# Admissible Trading Strategies under Transaction Costs

Walter Schachermayer\*

August 8, 2013

#### Abstract

A well known result in stochastic analysis reads as follows: for an  $\mathbb{R}$ -valued super-martingale  $X = (X_t)_{0 \le t \le T}$  such that the terminal value  $X_T$  is non-negative, we have that the entire process X is nonnegative. An analogous result holds true in the no arbitrage theory of mathematical finance: under the assumption of no arbitrage, a portfolio process  $x + (H \cdot S)$  verifying  $x + (H \cdot S)_T \ge 0$  also satisfies  $x + (H \cdot S)_t \ge 0$ , for all  $0 \le t \le T$ .

In the present paper we derive an analogous result in the presence of transaction costs. A counter-example reveals that the consideration of transaction costs makes things more delicate than in the frictionless setting.

### 1 A Theorem on Admissibility

We consider a stock price process  $S = (S_t)_{0 \le t \le T}$  in continuous time with a fixed horizon T. This stochastic process is assumed to be based on a filtered probability space  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{P})$ , satisfying the usual conditions of completeness and right continuity. We assume that S is adapted and has cadlag (right continuous, left limits), and strictly positive trajectories, i.e. the function  $t \to S_t(\omega)$  is cadlag and strictly positive, for almost each  $\omega \in \Omega$ .

In mathematical finance a key assumption is that the process S is free of arbitrage. The Fundamental Theorem of Asset Pricing states that this

<sup>\*</sup>Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, walter.schachermayer@univie.ac.at. Partially supported by the Austrian Science Fund (FWF) under grant P25815, the European Research Council (ERC) under grant FA506041 and by the Vienna Science and Technology Fund (WWTF) under grant MA09-003.

property is *essentially* equivalent to the property that S admits an equivalent local martingale measure (see, [9], [4], or the books [5],[13]).

**Definition 1.1.** The process S admits an equivalent local martingale measure, if there is a probability measure  $Q \sim \mathbb{P}$  such that S is a local martingale under Q.

Fix a process S satisfying the above assumption and note that Def.1.1 implies in particular that S is a semi-martingale as this property is invariant under equivalent changes of measure. Turning to the theme of the paper, we now consider *trading strategies*, i.e. S-integrable predictable processes  $H = (H_t)_{0 \le t \le T}$ . We call H *admissible* if there is M > 0 such that

 $(H \cdot S)_t \ge -M, \qquad \mathbb{P}-a.s. \quad \text{for} \qquad 0 \le t \le T.$  (1)

The stochastic integral

$$(H \cdot S)_t = \int_0^t H_u dS_u, \qquad 0 \le t \le T, \qquad (2)$$

then is a local Q-martingale by a result of Ansel-Stricker (see [1] and [15]). Assumption (1) also implies that the local martingale  $H \cdot S$  is a supermartingale (see [5], Prop.7.2.7) under each equivalent local martingale measure Q. We thus infer from the well known result mentioned in the abstract that  $(H \cdot S)_T \geq -x$  almost surely implies that  $(H \cdot S)_t \geq -x$  almost surely under Q (and therefore also under  $\mathbb{P}$ ), for all  $0 \leq t \leq T$ .

We resume our findings in the subsequent well-known Proposition (compare [14], Prop.4.2).

**Proposition 1.2.** Let S admit an equivalent local martingale measure, let H be admissible, and suppose that there is  $x \in \mathbb{R}_+$  such that

$$x + (H \cdot S)_T \ge 0, \qquad \mathbb{P} - a.s. \tag{3}$$

Then

$$x + (H \cdot S)_{\tau} \ge 0, \qquad \qquad \mathbb{P} - a.s. \tag{4}$$

for every [0, T]-valued stopping time  $\tau$ .

We now introduce transaction costs: fix  $0 \le \lambda < 1$ . We define the *bid-ask* spread as the interval  $[(1 - \lambda)S, S]$ . The interpretation is that an agent can buy the stock at price S, but sell it only at price  $(1 - \lambda)S$ . Of course, the case  $\lambda = 0$  corresponds to the usual frictionless theory.

In the setting of transaction costs the notion of *consistent price systems*, which goes back to [10] and [3], plays a role analogous to the notion of equivalent martingale measures in the frictionless theory.

**Definition 1.3.** Fix  $1 > \lambda \ge 0$ . A process  $S = (S_t)_{0 \le t \le T}$  satisfies the condition  $(CPS^{\lambda})$  of having a consistent price system under transaction costs  $\lambda$ if there is a process  $\widetilde{S} = (\widetilde{S}_t)_{0 \le t \le T}$ , such that

$$(1-\lambda)S_t \le \tilde{S}_t \le S_t, \qquad 0 \le t \le T,$$

as well as a probability measure Q on  $\mathcal{F}$ , equivalent to  $\mathbb{P}$ , such that  $(S_t)_{0 \leq t \leq T}$ is a local martingale under Q.

