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Abstract. We study the infinite time ruin probability for an insurance company in the classical

Cramér-Lundberg model with finite exponential moments. The additional non-classical feature

is that the company is also allowed to invest in some stock market, modeled by geometric

Brownian motion. We obtain an exact analogue of the classical estimate for the ruin probability

without investment, i.e. an exponential inequality. The exponent is larger than the one obtained

without investment, the classical Lundberg adjustment coefficient, and thus one gets a sharper

bound on the ruin probability.

A surprising result is that the trading strategy yielding the optimal asymptotic decay of the

ruin probability simply consists in holding a fixed quantity (which can be explicitly calculated)

in the risky asset, independent of the current reserve. This result is in apparent contradiction

to the common believe that ‘rich’ companies should invest more in risky assets than ‘poor’ ones.

The reason for this seemingly paradoxical result is that the minimization of the ruin probability

is an extremely conservative optimization criterion, especially for ‘rich’ companies.

1. Introduction

Since 1903, when F. Lundberg [14] introduced a collective risk model based on a homogeneous

Poisson claims process, the estimation of ruin probabilities has been a central topic in risk theory.

It is known that, if the claim sizes have exponential moments, the ruin probability decreases

exponentially with the initial surplus; see for instance the books by Gerber [8] and Asmussen

[1]. If the claim sizes have heavier tails, there also exist numerous results in the literature (e.g.,

Embrechts and Veraverbeke [4]). In these models it is assumed that the insurance company

may invest the reserve in a riskless bond yielding zero interest.

It has only been recently that a more general question has been asked: If an insurer additionally

has the opportunity to invest in a risky asset (modeled, e.g., by geometric Brownian motion),

what is the minimal ruin probability she can obtain? In particular, can she do better than

keeping the funds in the bond? And if yes, how much can she do better?

S. Browne [2] investigated this problem, but under the assumption that the risk process fol-

lows a Brownian motion (the so called ‘diffusion approximation’). In this simpler setting, the

investment strategy which minimizes the ruin probability consists in holding a constant amount

of wealth in the risky asset, and the corresponding minimal ruin probability is given by an

exponential function.

Paulsen et al. ([16] and [15]) have investigated the question, but under the additional as-

sumption that all of the surplus is invested in the risky asset; likewise did Kalashnikov and

Norberg in [13]. Frovola, Kabanov and Pergamenshchikov [5] looked at the case where

a constant fraction of wealth is invested in the stock described by geometric Brownian motion.
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In all of these cases it was shown that, even if the claim size has exponential moments, the ruin

probability decreases only with some negative power of the initial reserve.

In [10] and [11], Hipp and Plum consider the general case and analyze the trading strategy

which is optimal with respect to the criterion of minimizing the ruin probability. They derive

the Hamilton-Jacobi-Bellman equation corresponding to the problem, prove the existence of a

solution and a verification theorem. Then they give explicit solutions for cases with exponential

claim size distribution and special parameter values (namely c = λ + a2/2b2, where c is the

premium rate, λ the intensity of the Poisson process underlying the number of claims, a the drift

and b the volatility of the geometric Brownian motion underlying the investment possibility).

It turns out that for these explicit solutions with exponentially distributed claims the minimal

ruin probability decreases exponentially.

In this paper we will consider the framework of a classical risk process, where the claims have

exponential moments. We investigate whether there are constants r̂ and C such that the prob-

ability of ruin Ψ(x), obtained by starting from an initial reserve x and subsequently investing

in an appropriate way, satisfies

Ψ(x) ≤ Ce−r̂x.(1)

Of course, there always is the possibility not to invest at all, resulting in an exponential bound

for the ruin probability Ψ(x) (with the so called Lundberg adjustment coefficient), under the

assumption of a positive safety loading. We calculate the optimal (i.e. largest) coefficient

r̂ such that (1) holds true; it turns out that r̂ is determined by a similar equation as the

Lundberg adjustment coefficient (see (28) below). The trading strategy that corresponds to

this optimal r̂ consists in holding a – properly chosen – constant amount of wealth in the risky

asset, independent of the current level of the reserve. We will show in Theorem 7 that this

constant strategy is asymptotically optimal, resp. asymptotically unique, in the sense that

every ‘asymptotically different’ Markovian strategy yields an exponentially worse decay of the

ruin probability.

What is the message of our results from an actuarial point of view? After some discussions with

H. Bühlmann, which are gratefully acknowledged, we attempt to make the following economic

interpretation: minimizing the ruin probability is an extremely conservative approach to the

insurance business. This is reflected by the - at least asymptotically - very conservative invest-

ment strategy of holding a constant amount of money in the risky asset. A more proper way to

deal with the probability of ruin in the presence of control variables (such as the investment in

a risky asset) apparently consists in imposing a certain threshold level on this probability while

optimizing with respect to other criteria, e.g., the expected value of discounted dividends. This

topic is left for future research.

Here is another remarkable fact, which follows from our analysis and bears practical relevance:

by adding some additional risk (namely the investment in the risky stock) to the basis risk of

the insurance business, it is possible to decrease the probability of ruin. In fact, this decrease is

quite substantial and leads to a different order of the exponential decay in terms of the initial

surplus. This stresses once more the importance of a proper asset-liability management of an

insurance company.

A complementary result about the asymptotic ruin probabilities for large claims can be found

in Gaier and Grandits [6].
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2. The Model

We model the risk process of an insurance company in the classical way (see, e.g., Gerber [7],

Asmussen [1]): the surplus process R is given by a Poisson process N = (N(t))t≥0 with intensity

λ > 0, and by a positive random variable X, independent of the process N , with distribution

function F in the following way

R(t, x) = x+ ct−

N(t)
∑

i=1

Xi,(2)

where x ≥ 0 is the initial reserve of the insurance company, c ∈ R is the (constant) premium

rate over time and Xi is an i.i.d. sequence of copies of X, modeling the size of ith claim incurred

by the insurer.

The classical model does not account for interest on the reserve: in modern terms this may be

expressed by saying that the insurance company may only invest in a bond with zero interest

rate. Now we deviate from the classical setting and assume that the company may also invest

in a stock or market index, described by geometric Brownian motion

dS(t) = S(t)(a dt+ b dW (t)),(3)

where a, b ∈ R are fixed constants and W is a standard Brownian motion independent of the

process R.

