calculated complex moments of affine
processes [60, 21, 82].

13.2. Default Risk. In order to model the timing of default of financial contracts,
we suppose that N is a non-explosive counting process [16] (defined on an enlarged
probability space) that is doubly stochastic driven by X, with intensity {Λ(Xt−) :
t ≥ 0}, where x 7→ Λ(x) ≥ 0 is affine. That is, conditional on X, N is Poisson with
time-varying intensity {Λ(Xt−) : t ≥ 0}. In fact, (X,N) is an affine process, and
one can enlarge the augmented filtration (Ft) of X to that of (X,N). The default
time τ is defined as the first jump time of N .

From the doubly-stochastic property of N , the survival probability is

Px(τ > t) = Ex
[
e−

∫ t
0 Λ(Xs) ds

]
,

which is of the same form as the bond-price calculation (13.1), although with a
different effective discount rate. The popularity of affine models of interest rates
has thus led to the common application of affine processes to default modeling, as
in [35], [41], and [62].

A defaultable bond with maturity t is a financial asset paying 1{τ>t} at t. Ap-
plying the doubly-stochastic property, Lando [62] showed that the defaultable bond
has a price of

Ex
[
e−

∫ t
0 L(Xs) ds 1{τ>t}

]
= Ex

[
e−

∫ t
0 (L(Xs)+Λ(Xs)) ds

]
.

Because x 7→ L(x) + Λ(x) is affine, the defaultable bond price is again of the
tractable form of the default-free bond price (13.1), with new coefficients. Various
approaches [62, 59, 41, 70] to modeling non-zero recovery at default have been
adopted.

For a model of the default times τ1, . . . , τk of k > 1 different financial contracts,
an approach is to suppose that τi is the first jump time of a non-explosive count-
ing process Ni with intensity {Λi(Xt−) : t ≥ 0}, for affine x 7→ Λi(x) ≥ 0, where
N1, . . . , Nk are doubly stochastic driven by X, and moreover are independent con-
ditional on X. (Again, (X,N1, . . . , Nk) may be viewed as an affine process.) The
doubly-stochastic property implies that, for any sequence of times t1, t2, . . . , tk in
R+ that is (without loss of generality) increasing,

Px(τ1 ≥ t1, . . . , τk ≥ tk) = Ex
[
e−

∫ tk
0 Λ(Xs,s) ds

]
,

where

Λ(x, s) =
∑

{i : s≤ti}

Λi(x).
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By the law of iterated expectations, the joint distribution of the default times is
given by

Px(τ1 ≥ t1, . . . , τk ≥ tk) = eφ0+〈ψ0,x〉, (13.2)
where φi and ψi are defined inductively by φk = 0, ψk = 0, and

eφi+〈ψi,x〉 = Ex
[
e−

∫ ti+1−ti
0 Λ(Xt,ti+t) dt eφi+1+〈ψi+1,Xti+1−ti

〉
]
,

taking t0 = 0, and using the fact that x 7→ Λ(x, s) ≥ 0 is affine with constant
coefficients for s between ti and ti+1. Because the coefficients φi and ψi are easily
calculated recursively from the associated generalized Riccati equations, one can
implement (13.2) for the calculation of the probability distribution of the total
default losses on a portfolio of financial contracts, as in [38].

Similarly, the “first default time” τ∗ = inf{τ1, . . . , τk}, which is the basis of
certain financial contracts ([37]), satisfies

Px(τ∗ > t) = Ex
[
e−

∫ t
0 Λ∗(Xs) ds

]
,

where Λ∗(x) =
∑k
i=1 Λi(x), again of the form of (13.1).

13.3. Option Pricing. We consider an option that conveys the opportunity, but
not the obligation, to sell an underlying asset at time t for some fixed price of K > 0
in R. This is known as a “put” option; the corresponding “call” option to buy the
asset may be treated similarly.

