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Abstract. Every submartingale S of class D has a unique Doob-Meyer de-

composition S = M + A, where M is a martingale and A is a predictable
increasing process starting at 0.

We provide a short and elementary prove of the Doob-Meyer decomposition

theorem. Several previously known arguments are included to keep the paper
self-contained.
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1. Introduction

Throughout this article we fix a probability space (Ω,F ,P) and a right-continuous
complete filtration (Ft)0≤t≤T .

An adapted process (St)0≤t≤T is of class D if the family of random variables Sτ
where τ ranges through all stopping times is uniformly integrable ([Mey62]).

The purpose of this paper is to give a short and elementary proof of the following

Theorem 1.1 (Doob-Meyer). Let S = (St)0≤t≤T be a càdlàg submartingale of
class D. Then, S can be written in a unique way in the form

S = M +A(1)

where M is a martingale and A is a predictable increasing process starting at 0.

Doob [Doo53] noticed that in discrete time an integrable process S = (Sn)∞n=1

can be uniquely represented as the sum of a martingale M and a predictable process
A starting at 0; in addition, the process A is increasing iff S is a submartingale. The
continuous time analogue, Theorem 1.1, goes back to Meyer [Mey62, Mey63], who
introduced the class D and proved that every submartingale S = (St)0≤t≤T can be
decomposed in the form (1), where M is a martingale and A is a natural process.
The modern formulation is due to Doléans-Dade [DD67, DD68] who obtained that
an increasing process is natural iff it is predictable. Further proofs of Theorem 1.1
were given by Rao [Rao69], Bass [Bas96] and Jakubowski [Jak05].

Rao works with the σ(L1, L∞)-topology and applies the Dunford-Pettis compact-
ness criterion to obtain the desired continuous time decomposition as a weak-L1

limit from discrete approximations. To obtain that A is predictable one then invokes
the theorem of Doléans-Dade.

Bass gives a more elementary proof based on the dichotomy between predictable
and totally inaccessible stopping times.

Jakubowski proceeds as Rao, but notices that predictablity of the process A can
also be obtained through an application of Komlos’ Lemma [Kom67].

The proof presented subsequently combines ideas from [Jak05] and [BSV10] to
construct the continuous time decomposition using a suitable Komlos-type lemma.
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2. Proof of Theorem 1.1

The proof of uniqueness is standard and we have nothing to add here; see for
instance [Kal02, Lemma 25.11].

For the remainder of this article we work under the assumptions of Theorem 1.1
and fix T = 1 for simplicity.

Denote by Dn and D the set of n-th resp. all dyadic numbers j/2n in the interval
[0, 1]. For each n, we consider the discrete time Doob decomposition of the sampled
process Sn = (St)t∈Dn

, that is, we define An,Mn by An0 := 0,

Ant −Ant−1/2n := E[St − St−1/2n |Ft−1/2n ] and(2)

Mn
t := St −Ant(3)

so that (Mn
t )t∈Dn

is a martingale and (Ant )t∈Dn
is predictable with respect to

(Ft)t∈Dn
.

The idea of the proof is, of course, to obtain the continuous time decomposition
(1) as a limit, or rather, as an accumulation point of the processes Mn, An, n ≥ 1.

Clearly, in infinite dimensional spaces a (bounded) sequence need not have a
convergent subsequence. As a substitute for the Bolzano-Weierstrass Theorem we
establish the Komlos-type Lemma 2.1 in Section 2.1.

In order to apply this auxiliary result, we require that the sequence (Mn
1 )n≥1

is uniformly integrable. This follows from the class D assumption as shown by
[Rao69]. To keep the paper self-contained, we provide a proof in Section 2.2.

Finally, in Section 2.3, we obtain the desired decomposition by passing to a limit
of the discrete time versions. As the Komlos-approach guarantees convergence
in a strong sense, predictability of the process A follows rather directly from the
predictability of the approximating processes. This idea is taken from [Jak05].