We will denote by F = (Ft)t≥0 the filtration generated by the processes R and S and use Et[ . ]

as a shorthand notation for the conditional expectation E[ . |Ft].

If at time t the insurer has wealth Y (t), and invests an amount K(t) of money in the stock and

the remaining reserve Y (t)−K(t) in the bond (which in the present model yields no interest),

her wealth process Y can be written as

Y (t, x,K) = x+ ct−

N(t)
∑

i=1

Xi + (
K

S
· S)(t)

= R(t, x) + (K ·Wa,b)(t),(4)

where Wa,b(t) denotes the generalized Wiener process Wa,b(t) = at + bW (t) with drift a and

standard deviation b and (K ·Wa,b) denotes the stochastic integral of the process K with respect

to the process Wa,b (see, e.g., Protter [17]).

We are interested in the infinite time ruin probability of the insurance company, defined by

Ψ(x,K) = P[Y (t, x,K) < 0, for some t ≥ 0],(5)

depending on the initial wealth x and the investment strategy K of the insurer. We further

define the time of ruin

τ(x,K) := inf{t : Y (t, x,K) < 0}.(6)

The set K of admissible strategies K is defined as

K := {K = (K(t))t≥0 : K is predictable and adapted to F

and P[
∫ t

0
K(s)2ds <∞] = 1 for all t ∈ [0,∞[}.(7)

Note that K ∈ K is necessary and sufficient for the stochastic integral (K ·Wa,b) w.r.t. the

generalized Wiener process appearing in (4) to exist.



4 J. GAIER, P. GRANDITS, AND W. SCHACHERMAYER

Furthermore we define

Ψ∗(x) = inf
K∈K

Ψ(x,K).(8)

If this infimum is attained for a certain strategy K∗, we will call this strategy an optimal strategy

with respect to the initial reserve x.

Denoting by h : R+ → R+ the moment generating function of the claim size X, shifted such

that h(0) = 0,

h(r) = E[erX ]− 1,(9)

we will make the classical assumption that there exists r∞ ∈ (0,∞] such that h(r) < ∞, for

r < r∞, and such that h(r) → ∞, for r ↑ r∞. The function h is increasing, convex, and

continuous on [0, r∞) (cf. Grandell [9]).

3. An Asymptotic Inequality

The classical Cramér-Lundberg model without investment possibility is, of course, a special case

of the model described in Section 2, namely letting a = b = 0. There, one usually assumes

that c > λE[X], because otherwise the ruin probability is simply equal to one. Under this

assumption, the ruin probability - defined by (5), which then is independent of the investment

strategy K - can be bounded from above by e−νx, where ν is the positive solution of the equation

λh(r) = cr.(10)

This is the famous Lundberg inequality, the exponent ν is called Lundberg or adjustment coeffi-

cient (Gerber [8], Asmussen [1] or Grandell [9]).

The main result of this paper is summarized in the following theorem. It will be a consequence

of Theorem 3.

Theorem 1 (Main Theorem). For the model described in Section 2, assume that b 6= 0. Then

the minimal ruin probability Ψ∗(x) of an insurer, investing in a stock market, can be bounded

from above by

Ψ∗(x) ≤ e−r̂x,(11)

where 0 < r̂ < r∞ is the positive solution of the equation (compare Figure 1)

λh(r) = cr +
a2

2b2
.(12)

If E[X] < c/λ, i.e., if the Lundberg coefficient ν > 0 exists, we have that r̂ > ν, if a 6= 0, so

that one obtains a sharper bound for Ψ∗(x). Dropping the assumption E[X] < c/λ, for a 6= 0,

we still obtain r̂ > 0, i.e. an exponential decay of the minimal ruin probability.

For later use, we introduce the following process, for fixed numbers x, r ∈ R+, and a fixed

admissible strategy K ∈ K,

M(t, x,K, r) := e−rY (t,x,K).(13)

This process is already familiar from Gerber’s approach to risk theory via martingale inequalities

(Gerber [7]).

Lemma 2. Let x > 0, and a 6= 0, b 6= 0. There exists a unique 0 < r̂ < r∞ satisfying the

equation

λh(r̂) =
a2

2b2
+ cr̂.(14)
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For this r̂ and the constant process K̂(t) ≡ a/r̂b2, the process M(t, x, K̂, r̂) is a martingale w.r.t.

the filtration F.

Proof. The existence and uniqueness of r̂ are easy consequences of the properties of h (cf. Figure

1).

If we define f : R× [0, r∞)→ R

f(K, r) := λh(r)− (Ka+ c)r +
1

2
K2b2r2,(15)

then it can be easily checked that f(K̂, r̂) = 0. Now, in order to show that the process

M(t, x, K̂, r̂) is a martingale w.r.t. F, we proceed as follows (see, e.g., the book by Asmussen

[1]): for arbitrary t ≥ 0,

E[M(t, 0, K̂, r̂)] = E[e−r̂(ct−
∑N(t)
i=1 Xi+K̂Wa,b(t))]

= e−r̂(c+K̂a)tE[er̂
∑N(t)
i=1 Xi ]E[e−r̂K̂bW (t)]

= e−r̂(c+K̂a)teh(r̂)λte(r̂
2K̂2b2/2)t

= ef(K̂,r̂)t

= 1.(16)

Since Y (t, x, K̂) has stationary independent increments, we obtain, for 0 ≤ t ≤ T ,

Et[M(T, x, K̂, r̂)] = Et[e
−r̂Y (T,x,K̂)]

= e−r̂Y (t,x,K̂)Et[e
−r̂(Y (T,x,K̂)−Y (t,x,K̂))]

= e−r̂Y (t,x,K̂)E[e−r̂(Y (T−t,x,K̂)−Y (0,x,K̂))]

= e−r̂Y (t,x,K̂)E[e−r̂Y (T−t,0,K̂)]

= e−r̂Y (t,x,K̂)

= M(t, x, K̂, r̂)(17)

and therefore M(t, x, K̂, r̂) is a martingale w.r.t. the filtration F. ¤

Remark. The above argument also shows that for each r ∈ [0, r̂), there exist two constant

processes K1,2(r) ∈ K such that the process M(t, x,K1,2(r), r) is a martingale. The values

K1,2(r) are given in the following way

K1,2(r) =
a

b2r
±
√

∆(r),(18)

where

∆(r) :=
2

b2r2

(

a2

2b2
+ cr − λh(r)

)

≥ 0 for r ≤ r̂.(19)

Note that for r = r̂, we obtain ∆(r̂) = 0, and therefore K1(r̂) = K2(r̂) = K̂.

