A SHORT PROOF OF THE DOOB-MEYER THEOREM
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ABSTRACT. Every submartingale S of class D has a unique Doob-Meyer de-
composition S = M + A, where M is a martingale and A is a predictable
increasing process starting at 0.

We provide a short and elementary prove of the Doob-Meyer decomposition
theorem. Several previously known arguments are included to keep the paper
self-contained.
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1. INTRODUCTION

Throughout this article we fix a probability space (2, F,P) and a right-continuous
complete filtration (F¢)o<i<7-

An adapted process (S¢)o<i<r is of class D if the family of random variables S,
where 7 ranges through all stopping times is uniformly integrable ([Mey62]).

The purpose of this paper is to give a short and elementary proof of the following

Theorem 1.1 (Doob-Meyer). Let S = (S))o<i<r be a cadlag submartingale of
class D. Then, S can be written in a unique way in the form

(1) S=M+A
where M is a martingale and A is a predictable increasing process starting at 0.

oo

Doob [Doo53] noticed that in discrete time an integrable process S = (5,)22
can be uniquely represented as the sum of a martingale M and a predictable process
A starting at 0; in addition, the process A is increasing iff S is a submartingale. The
continuous time analogue, Theorem 1.1, goes back to Meyer [Mey62, Mey63], who
introduced the class D and proved that every submartingale S = (S;)o<t<7 can be
decomposed in the form (1), where M is a martingale and A is a natural process.
The modern formulation is due to Doléans-Dade [DD67, DD68] who obtained that
an increasing process is natural iff it is predictable. Further proofs of Theorem 1.1
were given by Rao [Rao69], Bass [Bas96] and Jakubowski [Jak05].

Rao works with the o (L', L°)-topology and applies the Dunford-Pettis compact-
ness criterion to obtain the desired continuous time decomposition as a weak-L!
limit from discrete approximations. To obtain that A is predictable one then invokes
the theorem of Doléans-Dade.

Bass gives a more elementary proof based on the dichotomy between predictable
and totally inaccessible stopping times.

Jakubowski proceeds as Rao, but notices that predictablity of the process A can
also be obtained through an application of Komlos’ Lemma [Kom67].

The proof presented subsequently combines ideas from [Jak05] and [BSV10] to
construct the continuous time decomposition using a suitable Komlos-type lemma.
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2. PROOF OF THEOREM 1.1

The proof of uniqueness is standard and we have nothing to add here; see for
instance [Kal02, Lemma 25.11].

For the remainder of this article we work under the assumptions of Theorem 1.1
and fix T =1 for simplicity.

Denote by D,, and D the set of n-th resp. all dyadic numbers j/2™ in the interval
[0, 1]. For each n, we consider the discrete time Doob decomposition of the sampled
process S™ = (S¢)tep, , that is, we define A”, M™ by Ay := 0,

(2) A? — ?_1/27,, = E[St — St,1/2n |ft,1/2n] and

(3) M =S, — A}

so that (M]"):ep, is a martingale and (A} )iep, is predictable with respect to
(Ft)teD,, -

The idea of the proof is, of course, to obtain the continuous time decomposition
(1) as a limit, or rather, as an accumulation point of the processes M™, A", n > 1.

Clearly, in infinite dimensional spaces a (bounded) sequence need not have a
convergent subsequence. As a substitute for the Bolzano-Weierstrass Theorem we
establish the Komlos-type Lemma 2.1 in Section 2.1.

In order to apply this auxiliary result, we require that the sequence (M7"),>1
is uniformly integrable. This follows from the class D assumption as shown by
[Ra069]. To keep the paper self-contained, we provide a proof in Section 2.2.

Finally, in Section 2.3, we obtain the desired decomposition by passing to a limit
of the discrete time versions. As the Komlos-approach guarantees convergence
in a strong sense, predictability of the process A follows rather directly from the
predictability of the approximating processes. This idea is taken from [Jak05].

2.1. Komlos’ Lemma. Following Komlos [Kom67]!, it is sometimes possible to
obtain an accumulation point of a bounded sequence in an infinite dimensional
space if appropriate convex combinations are taken into account.

A particularly simple result of this kind holds true if (f,)n>1 is a bounded
sequence in a Hilbert space. In this case
A =sup,,>; inf{[|gll2 : g € conv{fn, frny1,...}}

is finite and for each n we may pick some g,, € conv{ f,, fnt1,...} such that ||g,|2 <
A+1/n. If n is sufficiently large with respect to € > 0, then ||(gr + gm) /2|2 > A—¢
for all m, k > n and hence

lgs = gml13 = 2llgkll3 +2llgm 3 — llg + gmll3 < 4(A+ 1)* —4(A —¢).
By completeness, (gn)n>1 converges in ||.|2.
By a straight forward truncation procedure this Hilbertian Komlos-Lemma yields
an L'-version which we will need subsequently.?

Lemma 2.1. Let (fn)n>1 be a uniformly integrable sequence of functions on a
probability space (Q, F,P). Then there exist functions g, € conv(fn, fnt1,...) such
that (gn)n>1 converges in ||.||L1(q)-

Proof. For i,n € N set f\ := Jnlyjs,1<iy such that 3 e L*(Q).
We claim that there exist for every n convex weights A7, ..., A%, such that the
functions )\:{ff(f) + .+ f](\;) converge in L%(Q) for every i € N.