2.1. Komlos’ Lemma. Following Komlos [Kom67]1, it is sometimes possible to
obtain an accumulation point of a bounded sequence in an infinite dimensional
space if appropriate convex combinations are taken into account.

A particularly simple result of this kind holds true if (fn)n≥1 is a bounded
sequence in a Hilbert space. In this case

A = supn≥1 inf{‖g‖2 : g ∈ conv{fn, fn+1, . . .}}
is finite and for each n we may pick some gn ∈ conv{fn, fn+1, . . .} such that ‖gn‖2 ≤
A+1/n. If n is sufficiently large with respect to ε > 0, then ‖(gk+gm)/2‖2 > A−ε
for all m, k ≥ n and hence

‖gk − gm‖22 = 2‖gk‖22 + 2‖gm‖22 − ‖gk + gm‖22 ≤ 4(A+ 1
n )2 − 4(A− ε)2.

By completeness, (gn)n≥1 converges in ‖.‖2.

By a straight forward truncation procedure this Hilbertian Komlos-Lemma yields
an L1-version which we will need subsequently.2

Lemma 2.1. Let (fn)n≥1 be a uniformly integrable sequence of functions on a
probability space (Ω,F ,P). Then there exist functions gn ∈ conv(fn, fn+1, . . . ) such
that (gn)n≥1 converges in ‖.‖L1(Ω).

Proof. For i, n ∈ N set f
(i)
n := fn1{|fn|≤i} such that f

(i)
n ∈ L2(Ω).

We claim that there exist for every n convex weights λnn, . . . , λ
n
Nn

such that the

functions λnnf
(i)
n + . . .+ λnNn

f
(i)
Nn

converge in L2(Ω) for every i ∈ N.

1Indeed, [Kom67] considers Cesaro sums along subsequences rather then arbitrary convex
combinations. But for our purposes, the more modest conclusion of Lemma 2.1 is sufficient.

2Lemma 2.1 is also a trivial consequence of Komlos’ original result [Kom67] or other related
results that have been established through the years. Cf. [KS09, Chapter 5.2] for an overview.
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To see this, one first uses the Hilbertian lemma to find convex weights λnn, . . . , λ
n
Nn

such that (λnnf
(1)
n + . . . + λnNn

f
(1)
Nn

)n≥1 converges. In the second step, one applies

the lemma to the sequence (λnnf
(2)
n + . . . + λnNn

f
(2)
Nn

)n≥1, to obtain convex weights
which work for the first two sequences. Repeating this procedure inductively we
obtain sequences of convex weights which work for the first m sequences. Then a
standard diagonalization argument yields the claim.

By uniform integrability, limi→∞ ‖f (i)
n − fn‖1 = 0, uniformly with respect to n.

Hence, once again, uniformly with respect to n,

limi→∞ ‖(λnnf
(i)
n + . . .+ λnNn

f
(i)
Nn

)− (λnnfn + . . .+ λnNn
fNn

)‖1 = 0.

Thus (λnnfn + . . .+ λnNn
fNn)n≥1 is a Cauchy sequence in L1(Ω). �

2.2. Uniform integrability of the discrete approximations.

Lemma 2.2. The sequence (Mn
1 )n≥1 is uniformly integrable.

Proof. Subtracting E[S1|Ft] from St we may assume that S1 = 0 and St ≤ 0 for all
0 ≤ t ≤ 1. Then Mn

1 = −An1 , and for every (Ft)t∈Dn-stopping time τ

Snτ = −E[An1 |Fτ ] +Anτ .(4)

We claim that (An1 )∞n=1 is uniformly integrable. For c > 0, n ≥ 1 define

τn(c) = inf
{

(j − 1)/2n : Anj/2n > c
}
∧ 1.

From Anτn(c) ≤ c and (4) we obtain Sτn(c) ≤ −E[An1 |Fτn(c)] + c. Thus,∫
{An

1>c}
An1 dP =

∫
{τn(c)<1}

E[An1 |Fτn(c)] dP ≤ cP
[
τn(c) < 1

]
−
∫
{τn(c)<1}

Sτn(c) dP.