From now on we shall always consider the processes M and Y , stopped at the time of ruin, so

we define

M̃(t, x,K, r) :=M(t ∧ τ(x,K), x,K, r)(20)

and

Ỹ (t, x,K) := Y (t ∧ τ(x,K), x,K),(21)

where we use the standard notation t ∧ τ(x,K) := min(t, τ(x,K)).
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Theorem 3. Let a 6= 0, b 6= 0. For the constant investment strategy K̂(t) ≡ a/r̂b2, the ruin

probability can be bounded from above by (for all x ∈ R+)

Ψ(x, K̂) ≤ e−r̂x.(22)

Proof. From Lemma 2 we know that M(t, x, K̂, r̂) is a martingale w.r.t. the filtration F. There-
fore, also the stopped process M̃(t, x, K̂, r̂) is a martingale w.r.t. F (Theorem (II.77.5) in Rogers

and Williams Vol. 1 [18]; note that M is non–negative). Using this, we obtain similarly as

in Gerber [7], for t ≥ 0,

e−r̂x = M̃(0, x, K̂, r̂)

= E[M̃(t, x, K̂, r̂)]

= E[M̃(τ(x, K̂), x, K̂, r̂)χ{τ(x,K̂)<t}]

+E[M̃(t, x, K̂, r̂)χ{t≤τ(x,K̂)}]

≥ E[M̃(τ(x, K̂), x, K̂, r̂)χ{τ(x,K̂)<t}],(23)

where χA is the indicator function of the set A, and where we used the fact that the process M̃

is nonnegative.

Monotone Convergence yields that

lim
t→∞

E[M̃(τ(x, K̂), x, K̂, r̂)χ{τ(x,K̂)<t}] = E[M̃(τ(x, K̂), x, K̂, r̂)χ{τ(x,K̂)<∞}].(24)

Hence

e−r̂x ≥ E[M̃(τ(x, K̂), x, K̂, r̂)|τ(x, K̂) <∞]P[τ(x, K̂) <∞].(25)

Thus we arrive at

Ψ(x, K̂) = P[τ(x, K̂) <∞]

≤
e−r̂x

E[M̃(τ(x, K̂), x, K̂, r̂)|τ(x, K̂) <∞]
.(26)

Since the random variable M̃(τ(x, K̂), x, K̂, r̂) is always greater than or equal to 1 a.s. on the

set {τ(x, K̂) <∞}, the result follows. ¤

The Main Theorem now is an immediate consequence of Theorem 3, observing that r̂ > ν

(assuming that b 6= 0 and a 6= 0).

As we have mentioned before, the classical Lundberg exponent ν is the positive solution to

h(r) =
c

λ
r.(27)

If now, in addition, the insurance company has the opportunity to invest in the market, the

corresponding exponent r̂ is the positive solution of

h(r) =
c

λ
r +

a2

2λb2
.(28)

The right hand side of (28) is just the right hand side of (27), but shifted by the positive constant

a2/2λb2. From the properties of h it is obvious that r̂ > ν if a 6= 0 and that r̂ = ν for a = 0 (see

also Figure 1).

What about the assumption c > λE[X]? In the classical setting without investment, this

condition is equivalent to h′(0) = E[X] < c/λ and guarantees that h and the line with slope c/λ

through 0 have a strictly positive intersection. In the present model with investment the picture
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PSfrag replacements

r̂ν
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h(r)
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2λb2

Figure 1. h(r), c
λr and c

λr +
a2

2λb2
for exponentially distributed claims and pa-

rameter values θ = 10, c = 15, λ = 1, a = 0.06 and b = 0.15. In this case we

obtain ν = 1/30 = 0.03̇ and r̂ = 0.041.

changes (see Figure 2): it is easily seen that for a 6= 0, equation (28) always possesses a strictly

positive solution r̂.

PSfrag replacements

r̂
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r

h(r)

a
2

2λb2

Figure 2. h(r) and c
λr +

a2

2λb2
for exponentially distributed claims, parameter

values θ = 10, λ = 1, a = 0.06, b = 0.15 and different values of c.

Thus we have completed the proof of the Main Theorem and now pass on to an illustrative

example.

Example. Consider the situation for the classical Erlang model when claim sizes are exponen-

tially distributed with parameter θ, i.e., dF (x) = (e−x/θ/θ)dx. In this case h(r) = θr/(1− θr),

r ∈ [0, 1/θ). A plot of this function is shown in Figure 1 for θ = 10. Equation (27) has two

solutions, namely 0 and ν = ρ/(ρ+ 1)θ, where the relative safety loading ρ equals as c/λθ − 1.

Note that ν is only positive if c > λθ. An elementary calculation reveals that on the other hand

the coefficient r̂ equals

ν +

(
√

(
ν + a2/2b2c

2
)2 +

a2

2b2c
(
1

θ
− ν)−

ν + a2/2b2c

2

)

.(29)
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Remarks.

1. At first sight it seems very amazing that one obtains an exponential bound on the ruin

probability Ψ for arbitrary values of the parameters c, λ and E[X]. The premium rate c might

even be negative!

This stunning fact can be explained as follows: remember that the process K̂ is given by

K̂(t) ≡ a/r̂b2. For ‘unfavourable’ parameters of the risk process, r̂ is small and therefore K̂ is

large. This leads to an arbitrarily large drift of the wealth process from the investment. This

way, the very large constant investment K̂ leads eventually to an exponential decay of the ruin

probability.

This result also gives some theoretical justification for the technique of ‘cash flow underwriting’

which - at least from time to time - enjoys some popularity among re-insurers: according to this

technique the re-insurer sometimes accepts contracts which will probably result in a technical

loss, hoping that the financial gains obtained from a ‘good’ (i.e. a risky) investment of the

premiums will outweigh this loss.