We say that S admits consistent price systems for arbitrarily small transaction costs if  $(CPS^{\lambda})$  is satisfied, for all  $\lambda > 0$ .

In [8] the condition of *admitting consistent price systems* for arbitrarily small transaction costs has been related to the condition of *no arbitrage* under arbitrarily small transaction costs, thus proving a version of the Fundamental Theorem of Asset Pricing under small transaction costs (compare [12] for a large amount of related material).

It is important to note that we do not assume that S is a semi-martingale as one is forced to do in the frictionless theory [4, Theorem 7.2]. Only the process  $\tilde{S}$  appearing in Definition 1.3 always has to be a semi-martingale, as it becomes a local martingale after passing to an equivalent measure Q.

To formulate a result analogous to Proposition 1.2 in the setting of transaction costs we have to define the notion of  $\mathbb{R}^2$ -valued *self-financing trading strategies*.

**Definition 1.4.** Fix a strictly positive stock price process  $S = (S_t)_{0 \le t \le T}$  with càdlàg paths, as well as transaction costs  $1 > \lambda > 0$ .

A self-financing trading strategy starting with zero endowment is a pair of predictable, finite variation processes  $(\varphi_t^0, \varphi_t^1)_{0 \le t \le T}$  such that

(i)  $\varphi_0^0 = \varphi_0^1 = 0$ ,

(ii) denoting by  $\varphi_t^0 = \varphi_t^{0,\uparrow} - \varphi_t^{0,\downarrow}$  and  $\varphi_t^1 = \varphi_t^{1,\uparrow} - \varphi_t^{1,\downarrow}$ , the canonical decompositions of  $\varphi^0$  and  $\varphi^1$  into the difference of two increasing processes, starting at  $\varphi_0^{0,\uparrow} = \varphi_0^{0,\downarrow} = \varphi_0^{1,\uparrow} = \varphi_0^{1,\downarrow} = 0$ , these processes satisfy

$$d\varphi_t^{0,\uparrow} \le (1-\lambda)S_t d\varphi_t^{1,\downarrow}, \quad d\varphi_t^{0,\downarrow} \ge S_t d\varphi_t^{1,\uparrow}, \quad 0 \le t \le T.$$
(5)

The trading strategy  $\varphi = (\varphi^0, \varphi^1)$  is called admissible if there is M > 0 such that the liquidation value  $V_t^{liq}$  satisfies

$$V_t^{liq}(\varphi^0, \varphi^1) := \varphi_t^0 + (\varphi_t^1)^+ (1 - \lambda)S_t - (\varphi_t^1)^- S_t \ge -M,$$
(6)

a.s., for  $0 \le t \le T$ .

The processes  $\varphi_t^0$  and  $\varphi_t^1$  model the holdings at time t in units of bond and stock respectively. We normalize the bond price by  $B_t \equiv 1$ . The differential notation in (5) needs some detailed explanation. If  $\varphi$  is continuous, then (5) has to be understood as the integral requirement.

$$\int_{\sigma}^{\tau} ((1-\lambda)S_t d\varphi_t^{1,\downarrow} - d\varphi_t^{0,\uparrow}) \ge 0, \qquad a.s.$$
(7)

for all stopping times  $0 \leq \sigma \leq \tau \leq T$ , and analogously for the second differential in (5). The above integral makes pathwise sense as Riemann-Stieltjes intregral, as  $\varphi$  is continuous and of finite variation and S is càdlàg. Things become more delicate when we also consider jumps of  $\varphi$ : note that, for every stopping time  $\tau$  the left and right limits  $\varphi_{\tau_{-}}$  and  $\varphi_{\tau_{+}}$  exist as  $\varphi$  is of bounded variation. The three values  $\varphi_{\tau_{-}}, \varphi_{\tau}$  and  $\varphi_{\tau_{+}}$  may very well be different. As in [2] we denote the increments by

$$\Delta \varphi_{\tau} = \varphi_{\tau} - \varphi_{\tau_{-}}, \qquad \Delta_{+} \varphi_{\tau} = \varphi_{\tau_{+}} - \varphi_{\tau}. \tag{8}$$

For totally inaccessible stopping times  $\tau$ , the predictability of  $\varphi$  implies that  $\Delta \varphi_{\tau} = 0$  almost surely, while for accessible stopping times  $\tau$  it may happen that  $\Delta \varphi_{\tau} \neq 0$  as well as  $\Delta_{+}\varphi_{\tau} \neq 0$ .