Suppose the price of the underlying asset at time t is of the form f(Xt), for some
non-negative f ∈ C(D). The option is rationally exercised if and only if f(Xt) ≤ K,
and so has the payoff g(Xt) = max(K − f(Xt), 0), and the initial price

Qtg(x) = Ex
[
e−

∫ t
0 L(Xs) dsg(Xt)

]
= KEx

[
e−

∫ t
0 L(Xs) ds1{f(Xt)≤K}

]
−Ex

[
e−

∫ t
0 L(Xs) dsf(Xt)1{f(Xt)≤K}

]
.

One can exploit the affine modeling approach to computational advantage pro-
vided f(x) = ke〈b,x〉, for some constant k > 0 in R and some b in Rd, an example
of which is the bond price f(x) = eA(T−t)+〈B(T−t),x〉 of (13.1), as of time t, for a
maturity date T > t. In this case, both terms in the calculation above of Qtg(x)
are of the form

Ga,b(q) = Ex
[
e−

∫ t
0 L(Xs) dse〈a,Xt〉1{〈b,Xt〉≤q}

]
,

for some (a, b, q) ∈ Rd × Rd × R. (Here, q = logK − log k.) Because Ga,b( · ) is the
distribution function of 〈b,Xt〉 with respect to the measure e−

∫ t
0 L(Xs) dse〈a,Xt〉Px,

it is enough to be able to compute the transform

Ga,b(z) =
∫ +∞

−∞
eizq Ga,b(dq),

for then well-known Fourier-inversion methods can be used to compute Ga,b(q).
One can see, however, that

Ga,b(z) = Ex
[
e−

∫ t
0 L(Xs) dse〈a,Xt〉eiz〈b,Xt〉

]
= Ex

[
e−

∫ t
0 L(Xs) dsfu(Xt)

]
,
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where u = a + izb, and the generalized Riccati equations give the solution under
non-negativity of L(X), or under conditions described at the end of Section 11.

This is the Heston [55] approach to option pricing, building on earlier work of
Stein and Stein [84] that did not exploit the properties of affine processes. Heston’s
objective was to extend the Black-Scholes model [15], for which the underlying price
process is a geometric Brownian motion, to allow “stochastic volatility.” In [55],
the underlying asset price is eZt , where (Y,Z) is the affine process (m = n = 1)
defined by

dYt = (b1 − βYt) dt+ σ
√
Yt dW

(1)
t

dZt = b2 dt+
√
Yt (ρdW (1)

t +
√

1− ρ2dW
(2)
t ),

for real constants ρ ∈ (−1, 1), b1, σ ≥ 0 and b2, β, and where (W (1),W (2)) is a
standard Brownian motion in R2. The “stochastic volatility” process Y is constant
in the special Black-Scholes case of a geometric Brownian price process eZ . For
Heston’s model, the Fourier transform Ga,b( · ) is computed explicitly in [55].

A defaultable option may be likewise priced by replacing L(Xt) with L(Xt) +
Λ(Xt), where {Λ(Xt−) : t ≥ 0} determines the default intensity, as for defaultable
bond pricing.

Numerous affine generalizations [3, 4, 7, 8, 9, 24, 27, 40, 79, 80] of the Heston
model have been directed toward more realistic stochastic volatility and jump be-
havior. Pan [72] conducted a time-series analysis of the S-and-P 500 index data,
both the underlying returns as well as option prices, based on an affine jump-
diffusion model of returns. Special numerical methods for more general derivative-
asset pricing with affine processes have been based [83] on the Fourier inversion of
their characteristic functions.

Appendix A. On the Regularity of Characteristic Functions

Let N ∈ N and ν be a bounded measure on RN . Denote by

g(y) =
∫

RN

ei〈y,x〉 ν(dx), y ∈ RN ,

its characteristic function. To avoid unnecessary notational complications we in-
troduce the function

h(z) =
∫

RN

e〈z,x〉 ν(dx),

which is well defined if Re z ∈ V where

V :=
{
y ∈ RN |

∫
RN

e〈y,x〉 ν(dx) <∞
}
. (A.1)

Clearly, we have 0 ∈ V and g(y) = h(iy) on RN . We shall investigate the interplay
between the (marginal) moments of ν and the corresponding (partial) regularity of
g and h, respectively.