2. Note that r̂ depends on the drift a of the risky investment via |a|! This can be explained

as follows: If a < 0, then K̂ = a/r̂b2 is also less than zero, i.e. the investment strategy K̂

prescribes to go short in the risky asset. This produces an arbitrarily large, positive drift K̂ · a

of the wealth process Y (see item 1. above), which in turn leads to an exponential decay of the

ruin probability at rate r̂.

3. The investment strategy K̂ consists in always holding a fixed amount of money in the risky

asset: If Y (t, x, K̂) < K̂, i.e. if the wealth of the insurance company is less then the constant K̂,

it is still possible to hold the amount K̂, since we have not imposed any short selling constraints

on the set of admissible strategies.

4. If we drop the assumption that the bond yields zero interest rate, it turns out that the case

of zero real interest force i, when the interest force on the bond is equal to the inflation force

(cf. Delbaen and Haezendonck [3]), can be treated with essentially the same methods as

the ones described above. The stochastic differential equation for the wealth process Y (i) with

interest i > 0 is

dY (i)(t) = (ceit + (i(Y (i)(t−)−K(t)) + aK(t)))dt+ bK(t)dW (t)− eitXN(t)dN(t).(30)

If we introduce the present value process Y
(i)
(t) := e−itY (i)(t), we obtain

dY
(i)
(t) = e−it((ceit + (a− i)K(t))dt+ bK(t)dW (t)− eitXN(t)dN(t)).(31)

Defining the process M
(i)
(t) := e−rY

(i)
(t) for r ∈ R+, it follows the same way as with zero

interest rate that M
(i)
(t ∧ τ, x, K̂(i), r̂(i)) is a martingale, where r̂(i) is the solution to

λh(r) = cr +
(a− i)2

2b2
(32)

and the process K̂(i) ∈ K is given by

K̂(i)(t) =
a− i

r̂(i)b2
eit.(33)

Then by the same line of argument as in the case of zero interest it can be shown that the ruin

probability Ψ(x, K̂(i)) for the strategy K̂(i) can be bounded from above by

Ψ(x, K̂(i)) ≤ e−r̂(i)x.(34)

5. Actually, we need not assume that h(r) → ∞ for r ↑ r∞. If h were to jump to infinity at

r∞ (with limr↑r∞ h(r) = h(r∞) <∞), we still get an exponential bound on the ruin probability
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Ψ(x): If there exists 0 < r̂ < r∞ such that λh(r̂) = cr̂+a2/2b2, then the bound is e−r̂x, otherwise

it is simply e−r∞x.

4. Asymptotic Optimality and Asymptotic Uniqueness of the Constant

Investment Strategy

In this section we want to show an asymptotic optimality resp. asymptotic uniqueness result for

the constant investment strategy K̂ and the exponent r̂. We will need the following assumption

on the exponential tail distribution of the claim sizes:

Definition. Let 0 < r < r∞ be given. We say that X has a uniform exponential moment in the

tail distribution for r, if the following condition holds true

sup
y≥0

E[e−r(y−X)|X > y] <∞.(35)

Remark. From now on we shall assume that the random variable X, that models the claim

size, has a uniform exponential moment in the tail distribution for r̂. Partly we do so for the ease

of exposition, partly because we need the assumption: First to go from a local submartingale

to a true submartingale in the proof of Theorem 4, and second in order to obtain a positive

constant C in Theorem 6. In Appendix B, we present several of the results, that are proved in

this section, without the assumption of a uniform exponential moment in the tail distribution.

Under Assumption (35) (for r̂), we can prove the following theorem.

Theorem 4. Assume that X has a uniform exponential moment in the tail distribution for r̂.

Then for each K ∈ K, the process (M̃(t, x,K, r̂)) is a uniformly integrable submartingale.

Proof. Application of Itô’s Lemma to the process M yields, for arbitrary K ∈ K and r ∈ R+,

dM(t, x,K, r)

M(t−, x,K, r)
=

(

−(c+K(t)a)r +
1

2
r2b2K(t)2

)

dt

− rbK(t)dW (t) +
(

erXN(t) − 1
)

dN(t).(36)

This can be rewritten as

dM(t, x,K, r)

M(t−, x,K, r)
=

(

−(c+K(t)a)r +
1

2
r2b2K(t)2 + λh(r)

)

dt

−rbK(t)dW (t)

+(erXN(t) − 1)dN(t)− λE[erXN(t) − 1]dt

= f(K(t), r)dt− rbK(t)dW (t)

+(erXN(t) − 1)dN(t)− λE[erXN(t) − 1]dt.(37)

Therefore the stopped process M̃(t, x,K, r̂) can be expressed in terms of stochastic integrals as

M̃(t, x,K, r̂)− M̃(0, x,K, r̂)

=

∫ t∧τ

0
M(s−, x,K, r̂)f(K(s), r̂)ds− rb

∫ t∧τ

0
M(s−, x,K, r̂)K(s)dW (s)

+

∫ t∧τ

0
M(s−, x,K, r̂)(er̂XN(s) − 1)dN(s)− E[er̂X − 1]

∫ t∧τ

0
M(s−, x,K, r̂)λds.(38)

Since by assumption, the process K ∈ K is integrable with respect to the Brownian motion and

since 0 ≤ M(s−, x, K̂, r̂) ≤ 1 for 0 ≤ s ≤ τ , the stochastic integral w.r.t. the Brownian motion
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in (38) gives a local martingale. Furthermore, it is shown in Appendix A that the difference of

the two processes
∫ t∧τ

0
M̃(s−, x, K̂, r̂)(erXN(s) − 1)dN(s)(39)

and

λE[er̂X − 1]

∫ t∧τ

0
M̃(s−, x, K̂, r̂)ds(40)

is a martingale.

Finally, with the help of the defining equation (14) for r̂, it is easy to show that for all K ∈ R,

f(K, r̂) =
1

2
r̂2b2(K − K̂)2.