Equality (5) then has to be interpreted as

$$\Delta \varphi_{\tau}^{0,\uparrow} \le (1-\lambda) S_{\tau_{-}} \Delta \varphi_{\tau}^{1,\downarrow}, \qquad \Delta \varphi_{\tau}^{0,\downarrow} \ge S_{\tau_{-}} \Delta \varphi_{\tau}^{1,\uparrow} \qquad (9)$$

and in the case of right jumps

$$\Delta_{+}\varphi_{\tau}^{0,\uparrow} \leq (1-\lambda)S_{\tau}\Delta_{+}\varphi_{\tau}^{1,\downarrow}, \qquad \Delta_{+}\varphi_{\tau}^{0,\downarrow} \geq S_{\tau}\Delta_{+}\varphi_{\tau}^{1,\uparrow}, \qquad (10)$$

holding true a.s. for all [0, T]-valued stopping times  $\tau$ . Let us give an economic interpretation of the significance of (9) and (10). Think of a predictable event at time  $\tau$ , say a speech of the chairman of the Fed, which does not come as a surprise but was announced some time before. It is to be expected that this speech will have a sudden effect on the price of a stock S, say a possible jump would be from  $S_{\tau_{-}}(\omega) = 100$  to  $S_{\tau}(\omega) = 110$  (recall that S is assumed to be càdlàg). A trader may want to follow the following strategy: she holds a position of  $\varphi_{\tau_{-}}^{1}(\omega)$  stocks until "immediately before the speech". Then, one second before the speech starts, she changes the position from  $\varphi_{\tau_{-}}^{1}(\omega)$  to  $\varphi_{\tau}^{1}(\omega)$  causing an increment of  $\Delta \varphi_{\tau}^{1}(\omega)$ . Of course, the price  $S_{\tau_{-}}(\omega)$  still applies, corresponding to (9). Subsequently, the speech starts and the jump  $\Delta S_{\tau}(\omega) = S_{\tau}(\omega) - S_{\tau_{-}}(\omega)$  is revealed. The agent may now decide "immediately after learning the size of  $\Delta S_{\tau}(\omega)$ " to change her position from  $\varphi_{\tau}^{1}(\omega)$  to  $\varphi_{\tau_{+}}^{1}(\omega)$  on the base of the price  $S_{\tau}(\omega)$  which corresponds to (10).

We have chosen to define the trading strategy  $\varphi$  by explicitly specifying both accounts, the holdings in stock  $\varphi^0$  as well as the holdings in bond  $\varphi^1$ . It would be sufficient to only specify  $\varphi^1$  similarly as in the frictionless theory where we usually only specify the process H in (1) which corresponds to  $\varphi^1$  in the present notation. Given a predictable finite variation process  $\varphi^1 = (\varphi_t^1)_{0 \le t \le T}$  starting at  $\varphi_0^1 = 0$ , which we canonically decompose into the difference  $\varphi^1 = \varphi^{1,\uparrow} - \varphi^{1,\downarrow}$ , we may define the process  $\varphi^0$  by

$$d\varphi_t^0 = (1-\lambda)S_t d\varphi_t^{1,\downarrow} - S_t d\varphi_t^{1,\uparrow}.$$

The resulting pair  $(\varphi^0, \varphi^1)$  obviously satisfies (5) with equality holding true rather than inequality. Not withstanding, it is convenient in (5) to consider trading strategies  $(\varphi^0, \varphi^1)$  which allow for an inequality, i.e. for "throwing away money". But it is clear from the preceding argument that we may always pass to a dominating pair  $(\varphi^0, \varphi^1)$  where equality holds true in (5).

In the theory under transaction costs the super-martingale property of the value process is formulated in Proposition 1.6 below. First we have to recall a definition from [7] which extends the notion of a super-martingale beyond the framework of càdlàg processes.

**Definition 1.5.** An optional process  $X = (X_t)_{0 \le t \le T}$  is called an optional strong super-martingale *if*, for all stopping times  $0 \le \sigma \le \tau \le T$  we have

$$\mathbb{E}[X_{\tau} \mid \mathcal{F}_{\sigma}] \le X_{\sigma},\tag{11}$$

where we also impose that  $X_{\tau}$  is integrable.

An optional strong super-martingale can be decomposed in the style of Doob-Meyer which is known under the name of Mertens decomposition (see [7]). X is an optional strong super-martingale if and only if it can be decomposed into

$$X = M - A,\tag{12}$$

where M is a local martingale (and therefore càdlàg) as well as a supermartingale, and A an increasing predictable process (which is làdlàg but has no reason to be càdlàg). This decomposition then is unique. **Proposition 1.6.** Fix S, transaction costs  $1 > \lambda > 0$ , and an admissible self-financing trading strategy  $\varphi = (\varphi^0, \varphi^1)$  as above. Suppose that  $(\tilde{S}, Q)$  is a consistent price system under transaction costs  $\lambda$ . Then the process

$$\widetilde{V}_t := \varphi_t^0 + \varphi_t^1 \widetilde{S}_t, \qquad 0 \le t \le T,$$

satisfies  $\widetilde{V} \geq V^{liq}$  and is an optional strong super-martingale under Q.