Lemma A.1. Let k ∈ N and 1 ≤ i ≤ N . If (∂yi)2kg(0) exists then∫
RN

(xi)
2k
ν(dx) <∞. (A.2)

On the other hand, if
∫

RN ‖x‖k ν(dx) <∞ then g ∈ Ck(RM ) and

∂yi1
· · · ∂yil

g(y) = il
∫

RN

xi1 · · ·xilei〈y,x〉 ν(dx),
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for all y ∈ RN , 1 ≤ i1, . . . , il ≤ N and 1 ≤ l ≤ k.

Proof. Let ei denote the i-th basis vector in RN . Observe that s 7→ g(sei) is
the characteristic function of the marginal measure νi(dt) on R given by νi(U) =∫

RN 1U (xi) ν(dx), U ⊂ R measurable. Now (∂s)2kg(sei)|s=0 = (∂yi)2kg(0), and the
assertion follows from [69, Theorem 2.3.1].

The second part of the lemma follows by dominated convergence. �

Lemma A.2. The set V , given in (A.1), is convex. Moreover, let V0 be an open
set in RN such that V0 ⊂ V . Then h is analytic on the open strip

S := {z ∈ CN | Re z ∈ V0}. (A.3)

Proof. Let a, b ∈ V . First, we show that sa ∈ V , for all s ∈ [0, 1]. Denote by
νa(dt) the image measure of ν on R by the mapping x 7→ 〈a, x〉. Then h(sa) =∫

R e
st νa(dt) <∞ for s = 0, 1, and hence for all s ∈ [0, 1], which is seen by decom-

position of the integral
∫

R =
∫
(−∞,0)

+
∫
[0,∞)

.
In general we write e〈a,x〉 = e〈a−b,x〉e〈b,x〉 and notice that ν′(dx) = e〈b,x〉ν(dx) is a

finite measure on RN . Hence it follows by the above argument that s(a−b)+b ∈ V ,
for all s ∈ [0, 1], whence V is convex.

Recall the fact that h, being continuous on S, is analytic on S if and only if, for
every 1 ≤ i ≤ N and z ∈ S, the function

hi,z(ζ) := h(z1, . . . , zi−1, ζ, zi+1, . . . , zN )

is analytic on Si(z) := {ζ ∈ C | Re (z1, . . . , zi−1, ζ, zi+1, . . . , zN ) ∈ V0}. This follows
from the Cauchy formula, see [33, Section IX.9]. By the definition of V we can write

hi,z(ζ) =
∫
Ri,−

eζxie〈zI(i),xI(i)〉 ν(dx) +
∫
Ri,+

eζxie〈zI(i),xI(i)〉 ν(dx), (A.4)

where Ri,− := {x ∈ RN | xi < 0}, Ri,+ := {x ∈ RN | xi ≥ 0} and I(i) :=
{1, . . . ,M}\{i}. Define ρi,−(z) := inf{t ∈ R | Re (z1, . . . , zi−1, t, zi+1, . . . , zN ) ∈ V }
and ρi,+(z) := sup{t ∈ R | Re (z1, . . . , zi−1, t, zi+1, . . . , zN ) ∈ V }. By assumption
we have −∞ ≤ ρi,− < ρi,+ ≤ ∞. By dominated convergence we obtain that the
two integrals in (A.4) are analytic on the half-planes {ζ ∈ C | Re ζ > ρi,−(z)}
and {ζ ∈ C | Re ζ < ρi,+(z)}, respectively. Hence hi,z is analytic on Si, and the
assertion follows. �

In general V does not contain an open set V0 in RN . The next two lemmas
provide sufficient conditions for the existence of such a V0. Let ρ = (ρ1, . . . , ρN ) ∈
RN++ and define the open polydisc in CN with center 0,

Pρ := {z ∈ CN | |zi| < ρi, i = 1, . . . , N}.