≥ 0.(41)

Therefore, for all 0 ≤ t ≤ T ,
∫ T∧τ

t∧τ
M̃(s−, x,K, r̂)f(K(s), r̂)ds ≥ 0.(42)

Putting the pieces together, it is an easy consequence that M̃(t, x,K, r̂) is a local submartingale.

To proceed from this to the conclusion that M̃(t, x,K, r̂) indeed is a true submartingale, and

even uniformly integrable, we use Assumption (35). Using the standard notation M̃∗ :=

supt≥0 |M̃(t)|, it follows that

E[M̃∗] ≤ E[M̃(τ, x,K, r̂)|τ <∞]

≤ E[M̃(τ, x,K, r̂)|τ <∞, Y (τ−) > 0],(43)

since M(τ, x,K, r̂) is equal to 1 on {τ < ∞, Y (τ−) = 0}, where ruin occurs a.s. through the

Brownian motion, and M(τ, x,K, r̂) ≥ 1 on {τ <∞, Y (τ−) > 0}, where ruin occurs through a

jump.

Now we proceed similarly as in Asmussen [1], p. 77. Let H(dt, dy) denote the joint probability

distribution of τ and Y (τ−) conditional on the event that ruin occurs, and that it occurs

through a jump. Then, given τ = t and Y (τ−) = y > 0, a claim has distribution function

dF (z)/
∫∞
y dF (u) (for z > y). Therefore

E[M̃∗] ≤ E[M̃(τ(x,K), x,K, r̂)|τ <∞, Y (τ−) > 0]

=

∫ ∞

0

∫ ∞

0
H(dt, dy)

∫ ∞

y
e−r̂(y−z) dF (z)

∫∞
y dF (u)

≤

(

sup
y≥0

∫ ∞

y
e−r̂(y−z) dF (z)

∫∞
y dF (u)

)

∫ ∞

0

∫ ∞

0
H(dt, dy)

= sup
y≥0

∫ ∞

y
e−r̂(y−z) dF (z)

∫∞
y dF (u)

< ∞(44)

by assumption (35).

A standard argument, using Dominated Convergence, gives that (44) implies that M̃ indeed is

a uniformly integrable submartingale (see, e.g., Protter [17], Theorem I.47). ¤

The following lemma will be useful in the sequel (compare also the more general Proposition

B.2 in Appendix B).
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Lemma 5. If X has a uniform exponential moment in the tail distribution for r̂, then for

arbitrary K ∈ K and x ∈ R+, the stopped wealth process (Ỹ (t, x,K))t≥0 converges almost surely

on {τ = ∞} to ∞ for t → ∞. In other words, either ruin occurs, or the insurer becomes

infinitely rich.

Proof. From Lemma 4 we know that M̃(t, x,K, r̂) is a uniformly integrable submartingale. Ap-

plying Doob’s Supermartingale Convergence Theorem (Rogers and Williams Vol. 1 [18],

Theorem (II.69.1)) to −M̃ , it follows that limt→∞ M̃(t, x,K, r̂) exists a.s. Therefore, also the

stopped wealth process Ỹ (t, x,K) converges a.s for t→∞.

There must exist d > 0 such that P[X > d] > 0. If we define the events En := {Xn > d}, then

P[Ec
n] < 1, and the events {Ej}

∞
j=1 are mutually independent. Therefore,

P[
∞
⋃

k=1

⋂

n≥k

Ec
n] = lim

k→∞
P[
⋂

n≥k

Ec
n] = lim

k→∞

∏

n≥k

P[Ec
n] = 0.(45)

Hence, P[
⋂∞

k=1

⋃

n≥k En] = 1. In other words, with probability 1, a jump of size greater than d

occurs infinitely often.

On the other hand, the stochastic integral K ·Wa,b is a.s. continuous, and therefore the jumps

of the compound Poisson process underlying the liabilities, greater than d, which will occur

infinitely often a.s., cannot be compensated for by the a.s. continuous stochastic integralK ·Wa,b.

As a result, the wealth process, stopped at time of ruin, cannot converge to a nonzero finite

value with positive probability. ¤

With the help of the two preceding lemmas we get the following result.

Theorem 6. Assume that X has a uniform exponential moment in the tail distribution for r̂.

Then the ruin probability satisfies, for every admissible process K ∈ K,

Ψ(x,K) ≥ C e−r̂x,(46)

where

C = inf
y≥0

∫∞
y dF (u)

∫∞
y e−r̂(y−z)dF (z)

=
1

supy≥0 E[e−r̂(y−X)|X > y]
> 0.(47)

Proof. As M̃(t, x,K, r̂) is a uniformly integrable submartingale, it follows from Doob’s Optional

Sampling Theorem that (using τ as a shorthand notation for τ(x,K))

M̃(0, x,K, r̂) = e−r̂x

≤ E[M̃(τ, x,K, r̂)].(48)

Now we proceed similarly as in the proof of Theorem 3, but use Lemma 5.

E[M̃(τ, x,K, r̂)]

= E[M̃(τ, x, k, r̂)|τ <∞]P[τ <∞]

+ E[ lim
t→∞

M̃(t, x,K, r̂)|τ =∞]P[τ =∞]

= E[M̃(τ, x,K, r̂)|τ <∞]P[τ <∞].(49)

Plugging this into (48), and using (43) and (44) we obtain

Ψ(x,K) ≥ e−r̂x 1

E[M̃(τ, x,K, r̂)|τ <∞]
≥ Ce−r̂x.(50)
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This completes the proof. ¤

Remarks. 1. In the classical Erlang model, i.e., for claims with an exponential distribution

(with parameter θ), one obtains the value C = 1/(h(r̂) + 1) = 1− θr̂.

2. For K ≡ 0, inequality (50) is the well–known lower bound for the ruin probability without

investment, given e.g., in Asmussen [1], Theorem 6.3.

We now pass over to the asymptotic uniqueness of the constant investment strategy K̂.