Note {τn(c) < 1} ⊆ {τn( c2 ) < 1}, hence, by (4)∫
{τn( c

2 )<1}
−Sτn( c

2 ) dP =

∫
{τn( c

2 )<1}
An1 −Anτn( c

2 ) dP

≥
∫
{τn(c)<1}

An1 −Anτn( c
2 ) dP ≥

c

2
P[τn(c) < 1].

Combining the above inequalities we obtain∫
{An

1>c}
An1 dP ≤ −2

∫
{τn( c

2 )<1}
Sτn( c

2 ) dP−
∫
{τn(c)<1}

Sτn(c) dP.(5)

On the other hand

P[τn(c) < 1] = P[An1 > c] ≤ E[An1 ]/c = −E[Mn
1 ]/c = −E[S0]/c,

hence, as c → ∞, P[τn(c) < 1] goes to 0, uniformly in n. As S is of class D, (5)
implies that the sequence (An1 )n≥1 is uniformly integrable and hence (Mn

1 )n≥1 =
(S1 −An1 )n≥1 is uniformly integrable as well. �

2.3. The limiting procedure. For each n, extend Mn to a (càdlàg) martingale
on [0, 1] by setting Mn

t := E[Mn
1 |Ft]. By Lemma 2.1 and Lemma 2.2 there exist

M ∈ L1(Ω) and for each n convex weights λnn, . . . , λ
n
Nn

such that with

Mn := λnnM
n + . . .+ λnNn

MNn(6)

we have Mn
1 → M in L1(Ω). Then, by Jensen’s inequality, Mn

t → Mt := E[M |Ft]
for all t ∈ [0, 1]. For each n ≥ 1 we extend An to [0, 1] by

An :=
∑
t∈Dn

Ant 1(t−1/2n,t](7)

and set An := λnnA
n + . . .+ λnNn

ANn ,(8)
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where we use the same convex weights as in (6). Then the càdlàg process

(At)0≤t≤1 := (St)0≤t≤1 − (Mt)0≤t≤1

satisfies for every t ∈ D
Ant = (St −Mn

t ) → (St −Mt) = At in L1(Ω).

Passing to a subsequence which we denote again by n, we obtain that convergence
holds also almost surely. Consequently, A is almost surely increasing on D and, by
right continuity, also on [0, 1].

As the processes An and An are left-continuous and adapted, they are pre-
dictable. To obtain that A is predictable, we show that for a.e. ω and every t ∈ [0, 1]

(9) lim supnAnt (ω) = At(ω).

If fn, f : [0, 1] → R are increasing functions such that f is right continuous and
limn fn(t) = f(t) for t ∈ D, then

lim supnfn(t) ≤ f(t) for all t ∈ [0, 1] and(10)

limnfn(t) = f(t) if f is continuous at t.(11)

Consequently, (9) can only be violated at discontinuity points of A. As A is càdlàg,
every path of A can have only finitely many jumps larger than 1/k for k ∈ N.
It follows that the points of discontinuity of A can be exhausted by a countable
sequence of stopping times, and therefore it is sufficient to prove lim supnAnτ = Aτ
for every stopping time τ.

By (10), lim supnAnτ ≤ Aτ and as Anτ ≤ An1 → A1 in L1(Ω) we deduce from
Fatou’s Lemma that

lim infn E
[
Anτ
]
≤ lim supn E

[
Anτ
]
≤ E

[
lim supnAnτ

]
≤ E

[
Aτ
]
.

Therefore it suffices to prove limn E[Anτ ] = E[Aτ ]. For n ≥ 1 set

σn := inf{t ∈ Dn : t ≥ τ}.
Then Anτ = Anσn

and σn ↓ τ . Using that S is of class D, we obtain

E[Anτ ] = E[Anσn
] = E[Sσn

]− E[M0]→ E[Sτ ]− E[M0] = E[Aτ ].
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