Proof. The assertion  $\widetilde{V} \geq V^{\text{liq}}$  is an obvious consequence of  $\widetilde{S} \in [(1-\lambda)S, S]$ . We have to show that  $\widetilde{V}$  decomposes as in (12). Arguing formally, we may apply the product rule to obtain

$$d\widetilde{V}_t = (d\varphi_t^0 + \widetilde{S}_t d\varphi_t^1) + \varphi_t^1 d\widetilde{S}_t$$
(13)

so that

$$\widetilde{V}_t = \int_0^t (d\varphi_u^0 + \widetilde{S}_u d\varphi_u^1) + \int_0^t \varphi_u^1 d\widetilde{S}_u.$$
(14)

The first term in (14) is decreasing by (5) and the fact that  $\tilde{S} \in [(1-\lambda)S, S]$ . The second term defines, at least formally speaking, a local Q-martingale so that the sum of the two integrals is an (optional strong) super-martingale.

The justification of the above formal reasoning deserves some care (compare the proof of Lemma 8, in [2]). Suppose first that  $\varphi$  is continuous. In this case  $\varphi$  is a semi-martingale so that we are allowed to apply Itô calculus to  $\tilde{V}$ . Formula (14) therefore makes perfect sense as an Itô integral, bearing in mind that  $\varphi$  has finite variation. The first integral in (14) now is a welldefined decreasing predictable process. As regards the second integral, note that by the admissibility of  $\varphi$  it is uniformly bounded from below. Hence by a result of Ansel-Stricker ([1], see also [15]) it is a local Q-martingale as well as a super-martingale. Hence  $\tilde{V}$  is indeed a super-martingale under Q (in the classical càdlàg sense).

Passing to the case when  $\varphi$  is allowed to have jumps, the process  $\tilde{V}$  need not be càdlàg anymore. It still is an optional process and we have to verify that it decomposes as in (12). Assume first that  $\varphi$  is of the form

$$\varphi_t = (f^0, f^1) \mathbb{1}_{[\tau, T]}(t), \tag{15}$$

where  $(f^0, f^1) = \Delta_+(\varphi^0_\tau, \varphi^1_\tau)$  are  $\mathcal{F}_\tau$ -measurable bounded random variables verifying (10) and  $\tau$  is a [0, T]-stopping time. We obtain

$$\widetilde{V}_{t} = [\Delta_{+}\varphi_{\tau}^{0} + (\Delta_{+}\varphi_{\tau}^{1})\widetilde{S}_{t}]\mathbb{1}_{]\!]\tau,T]\!](t)$$

$$= [\Delta_{+}\varphi_{\tau}^{0} + (\Delta_{+}\varphi_{\tau}^{1})\widetilde{S}_{\tau}]\mathbb{1}_{]\!]\tau,T]\!](t) + (\Delta_{+}\varphi_{\tau}^{1})(\widetilde{S}_{t} - \widetilde{S}_{\tau})\mathbb{1}_{]\!]\tau,T]\!](t)$$
(16)

Again, the first term is a decreasing predictable process and the second term is a local martingale under Q.

Next assume that  $\varphi$  is of the form

$$\varphi_t = (f^0, f^1) \mathbb{1}_{\llbracket \tau, T \rrbracket}(t), \tag{17}$$

where  $\tau$  is a predictable stopping time, and  $(f^0, f^1) = \Delta(\varphi^0_{\tau}, \varphi^1_{\tau})$  are bounded  $\mathcal{F}_{\tau_-}$ -measurable random variables verifying (9). Similarly as in (16) we obtain

$$\widetilde{V}_{t} = [\Delta \varphi_{\tau}^{0} + (\Delta \varphi_{\tau}^{1}) \widetilde{S}_{t}] \mathbb{1}_{\llbracket \tau, T \rrbracket}(t) = [\Delta \varphi_{\tau}^{0} + (\Delta \varphi_{\tau}^{1}) \widetilde{S}_{\tau_{-}}] \mathbb{1}_{\llbracket \tau, T \rrbracket}(t) + (\Delta \varphi_{\tau}^{1}) (\widetilde{S}_{t} - \widetilde{S}_{\tau_{-}}) \mathbb{1}_{\llbracket \tau, T \rrbracket}(t)$$
(18)

Once more, the first term is a decreasing predictable process (this time it is even càdlàg) and the second term is a local martingale under Q.

Finally we have to deal with a general admissible self-financing trading strategy  $\varphi$ . To show that  $\widetilde{V}$  is of the form (12) we first assume that the total variation of  $\varphi$  is uniformly bounded. We decompose  $\varphi$  into its continuous and purely discontinuous part  $\varphi = \varphi^c + \varphi^{pd}$ . We also may find a sequence  $(\tau_n)_{n=1}^{\infty}$ of  $[0,T] \cup \{\infty\}$ -valued stopping times such that the supports  $(\llbracket \tau_n \rrbracket)_{n=1}^{\infty}$  are mutually disjoint and  $\bigcup_{n=1}^{\infty} \llbracket \tau_n \rrbracket$  exhausts the right jumps of  $\varphi$ . Similarly, we may find a sequence  $(\tau_n^p)_{n=1}^{\infty}$  of predictable stopping times such that their supports  $(\llbracket \tau_n^p \rrbracket)_{n=1}^{\infty}$  are mutually disjoint and  $\bigcup_{n=1}^{\infty} \llbracket \tau_n^p \rrbracket$  exhausts the left jumps of  $\varphi$ . We apply the above argument to  $\varphi^c$  and to each  $\tau_n, \Delta_+\varphi_{\tau_n}$  and  $\tau_n^p, \Delta\varphi_{\tau_n^p}$ , and sum up the corresponding terms in (14), (16) and (18). This sum converges to  $\widetilde{V} = M - A$ , where M is a local Q-martingale and A an increasing process, as we have assumed that the total variation of  $\varphi$  is bounded (compare [11] and the proof of Lemma 8 in [2]). By the boundedness from below we conclude that M is also a super-martingale.