Hipp and Plum showed in [10] that, for the case of locally bounded density of the jump size,

the problem of minimizing the ruin probability over all admissible trading strategies possesses

a solution that is Markovian. That is to say that the trading strategy at time t depends on Ft

only through the current level of wealth Y (t−, x,K). Therefore from now on we shall restrict

our attention to such strategies. We will write k : R+ → R for the function that describes the

dependency on wealth of a certain strategy K ∈ K. Then the corresponding investment at time

t equals K(t) = k(Y (t−, x,K)). We will show that, if the optimal strategy – as a function of

wealth – converges to a constant as wealth tends to infinity, then the limiting constant must

be K̂ = a/b2r̂ (Corollary 1). We will even show the stronger result that a Markovian strategy,

which is asymptotically bounded away from this constant strategy, leads to an exponentially

worse (i.e. larger) ruin probability than the one obtained by using the constant strategy K̂.

Theorem 7. Let X have a uniform exponential moment in the tail distribution for r̂. Suppose

further that K ∈ K is a Markovian strategy and let k : R+ → R be its defining function. If there
exist α > 0 and xα ≥ 0 such that

|k(x)− K̂| ≥ α for x ≥ xα,(51)

then there are rα < r̂ and Aα > 0 such that

Ψ(x,K) ≥ Aαe
−rαx.(52)

Proof. We split the proof into several steps.

Step 1. For α and xα as in the Theorem, we define the stopping time

τα := inf{t : Y (t, x,K) ≤ xα},(53)

which is only nontrivial for x > xα.

Step 2. We show that, for x > xα, there exists rα < r̂ such that M̃(t∧τα, x,K, rα) is a uniformly

integrable submartingale: we know that f(K̂, r̂) = 0, that f(k, r̂) = r̂2b2(k − K̂)2/2 > 0 for

k 6= K̂, and that limk→∞ f(k, r) =∞ for all r ∈ (0, r̂). Using these facts and the continuity of

f it is straightforward to show that, for α as before, there exists some 0 < rα < r̂ such that, for

|k− K̂| > α, we have f(k, rα) ≥ 0. Now one proceeds the same way as in Section 4 to prove that

M̃(t∧τα, x,K, rα) is a uniformly integrable submartingale, using that τα ≤ τ a.s., for x > xα, and

Lemma A.1. Another consequence of τα ≤ τ a.s. is that M̃(t∧ τα, x,K, rα) =M(t∧ τα, x,K, rα)

a.s.

Step 3. Using that the process M(t ∧ τα, x,K, rα) is a uniformly integrable submartingale and

Lemma 5, we obtain

e−rαx ≤ E[M(τα, x,K, rα)]

= E[ lim
t→∞

M(t, x,K, rα)|τα =∞]P[τα =∞]

+E[M(τα, x,K, rα)|τα <∞]P[τα <∞]

≤ 0 · P[τα =∞] +
1

Cα
e−rαxαP[τα <∞],(54)
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where the constant Cα is defined by

1

Cα
:= sup

y≥0

∫∞
y e−rα(y−z)dF (z)
∫∞
y dF (u)

= sup
y≥0

E[e−rα(y−X)|X > y].(55)

Hence

P[τα <∞] ≥ Cαe
−rα(x−xα).(56)

Since rα < r̂, the constant Cα satisfies Cα > C and therefore Cα > 0 by assumption.

Step 4. The ruin probability then can be estimated as

P[τ(x,K) <∞] ≥ P[τ(x,K) <∞|τα <∞]P[τα <∞]

≥ P[τ(xα,K) <∞]P[τα <∞]

≥ Ψ∗(xα)Cαe
−rα(x−xα),(57)

where for the second inequality we have used that our setting is Markovian. Note that we only

obtain the inequality P[τ(xα,K) < ∞] ≤ P[τ(x,K) < ∞|τα < ∞] since one can also fall below

xα after a jump and therefore arrive at a level strictly smaller than xα.

Step 5. We use that Ψ∗(xα) ≥ Ce−r̂xα (Theorem 6) to show that Ψ∗(xα) > 0 and to finally

obtain

Ψ(x,K) ≥ Dαe
−rαx,(58)

for a constant Dα > 0 and for all x > xα.

Step 6. It is obvious that for x ≤ xα, we can bound Ψ(x,K) from below by some constant

Bα > 0.

Step 7. Finally taking Aα as the minimum of Bα and Dα, we obtain the desired result. ¤

Corollary 8. Assume that X has a uniform exponential moment in the tail distribution for r̂.

Let k∗ : R+ → R be the defining function of the optimal investment strategy K∗. If this function

possesses a limit for x→∞, then this limit is given by

lim
x→∞

k∗(x) = K̂.(59)

Proof. Assume that limx→∞ k∗(x) 6= K̂. Then there exist α, xα > 0 such that

|k∗(x)− K̂| > α for x ≥ xα.(60)

Therefore, using Theorem 7 one obtains that

Ψ∗(x) ≥ Aαe
−rαx,(61)

for some rα < r̂, which together with the Main Theorem yields the apparent contradiction to

the optimality of K∗

lim
x→∞

Ψ∗(x)

e−r̂x
=∞.(62)

¤

Remark. It has been shown recently (after the submission of this paper) by Hipp and Schmidli

[12] that the function k∗(x) possesses a limit, for x→∞.
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Appendix A.

In this appendix we present the proof for the following lemma, which was used in the proof of

Theorem 4, Section 4, in order to show that the process M̃(t, x,K, r̂) is a local submartingale

for all admissible trading strategies K ∈ K.

Lemma A.1. Let 0 ≤ r < r∞ and K ∈ K. The difference of the processes

λE[erX − 1]

∫ t∧τ

0
M(s−, x,K, r)ds(A.1)

and
∫ t∧τ

0
M(s−, x,K, r)(erXN(s) − 1)dN(s)(A.2)

is a martingale w.r.t. the filtration F.