Lemma A.3. Suppose g(y) = G(iy) for all y ∈ Pρ ∩ RN , where G is an analytic
function on Pρ. Then Pρ ∩ RN ⊂ V , and h = G on Pρ.

Proof. Let t ∈ (0, 1). By assumption we have that g is analytic on Ptρ ∩ RN and,
by the Cauchy formula,

g(y) =
∑

i1,...,iN∈N0

ci1,...,iN y
i1
1 · · · yiNN , ∀y ∈ Ptρ ∩ RN ,
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where
∑
i1,...,iN∈N0

ci1,...,iN z
i1
1 · · · ziNN = G(iz) on Ptρ. This power series is absolutely

convergent on Ptρ. By Lemma A.1 we have

ci1,...,iN =
ii1+···+iN

i1! · · · iN !

∫
RN

xi11 · · ·x
iN
N ν(dx).

From the inequality xl2k−1 ≤ (xl2k + xl
2k−2)/2 we see that

T (y) :=
∑

i1,...,iN∈N0

di1,...,iN
∣∣yi11 · · · yiNN

∣∣ <∞, ∀y ∈ Ptρ,

where

di1,...,iN :=
1

i1! · · · iN !

∫
RN

∣∣xi11 · · ·xiNN ∣∣ ν(dx).
But

T (y) ≥
∑

i1,...,iN∈N0

∣∣yi11 · · · yiNN
∣∣

i1! · · · iN !

∫
K

∣∣xi11 · · ·xiNN ∣∣ ν(dx) =
∫
K

e
∑N

i=1 |yi||xi| ν(dx),

for every compact K ⊂ RN and y ∈ Ptρ ∩ RN . Therefore the integral∫
RN

e
∑N

i=1 |yi||xi| ν(dx)

is finite for all y ∈ Ptρ∩RN . Hence Ptρ∩RN ⊂ V , and since t ∈ (0, 1) was arbitrary,
Pρ ∩ RN ⊂ V . We conclude by Lemma A.2. �

An extension of the preceding considerations yields the following useful result.

Lemma A.4. Let U be an open convex neighbourhood of 0 in CN , and G an
analytic function on U . Suppose that g(y) = G(iy) for all iy ∈ U ∩ iRN . Then
U ∩ RN ⊂ V .

Proof. There exists an open polydisc Pρ in CN with center 0 such that Pρ ⊂ U . By
Lemma A.3, h = G on Pρ ∩RN ⊂ V . Now let a ∈ U ∩RN . Since U is open convex
there exists s0 > 1 such that sa ∈ U ∩ RN , for all s ∈ [0, s0], and the function
Ga(s) := G(sa) is analytic on (0, s0). As in the proof of Lemma A.2 let νa(dt)
be the image measure of ν by the mapping x 7→ 〈a, x〉. Then there exists s1 > 0
such that ha,+(s) :=

∫
[0,∞)

estνa(dt) <∞ for all s ∈ [0, s1], and ha,+ is analytic on
(0, s1). Now obviously ha,−(s) :=

∫
(−∞,0)

estνa(dt) is finite and analytic on R+. We
thus have ha,+ = Ga − ha,− on (0, s0 ∧ s1). By monotone convergence we conclude
that ha,+(s) must be finite for all s ∈ [0, s0], and thus a ∈ V . �

Convexity of U is in fact a too strong assumption for Lemma A.4. Its proof only
requires that U is open in CN and that U ∩ RN is star-shaped with respect to 0
(a ∈ U ∩ RN implies sa ∈ U ∩ RN , for all s ∈ [0, 1]). However, Lemma A.2 then
immediately yields that the convex hull, say V0, of U ∩RN lies in V , and G has an
analytic extension on the strip S (see (A.3)), which is a convex open neighbourhood
of 0 in CN .



56 D. DUFFIE, D. FILIPOVIĆ, AND W. SCHACHERMAYER
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