Passing to the case where  $\varphi$  has only finite instead of uniformly bounded variation, we use the predictability of  $\varphi$  to find a localizing sequence  $(\sigma_k)_{k=1}^{\infty}$ such that each stopped process  $\varphi^{\sigma_k}$  has uniformly bounded variation. Apply the above argument to each  $\varphi^{\sigma_k}$  to obtain the same conclusion for  $\varphi$ .

Summing up, we have shown that  $\tilde{V}$  admits a Mertens decomposition (12) and therefore is an optional strong super-martingale.

We can now state the analogous result to Proposition 1.2 in the presence of transaction costs. **Theorem 1.7.** Fix S and  $1 > \lambda > 0$  as above, and suppose that S satisfies  $(CPS^{\lambda'})$ , for each  $1 > \lambda' > 0$ .

Let  $\varphi = (\varphi_t^0, \varphi_t^1)_{0 \le t \le T}$  be an admissible, self-financing trading strategy under transaction costs  $\lambda$ , starting with zero endowment, and suppose that there is x > 0 s.t. for the terminal liquidation value  $V_T^{liq}$  we have a.s.

$$V_T^{liq}(\varphi^0, \varphi^1) = \varphi_T^0 + (\varphi_T^1)^+ (1 - \lambda)S_T - (\varphi_T^1)^- S_T \ge -x.$$
(19)

We then also have that

$$V_{\tau}^{liq}(\varphi^{0},\varphi^{1}) = \varphi_{\tau}^{0} + (\varphi_{\tau}^{1})^{+}(1-\lambda)S_{\tau} - (\varphi_{\tau}^{1})^{-}S_{\tau} \ge -x,$$
(20)

a.s., for every stopping time  $0 \le \tau \le T$ .

*Proof.* Supposing that (20) fails, we may find  $\frac{\lambda}{2} > \alpha > 0$ , and a stopping time  $0 \le \tau \le T$ , such that either  $A = A_+$  or  $A = A_-$  satisfies  $\mathbb{P}[A] > 0$ , where

$$A_{+} = \{\varphi_{\tau}^{1} \ge 0, \, \varphi_{\tau}^{0} + \varphi_{\tau}^{1} \frac{1-\lambda}{1-\alpha} S_{\tau} < -x\},$$
(21)

$$A_{-} = \{\varphi_{\tau}^{1} \le 0, \, \varphi_{\tau}^{0} + \varphi_{\tau}^{1}(1-\alpha)^{2}S_{\tau} < -x\}.$$
(22)

Choose  $0 < \lambda' < \alpha$  and a  $\lambda'$ -consistent price system  $(\tilde{S}, Q)$ . As  $\tilde{S}$  takes values in  $[(1 - \lambda')S, S]$ , we have that  $(1 - \alpha)\tilde{S}$  as well as  $\frac{1-\lambda}{1-\alpha}\tilde{S}$  take values in  $[(1 - \lambda)S, S]$  so that  $((1 - \alpha)\tilde{S}, Q)$  as well as  $(\frac{1-\lambda}{1-\alpha}\tilde{S}, Q)$  are consistent price systems under transaction costs  $\lambda$ . By Proposition 1.6 we obtain that

$$\left(\varphi_t^0 + \varphi_t^1(1-\alpha)\widetilde{S}_t\right)_{0 \le t \le T}$$
 and  $\left(\varphi_t^0 + \varphi_t^1 \frac{1-\lambda}{1-\alpha}\widetilde{S}_t\right)_{0 \le t \le T}$ 

are optional strong Q-super-martingales. Arguing with the second process using  $\widetilde{S} \leq S$ , we obtain from (21) the inequality

$$\mathbb{E}_{Q}[V_{T}^{liq} \mid A_{+}] \leq \mathbb{E}_{Q}\left[\varphi_{T}^{0} + \varphi_{T}^{1}\frac{1-\lambda}{1-\alpha}\widetilde{S}_{T}\Big|A_{+}\right]$$
$$\leq \mathbb{E}_{Q}\left[\varphi_{\tau}^{0} + \varphi_{\tau}^{1}\frac{1-\lambda}{1-\alpha}\widetilde{S}_{\tau}\Big|A_{+}\right]$$
$$\leq \mathbb{E}_{Q}\left[\varphi_{\tau}^{0} + \varphi_{\tau}^{1}\frac{1-\lambda}{1-\alpha}S_{\tau}\Big|A_{+}\right] < -x$$