Proof. Note that N = (N(t))t≥0 is a finite variation process. Therefore the stochastic integral

w.r.t. N in (A.2) makes sense (a.s.) as a pathwise Lebesgue-Stieltjes integral (see, e.g., Protter

[17]). Let {Tn}
∞
n=1 denote the arrival times of N . Then

∫ t∧τ

0
M(s−, x,K, r)(erXN(s) − 1)dN(s)

=
∞
∑

n=1

M(Tn−, x,K, r)(e
rXn − 1)χ{t∧τ≥Tn}.(A.3)

Taking expectations we obtain for 0 ≤ t ≤ T

Et∧τ [

∫ T∧τ

t∧τ
M(s−, x,K, r)(erXN(s) − 1)dN(s)]

= Et∧τ [
∞
∑

n=1

M(Tn−, x,K, r)(e
rXn − 1)χ{T∧τ≥Tn>t∧τ}]

= Et∧τ [
∞
∑

n=1

ETn−[M(Tn−, x,K, r)(e
rXn − 1)χ{T∧τ≥Tn>t∧τ}]]

= Et∧τ [
∞
∑

n=1

ETn−[e
r̂Xn − 1]M(Tn−, x,K, r)χ{T∧τ≥Tn>t∧τ}]

= Et∧τ [
∞
∑

n=1

E[er̂X − 1]M(Tn−, x,K, r)χ{T∧τ≥Tn>t∧τ}]

= E[erX − 1]Et∧τ [

∫ T∧τ

t∧τ
M(s−, x,K, r)dN(s)]

= E[erX − 1]Et∧τ [

∫ T∧τ

t∧τ
M(s−, x,K, r)λ ds],(A.4)

where from the fourth to the fifth line we have used that Xn and FTn− are independent and from

the sixth to the seventh line we have used that N(t) − λt is a martingale (see, e.g., Protter

[17], p. 39). Thus the difference of (A.1) and (A.2) is a martingale w.r.t. the stopped filtration

(Ft∧τ )t≥0. A standard argument (Protter [17], p. 11) shows that then the difference of (A.1)

and (A.2) also is a martingale w.r.t. the filtration F. ¤
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Appendix B.

In this appendix we shall examine, to which extent the results of Section 4 can be generalized,

when the assumption of a uniform exponential moment in the tail distribution (see (35)) is

dropped. In particular, we will show that the statement of Lemma 5 also holds true without

this assumption, i.e., for every admissible trading strategy K ∈ K, the insurer a.s. either gets

infinitely rich or ruined (see Proposition B.2).

Proposition B.1.
(i) Let x > 0, and let r̂ be defined as in (14). For z ∈ R+, we define the stopping time

τz := inf{t ≤ τ(x,K) : Ỹ (t, x,K) ≥ z},

which is only nontrivial, if x < z. For every z ∈ R+ and every admissible trading strategy

K ∈ K, the stopped process M̃ τz(t, x,K, r̂) = M̃(t ∧ τz, x,K, r̂) is a uniformly integrable

submartingale.

Furthermore P[{τz ∧ τ(x,K) <∞}] = 1 for all z ∈ R+, i.e. with probability 1, either

the insurer gets ruined or she reaches the level z.

(ii) For all K ∈ K, the process M̃(t, x,K, r̂) satisfies the submartingale inequality (for 0 ≤

s ≤ t)

M̃(s, x,K, r̂) ≤ Es[M̃(t, x,K, r̂)],

however, we also allow for the possibility that the above expressions may equal ∞.

Proof.

(i) We have already shown in the proof of Theorem 4 that, for allK ∈ K, the process M̃(t, x,K, r̂)

is a local submartingale. Therefore, the stopped process M̃ τz(t, x,K, r̂) is also a local submartin-

gale, for all K ∈ K. Observe that, for the stopped process M̃ τz(t, x,K, r̂), we have a uniform

estimate for the exponential tail moments, namely

sup
0≤y≤z

E[e−r(y−X)|X > y] <∞, r ∈ [0, r∞).(B.1)

Hence (cf. (44))

E[ sup
0≤t<∞

|M̃ τz(t, x,K, r̂)|] <∞,(B.2)

and therefore M̃ τz(t, x,K, r̂) is a uniformly integrable submartingale (Protter [17], p. 35).

Exactly the same way as in the proof of Lemma 5, we apply Doob’s Supermartingale Convergence

Theorem to show that limt→∞M τz exists a.s. Then, we deduce that, for t→∞, the insurer a.s.

either gets ruined or reaches the level z from the fact that, with probability 1, infinitely many

jumps of size greater than d occur, which cannot be compensated for by the a.s. continuous

stochastic integral w.r.t. the Brownian motion or the a.s. continuous drift term.

(ii) We know from (i) that, for n ∈ N, τn := inf{t : Ỹ (t, x,K) ≥ n}, and 0 ≤ s ≤ t,

M̃(s ∧ τn, x,K, r̂) ≤ Es[M̃(t ∧ τn, x,K, r̂)].(B.3)

The l.h.s. of (B.3) converges a.s. to M̃(s, x,K, r̂). The r.h.s. of (B.3) can be rewritten as

Es[M̃(t ∧ τn, x,K, r̂)]

= Es[M̃(t ∧ τn, x,K, r̂)χ{t∧τn<τ(x,K)}] + Es[M̃(τ(x,K), x,K, r̂)χ{τ(x,K)≤t∧τn}].(B.4)

Letting n → ∞, we can apply the conditional version of the reverse Fatou Lemma to the first

term in (B.4) and (conditional) Monotone Convergence to the second term to obtain

lim
n→∞

Es[M̃(t ∧ τn, x,K, r̂)χ{t∧τn<τ(x,K)}] ≤ Es[M̃(t, x,K, r̂)χ{t<τ(x,K)}],(B.5)
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and

lim
n→∞

Es[M̃(τ(x,K), x,K, r̂)χ{τ(x,K)≤t∧τn}] = Es[M̃(τ(x,K), x,K, r̂)χ{τ(x,K)≤t}].(B.6)

To sum it up, we obtain

M̃(s, x,K, r̂) ≤ Es[M̃(t, x,K, r̂)] a.s..(B.7)

¤

Proposition B.2. Let x > 0 and K ∈ K be given. On the set {τ(x,K) = ∞}, the process

Y (t, x,K) converges a.s. to ∞ for t→∞: either the insurer gets ruined or infinitely rich.

Proof. Assume that limt→∞ Ỹ (t, x,K) is not a.s. equal to∞ on the set {τ(x,K) =∞} for some

process K ∈ K and some initial reserve x ∈ R+. Let us work towards a contradiction.