1Indeed7 [Kom67] considers Cesaro sums along subsequences rather then arbitrary convex
combinations. But for our purposes, the more modest conclusion of Lemma 2.1 is sufficient.

2Lemma 2.1 is also a trivial consequence of Komlos’ original result [Kom67] or other related
results that have been established through the years. Cf. [KS09, Chapter 5.2] for an overview.
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To see this, one first uses the Hilbertian lemma to find convex weights A7, ..., AR,
such that (A f,(Ll) +.. AR, f](\,lj)nzl converges. In the second step, one applies

the lemma to the sequence ()\?Lfé?) + .o+ AR, fz(vzj)nZl, to obtain convex weights
which work for the first two sequences. Repeating this procedure inductively we
obtain sequences of convex weights which work for the first m sequences. Then a
standard diagonalization argument yields the claim.

By uniform integrability, lim;_, o || f#‘) — fnll1 = 0, uniformly with respect to n.
Hence, once again, uniformly with respect to n,

limy oo [ON2AD 44 A% FO) = N+ A fa) ] = 0.
Thus (A} fn + ... + A% fn,)n>1 is a Cauchy sequence in L'(Q). O
2.2. Uniform integrability of the discrete approximations.
Lemma 2.2. The sequence (M7{)n>1 is uniformly integrable.

Proof. Subtracting E[S;|F;] from S; we may assume that S; = 0 and S; < 0 for all
0 <t < 1. Then M = —A?, and for every (F):cp,,-stopping time 7

() S" = —E[AI|F,] + A7,

We claim that (A7) is uniformly integrable. For ¢ > 0, n > 1 define
To(c) =inf {(j — 1)/2™: Ton > c} AL

From A? ) < cand (4) we obtain S () < —E[A}|F;, (o] + ¢. Thus,

/ A? dP = / ]E[A?l./.'}n(c)] dP < CP[Tn(C) < 1] - / ST"(C) dP.
{Af>c} {n(e)<1} {m(e)<1}

Note {7,(c) < 1} C {7n(§) < 1}, hence, by (4)

/ 75Tn(%)d]P):/ A?*A?W(g)d]f”
{ra(§)<1) {ra(§)<1} :

z/ AP — A (o dP > gpm(c) <1].
{TH(

c)<1}
Combining the above inequalities we obtain
(5) / AT dP < —2/ ST’n(%) dP — / S:, (c) dP.
{A7>c} {m($)<1} {mn(e)<1}

On the other hand
Plrn(c) < 1] = P[AT > ] < E[AT]/c = —E[M["]/c = —E[So]/c,

hence, as ¢ — oo, P[1,(c) < 1] goes to 0, uniformly in n. As S is of class D, (5)
implies that the sequence (A}),>1 is uniformly integrable and hence (M7 )p>1 =
(S1 — AT)n>1 is uniformly integrable as well. O

2.3. The limiting procedure. For each n, extend M" to a (cadlag) martingale
on [0,1] by setting M]* := E[M7'|F;]. By Lemma 2.1 and Lemma 2.2 there exist
M e L'(Q) and for each n convex weights A, ..., A% such that with

(6) M = XEM™ 4+ Ny M

we have M? — M in L*(2). Then, by Jensen’s inequality, M7 — M, := E[M|F]
for all ¢ € [0,1]. For each n > 1 we extend A™ to [0, 1] by

(7) A" = ZteDn A?]l(t—l/Tl,t]
(8) and set A" :=ATA" + . 4 A} AN
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where we use the same convex weights as in (6). Then the cadlag process
(At)o<t<1 = (St)o<i<1 — (My)o<i<1
satisfies for every t € D
P = (S, —M}) = (S¢— M) =A4; inLYQ).

Passing to a subsequence which we denote again by n, we obtain that convergence
holds also almost surely. Consequently, A is almost surely increasing on D and, by
right continuity, also on [0, 1].

As the processes A™ and A" are left-continuous and adapted, they are pre-
dictable. To obtain that A is predictable, we show that for a.e. w and every ¢ € [0, 1]

9) limsup,, A} (w) = A(w).

If fn,f :1]0,1] — R are increasing functions such that f is right continuous and
lim,, f,(¢t) = f(t) for t € D, then

(10) lim sup,, f(t) < f(¢) for all t € [0, 1] and
(11) lim,, f,,(t) = f(¢) if f is continuous at t.

Consequently, (9) can only be violated at discontinuity points of A. As A is cadlag,
every path of A can have only finitely many jumps larger than 1/k for k € N.
It follows that the points of discontinuity of A can be exhausted by a countable
sequence of stopping times, and therefore it is sufficient to prove limsup,, A} = A,
for every stopping time 7.

By (10), limsup,, A” < A, and as A? < A} — A; in L'(Q) we deduce from
Fatou’s Lemma that

liminf, E[A"] < limsup, E[A"] < E[limsup, A"] <E[A,].
Therefore it suffices to prove lim,, E[A”] = E[A,]. For n > 1 set
op:=inf{t €D, :t > 7}.
Then AT = A7 and o, | 7. Using that S is of class D, we obtain
E[A7] = E[A7 | = E[S,,] — E[Mo] — E[S:] — E[Mo] = E[A].
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