Arguing with the first process and using that  $\widetilde{S} \geq (1 - \lambda')S \geq (1 - \alpha)S$ (which implies that  $\varphi_{\tau}^{1}(1-\alpha)\widetilde{S}_{\tau} \leq \varphi_{\tau}^{1}(1-\alpha)^{2}S_{\tau}$  on  $A_{-}$ ) we obtain from (22) the inequality

$$\begin{split} \mathbb{E}_Q[V_T^{liq} \mid A_-] &\leq \mathbb{E}_Q\left[\varphi_T^0 + \varphi_T^1(1-\alpha)\widetilde{S}_T | A_-\right] \\ &\leq \mathbb{E}_Q\left[\varphi_\tau^0 + \varphi_\tau^1(1-\alpha)\widetilde{S}_\tau | A_-\right] \\ &\leq \mathbb{E}_Q\left[\varphi_\tau^0 + \varphi_\tau^1(1-\alpha)S_\tau^2 | A_-\right] < -x. \end{split}$$

Either  $A_+$  or  $A_-$  has strictly positive probability; hence we arrive at a contradiction to  $V_T^{liq} \ge -x$  almost surely.

## 2 A Counter-Example

The assumption  $(CPS^{\lambda'})$ , for each  $\lambda' > 0$ , cannot be dropped in Proposition 1.7 as shown by the example presented in the next lemma.

**Lemma 2.1.** Fix  $1 > \lambda \ge \lambda' > 0$  and C > 1. There is a continuous process  $S = (S_t)_{0 \le t \le 1}$  satisfying  $(CPS^{\lambda'})$ , and a  $\lambda$ -self-financing, admissible trading strategy  $(\varphi^0, \varphi^1) = (\varphi^0_t, \varphi^1_t)_{0 \le t \le 1}$  such that

$$V_1^{liq}(\varphi^0, \varphi^1) \ge -1, \qquad a.s. \qquad (23)$$

while

$$\mathbb{P}\left[V_{\frac{1}{2}}^{liq}(\varphi^0,\varphi^1) \le -C\right] > 0.$$
(24)

*Proof.* In order to focus on the central (and easy) idea of the construction we first show the assertion for the constant  $C = 2 - \lambda$  and under the assumption  $\lambda = \lambda'$ . In this case we can give a deterministic example, i.e.  $S, \varphi^0$  and  $\varphi^1$  will not depend on the random element  $\omega \in \Omega$ .

Define  $S_0 = S_1 = 1$ , and  $S_{\frac{1}{2}} = 1 - \lambda$  where we fix T = 1.

To make  $S = (S_t)_{0 \le t \le T}$  continuous, we interpolate linearly, i.e.

$$S_t = 1 - 2t\lambda, \qquad 0 \le t \le \frac{1}{2}, \qquad (25)$$

$$S_t = 1 - 2(1 - t)\lambda, \qquad \frac{1}{2} \le t \le 1.$$
 (26)

Note that condition  $(CPS^{\lambda})$  is satisfied, as the constant process  $\widetilde{S}_t \equiv (1-\lambda)$  defines a  $\lambda$ -consistent price system: it trivially is a martingale (under any probability measure) and takes values in  $[(1-\lambda)S, S]$ .

Starting from the initial endowment  $(\varphi_0^0, \varphi_0^1) = (0, 0)$ , we might invest, at time t = 0, the maximal amount into the stock so that at time t = 1

condition (23) holds true. In other words, we let  $\varphi_{0_+}^1 = -\varphi_{0_+}^0$  be the biggest number such that

$$(1-\lambda)\varphi_{0_{+}}^{1}+\varphi_{0_{+}}^{0}\geq -1,$$

which clearly gives  $\varphi_{0_+}^1 = \frac{1}{\lambda}$ . Hence  $(\varphi_t^0, \varphi_t^1) = (-\frac{1}{\lambda}, \frac{1}{\lambda})$ , for all  $0 < t \leq T$ , is a self-financing strategy, starting at  $(\varphi_0^0, \varphi_0^1) = (0, 0)$  for which (23) is satisfied. Looking at (24) we calculate

$$V_{\frac{1}{2}}(\varphi^0,\varphi^1) = (1-\lambda) \cdot (1-\lambda) \cdot \frac{1}{\lambda} - \frac{1}{\lambda} = -2 + \lambda.$$

In order to replace  $\lambda' = \lambda$  by an arbitrarily small constant  $\lambda' > 0$ , and  $C = 2 - \lambda$  by an arbitrarily large constant C > 1, we make the following observation: if the initial endowment  $(\varphi_0^0, \varphi_0^1) = (0, 0)$  were replaced by  $(\varphi_0^0, \varphi_0^1) = (M, 0)$ , for some large M, the agent could play the above game on a larger scale: she could choose  $(\varphi_t^0, \varphi_t^1) = (M - \frac{M+1}{\lambda}, \frac{M+1}{\lambda})$ , for  $0 < t \le 1$ , to still satisfy (23):

$$V_1(\varphi^0, \varphi^1) = M - \frac{M+1}{\lambda} + (1-\lambda)\frac{M+1}{\lambda} = -1.$$