We know from Proposition B.1 (i) that, for all admissible trading strategies K ∈ K and all

n ∈ N,

lim
t→∞

Ỹ τn(t, x,K) = n a.s. on {τ(x,K) =∞},(B.8)

where Ỹ τn denotes the process Y , stopped at time τn := inf{t : Ỹ (t, x,K) ≥ n}. Therefore for

x and K as above, there have to exist numbers d > 0, δ > 0, and a subsequence (nk)
∞
k=1 of the

natural numbers such that

P[
∞
⋂

k=1

{∃t : τnk ≤ t < τnk+1
, Y (t, x,K) ≤ d} ∩ {τ(x,K) =∞}] > δ.(B.9)

This means that on the set {τ(x,K) = ∞}, where ruin a.s. never occurs, the insurer has to

reach each level n ∈ N - a consequence of Proposition B.1 (i) - but on the other hand she has to

fall below the level d in each of the stochastic intervals Jτnk , τnk+1
J with positive probability.

The idea of the subsequent argument is the following: if the insurer falls below the level d too

often, she will get ruined with too high probability. For this purpose we define the following

stopping times

σk := inf{t : τnk ≤ t < τnk+1
, Ỹ (t, x,K) ≤ d} ∧ τ(x,K) ∧ τnk+1

, k ∈ N.(B.10)

Note that, for all k ∈ N, the stopping times σk are finite a.s.

Next, we define another sequence of stopping times

ρk := inf{t : t > σk, Ỹ (t, x,K) ≥ 2d}, k ∈ N.(B.11)

As a consequence of Proposition B.1 (i), for all k ∈ N, the stopping times ρk ∧ τ(x,K) are finite

a.s. Furthermore, there exists k1 ∈ N such that, for k ≥ k1, ρk ∧ τ(x,K) ≤ τnk+1
a.s.

We know from Proposition B.1 (i) that, for each k ∈ N, the stopped process M̃ τnk+1 (t, x,K, r̂)

is a uniformly integrable submartingale, so we can apply Doob’s Optional Sampling Theorem

(Protter [17]) to the process M̃ τnk+1 (t, x,K, r̂) and the two stopping times σk and ρk∧τ(x,K),

σk ≤ ρk ∧ τ(x,K) ≤ τnk+1
, to obtain

M(σk) ≤ Eσk [M(ρk ∧ τ(x,K), x,K, r)], k ≥ k1.(B.12)

Now, we define the following events

Aj := {σj < τ ;σj < τnj+1}, j ∈ N,(B.13)

and

Ak :=
k
⋂

j=1

Aj , k ∈ N.(B.14)
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For all k ∈ N, the event Ak lies in Fσk .

We multiply inequality (B.12), for each k ≥ k1, with the indicator function χAk and take

expectations to obtain

E[M(σk, x,K, r)χAk ] ≤ E[Eσk [M(ρk ∧ τ(x,K), x,K, r)]χAk ].(B.15)

The left hand side of (B.15) can be bounded by

e−rdP[Ak] ≤ E[M(σk, x,K, r)χAk ], k ≥ k1,(B.16)

since M(σk, x,K, r) ≥ e−rd on the set Ak.

Our aim is to show that the probability, conditional on the event Ak, to get ruined before reaching

2d is strictly greater than zero, independent of k. In order to get this estimate we proceed as

follows with the right hand side of (B.15). By definition of the conditional expectation

E[Eσk [M(ρk ∧ τ(x,K), x,K, r)]χAk ] = E[M(ρk ∧ τ(x,K), x,K, r)χAk ].(B.17)

Now we argue in a similar fashion as in the proof of Theorem 6

E[M(ρk ∧ τ(x,K), x,K, r)χAk ]

= E[M(τ(x,K), x,K, r)χAkχ{τ(x,K)<ρk}]

+E[M(ρk, x,K, r)χAkχ{τ(x,K)≥ρk}]

≤ E[M(τ(x,K), x,K, r)χAkχ{τ(x,K)<ρk}] + e−2rd, k ≥ k1,(B.18)

using that, for k ≥ k1, on the set Ak, the random variable M(ρk, x,K, r) equals exp(−2rd).

Then,

E[M(τ(x,K), x,K, r)χAkχ{τ(x,K)<ρk}]

= E[M(τ(x,K), x,K, r)|Ak ∩ {τ(x,K) < ρk}]P[Ak ∩ {τ(x,K) < ρk}].(B.19)

Finally, we need the following inequality

E[M(τ(x,K), x,K, r)|Ak ∩ {τ(x,K) < ρk}] ≤ sup
0≤y≤2d

E[e−r(y−X)|y > X],(B.20)

which holds true, because the insurer’s wealth is below the level 2d on the set Ak∩{τ(x,K) < ρk}.

Putting (B.12), (B.16), (B.18) and (B.20) together, we obtain

P[τ(x,K) < ρk|A
k] ≥

e−rd − e−2rd

sup0≤y≤2d E[e−r(y−X)|y > X]
≥ β, k ≥ k1,(B.21)

for some constant β > 0, that just depends on d and not on k.

Now, the proof of Proposition B.2 is almost finished. In order to see that (B.9) cannot hold true

for δ > 0, just use

P[
⋂

k1≤k≤n

{∃t : τnk ≤ t < τnk+1
, Y (t, x,K) ≤ d} ∩ {τ(x,K) =∞}]

≤ P[
⋂

k1≤k≤n

{∃t : τnk ≤ t < τnk+1
, Y (t, x,K) ≤ d}]

= P[An]

= P[An|A
n−1]P[An−1].(B.22)

Since the event {τ(x,K) < ρn−1} excludes the event An, the following holds

P[An|A
n−1]P[An−1] ≤ (1− P[τ(x,K) < ρn−1|A

n−1])P[An−1]

≤ (1− β)P[An−1].(B.23)
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The bottom line is that limn→∞ P[An] = 0 and therefore

lim
n→∞

P[
⋂

k1≤k≤n

{∃t : τnk ≤ t < τnk+1
, Y (t, x,K) ≤ d} ∩ {τ(x,K) =∞}]

= P[
⋂

k1≤k

{∃t : τnk ≤ t < τnk+1
, Y (t, x,K) ≤ d} ∩ {τ(x,K) =∞}]

= 0,(B.24)

which is an apparent contradiction to (B.9). Thus we have completed the proof of Proposition

B.2. ¤
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