As regards the liquidation value  $V_{\frac{1}{2}}^{liq}$ , we now assume  $S_{\frac{1}{2}} = 1 - \lambda'$  (instead of  $S_{\frac{1}{2}} = 1 - \lambda$  in (25) and (26)) to make sure that  $(CPS^{\lambda'})$  holds true. The liquidation value at time  $t = \frac{1}{2}$  then becomes

$$V_{\frac{1}{2}}^{liq}(\varphi^0,\varphi^1) = M - \frac{M+1}{\lambda} + (1-\lambda)(1-\lambda')\frac{M+1}{\lambda}$$
$$= M - (M+1)[1+\lambda'(\frac{1}{\lambda}-1)]$$

which tends to  $-\infty$ , as  $M \to \infty$  in view of  $0 < \lambda' \le \lambda < 1$ .

Turning back to the original endowment  $(\varphi_0^0, \varphi_0^1) = (0, 0)$ , the idea is that, during the time interval  $[0, \frac{1}{4}]$ , the price process S provides the agent with the opportunity to become rich with positive probability, i.e.  $\mathbb{P}[(\varphi_{\frac{1}{4}}^0, \varphi_{\frac{1}{4}}^1) = (M, 0)] > 0$ . We then play the above game, conditionally on the event  $\{(\varphi_{\frac{1}{4}}^0, \varphi_{\frac{1}{4}}^1) = (M, 0)\}$  and with [0, 1] replaced by  $[\frac{1}{4}, 1]$ .

The subsequent construction makes this idea concrete. Let  $(\mathcal{F}_t)_{0 \leq t \leq 1}$  be generated by a Brownian motion  $(W_t)_{0 \leq t \leq 1}$ . Fix disjoint sets  $A_+$  and  $A_-$  in  $\mathcal{F}_{\frac{1}{8}}$  such that  $\mathbb{P}[A_+] = \frac{1}{2\widetilde{M}-1}$  and  $\mathbb{P}[A_-] = 1 - \mathbb{P}[A_+]$ , where  $\widetilde{M} > 1$  is defined by  $M = -1 + \widetilde{M}(1 - \lambda')$ . The set  $A_+$  is split into two sets  $A_{++}$  and  $A_{+-}$  such that  $A_{++}$  and  $A_{+-}$  are in  $\mathcal{F}_{\frac{1}{4}}$  and

$$\mathbb{P}\left[A_{++}\middle|\mathcal{F}_{\frac{1}{8}}\right] = \mathbb{P}\left[A_{+-}\middle|\mathcal{F}_{\frac{1}{8}}\right] = \frac{1}{2}\mathbb{1}_{A_{+}}.$$

We define  $S_{\frac{1}{4}}$  by

$$S_{\frac{1}{4}} = \begin{cases} 2\widetilde{M} - 1 & \text{on } A_{++} \\ 1 & \text{on } A_{+-} \\ \frac{1}{2} & \text{on } A_{-} \end{cases}$$

and

$$S_t = \mathbb{E}\left[S_{\frac{1}{4}}|\mathcal{F}_t\right], \qquad 0 \le t \le \frac{1}{4}, \qquad (27)$$

so that  $(S_t)_{0 \le t \le \frac{1}{4}}$  is a continuous  $\mathbb{P}$ -martingale. The numbers above were designed in such a way that

$$S_0 = 1,$$

and

$$S_{\frac{1}{8}} = \begin{cases} \widetilde{M} & \text{on } A_+ \\ \frac{1}{2} & \text{on } A_- \end{cases}$$

To define  $S_t$  also for  $\frac{1}{4} < t \leq 1$  we simply let  $S_t = S_{\frac{1}{4}}$  on  $A_{++} \cup A_{-}$ while, conditionally on  $A_{+-}$ , we repeat the above deterministic construction on  $[\frac{1}{4}, 1]$ :

$$S_t = 1 - 4(t - \frac{1}{4})\lambda', \qquad \frac{1}{4} \le t \le \frac{1}{2}, \\ S_t = 1 - 2(1 - t)\lambda', \qquad \frac{1}{2} \le t \le 1.$$

This defines the process S. Condition  $(CPS^{\lambda'})$  is satisfied as  $(\widetilde{S}_t)_{0 \le t \le 1} := ((1 - \lambda')S_{t \land \frac{1}{4}})_{0 \le t \le 1}$  is a  $\mathbb{P}$ -martingale taking values in the bid-ask spread  $[(1 - \lambda')S_t, S_t]_{0 \le t \le 1}$ .

Let us now define the strategy  $(\varphi^0, \varphi^1)$ : starting with  $(\varphi_0^0, \varphi_0^1) = (0, 0)$ we define  $(\varphi_t^0, \varphi_t^1) = (-1, 1)$ , for  $0 < t \leq \frac{1}{8}$ . In prose: the agent buys one stock at time t = 0 and holds it until time  $t = \frac{1}{8}$ . At time  $t = \frac{1}{8}$  she sells the stock again, so that  $(\varphi_{\frac{1}{8}}^0, \varphi_{\frac{1}{8}}^1) = (-1 + \frac{(1-\lambda)}{2}, 0)$  on  $A_-$ , while  $(\varphi_{\frac{1}{8}_+}^0, \varphi_{\frac{1}{8}_+}^1) = (-1 + \widetilde{M}(1-\lambda'), 0) = (M, 0)$  on  $A_+$ .

On  $A_{-}$  we simply define  $(\varphi_t^0, \varphi_t^1) = (-1 + \frac{1-\lambda}{2}, 0)$ , for all  $\frac{1}{8} < t \le 1$  and note that (23) is satisfied on  $A_{-}$ .

On  $A_+$  we define  $(\varphi_t^0, \varphi_t^1) = (M, 0)$ , for  $\frac{1}{8} < t \leq \frac{1}{4}$ . In prose: during  $]\frac{1}{8}, \frac{1}{4}]$  the agent does not invest into the stock and is happy about the M bonds in her portfolio. At time  $t = \frac{1}{4}$  we distinguish two cases: on  $A_{++}$  we continue to define  $(\varphi_t^0, \varphi_t^1) = (M, 0)$ , also for  $\frac{1}{4} < t \leq 1$ . On  $A_{+-}$  we let  $(\varphi_t^0, \varphi_t^1) = (M - \frac{M+1}{\lambda}, \frac{M+1}{\lambda})$ , for  $\frac{1}{4} < t \leq 1$ . As discussed above, inequality (23) then holds true almost surely, while  $V_{\frac{1}{2}}(\varphi^0, \varphi^1)$  attains the value  $M - (M+1)[1 + \lambda'(\frac{1}{\lambda} - 1)]$  which tends to  $-\infty$  as M tends to  $\infty$ . This happens with positive probability  $\mathbb{P}[A_{+-}] > 0$ .

The construction of the example now is complete.

Acknowledgement. I warmly thank Irene Klein without whose encouragement this note would not have been written and who strongly contributed to its shaping. Thanks go also to Christoph Czichowsky for his advice on some of the subtle technicalities of this note.

### References

- J.P. Ansel, C. Stricker, Couverture des actifs contingents et prix maximum, Annales de l'Institut Henri Poincaré – Probabilités et Statistiques, 30 (1994), 303–315.
- [2] L. Campi, W. Schachermayer, A super-replication theorem in Kabanov's model of transaction costs, Finance and Stochastics, 10 (2006), 579–596.
- J. Cvitanić, I. Karatzas, Hedging and portfolio optimization under transaction costs: A martingale approach, Mathematical Finance, 6 (1996), no. 2, 133–165.
- [4] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 300 (1994), no. 1, 463–520.
- [5] F. Delbaen, W. Schachermayer, *The mathematics of arbitrage*, Springer (2006).
- [6] C. Dellacherie and P. A. Meyer. Probabilities and Potential A. North-Holland, 1978.

- [7] C. Dellacherie and P. A. Meyer. *Probabilities and Potential B. Theory* of *Martingales*. North-Holland, 1982.
- [8] P. Guasoni, M. Rásonyi, W. Schachermayer, The fundamental theorem of asset pricing for continuous processes under small transaction costs, Annals of Finance, 6 (2008), no. 2, 157–191.
- [9] J.M. Harrison, D.M. Kreps, Martingales and Arbitrage in Multiperiod Securities Markets, Journal of Economic Theory, 20 (1979), 381–408.
- [10] E. Jouini, H. Kallal, Martingales and arbitrage in securities markets with transaction costs, J. Econ. Theory, 66 (1995), 178–197.
- [11] Yu. M. Kabanov, Ch. Stricker, *Hedging of contingent claims under trans*action costs, In: K. Sandmann and Ph. Schönbucher (eds.) Advances in Finance and Stochastics. Essays in Honour of Dieter Sondermann, Springer (2002), 125–136.
- [12] Y.M. Kabanov, M. Safarian, Markets with Transaction Costs: Mathematical Theory, Springer Finance (2009).
- [13] I. Karatzas, S.E. Shreve, Methods of Mathematical Finance. Springer-Verlag, New York (1998).
- [14] W. Schachermayer, Martingale Measures for discrete-time processes with infinite horizon, Mathematical Finance, 4 (1994), no. 1, 25–55.
- [15] E. Strasser, (2003), Necessary and sufficient conditions for the supermartingale property of a stochastic integral with respect to a local martingale. Séminaire de Probabilités XXXVII, Springer Lecture Notes in Mathematics 1832, pp. 385–393.