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1. Introduction

We consider the following version of the Burkholder-Davis-Gundy inequality [8], [10]:

Theorem 1.1. There is a constant C ą 0 such that, for every bounded stopping time
τ , we have

E
”

τ
1
2

ı

ď C ErB˚pτqs. (1)
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Here pBptqqtě0 denotes a standard Brownian motion, starting at Bp0q “ 0. By B˚ptq
we denote the corresponding running maximum of the absolute value

B˚ptq :“ sup
0ďuďt

|Bpuq|.

It is obvious that the set of constants C which satisfy inequality (1) is a closed, unbounded
interval in R`. By the results of [5] it is known that C “ 3

2 is contained in this set. To
the best of our knowledge, this is the smallest constant known in the previous literature.
In the present paper we establish the optimal value for this constant.

Theorem 1.2. There is an ordinary integro-differential equation (see (31) below) de-
pending on real parameters C ą 0 and t0 ą 0 such that C satisfies (1) if and only if there
is t0 such that this equation has a well-defined solution.

Numerical solutions of the equation (31) reveal that the smallest such C, i.e. the
optimal constant in the Burkholder-Davis-Gundy inequality (1), equals

pC « 1, 27267 . . . .

The paper is organised as follows. As usual in stochastic control theory, we first in-
troduce the value function of the optimal stopping problem which corresponds to the
inequality (1). After some structural facts about the stopping problem we turn to some
analytic properties of the value function in Section 3. We deduce the OIDE (ordinary
integro-differential equation) which is referred to in Theorem 1.2. The subsequent section
is devoted to properties of solutions to the fundamental OIDE (31) which are needed to
identify these solutions with the value function of the stopping problem in Section 5.

The critical pt0 ą 0 associated to the optimal constant pC via (31) below also turns out
to be of somewhat independent interest: if ρ denotes the first moment, say after t “ 1,
when t is bigger than cB˚ptq2, then Erρ 1

2 s is finite or infinite depending on whether c
is smaller or bigger than pt0 (Proposition 5.6 and 5.7). In Section 6 we state a pointwise
version of the BDG inequalities and in Section 7 we briefly discuss the case of general
0 ă p ă 2 without entering into a numerical analysis. Finally, in Section 8 we discuss
the fact why the constant pC “

?
3 which was established by D. Burkholder [7] as the

optimal constant for (1) in the case of martingales which are not necessarily continuous,

is different from the present constant pC “ 1, 27267 . . . which holds true for continuous
processes. We relate this discrepancy with a certain lack of concavity of the value function.

2. The Value Function of an Optimal Stopping
Problem

Fix a constant C ą 0. Following a well-known path in optimal control theory we define
the value function

V pt, b, b˚q :“ sup
τPT ptq

Ept,b,b
˚
qrτ

1
2 ´ CB˚pτqs, (2)
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where T ptq denotes the set of bounded stopping times τ ě t and Ept,b,b˚q denotes the
expectation conditionally on starting the Brownian motion B at time t with the values
Bt “ b, B˚t “ b˚. The domain of definition of V is

D “ tpt, b, b˚q : 0 ď t ă 8, 0 ď |b| ď b˚ ă 8u. (3)

Equivalently we can write

V pt, b, b˚q :“ sup
τPT

Er
?
t` τ ´ Cpb˚ _ pb`Bpτqq˚s, (4)

which follows from the strong Markov property and stationarity of increments of Brow-
nian motion.

Denote by pC the infimum of C ą 0 such that (1) holds true. Clearly pC still satisfies

(1). If C ă pC then V pt, b, b˚q ” 8, otherwise we have:

Lemma 2.1. Let C ě pC then V defined via (2) is

(i) continuous,
(ii) finite-valued, and

(iii) t ÞÑ V pt, b, b˚q ´
?
t is decreasing for fixed |b| ď b˚.

In particular (ii) follows from the bounds
?
t` Cb˚ ě V pt, b, b˚q ě

?
t´ Cb˚. (5)

Proof. The lower bound of V follows from choosing the stopping time t P T ptq. For the
upper bound observe that we can estimate for an arbitrary τ P T

?
t` τ ´ Cpb˚ _ pb`Bpτqq˚ ď

?
t`

?
τ ´ Cpb`Bpτqq˚

ď
?
t`

?
τ ´ CBpτq˚ ` C|b|

ď
?
t` Cb˚ `

?
τ ´ CBpτq˚.

Taking expectations we get the upper bound for V from the representation in (4).
Next observe that for τ P T we have for t ă t1

?
t` τ ´ Cpb˚ _ pb`Bpτqq˚ ´

?
t ď

?
t1 ` τ ´ Cpb˚ _ pb`Bpτqq˚ ´

?
t1

by concavity of the square root. Now (iii) follows by taking expectations suprema.
For (i), please refer to Sections 7 and 9.2 in [14].

To exclude the trivial case, we assume in the sequel that C ě pC.
For fixed C, the stopping region S Ď D and the non-stopping region NS Ď D are

defined by

S :“ tV “ t
1
2 ´ Cb˚u, NS :“ tV ą t

1
2 ´ Cb˚u. (6)

To characterize the stopping region S first note that it is certainly not a good idea to
stop when |Bptq| ă B˚ptq.
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Lemma 2.2. Let pt, b, b˚q P D with |b| ă b˚. Then pt, b, b˚q P NS.

Proof. Consider the first exit time of the interval r´b˚, b˚s.

Next we observe a useful scaling property of V (compare Burkholder [7]).

Lemma 2.3. For a ą 0 and pt, b, b˚q P D, we have

V pa2t, ab, ab˚q “ aV pt, b, b˚q. (7)

Proof. This follows directly from the scaling property of Brownian motion: if pBtqtě0 is
a standard Brownian motion, then pa´1Ba2tqtě0 again is a standard Brownian motion.
Also, a random time a2τ is a stopping time for the first process if and only if τ is a
stopping time for the second process.

This allows us to derive the following Lemma where the first part is a direct conse-
quence of Lemmas 2.1 (iii) and 2.3 and the second part is technical and deferred to the
appendix in Lemma B.3.

Lemma 2.4. Let 0 ď t ď t1 and b P R. Then pt, b, |b|q P S implies pt1, b, |b|q P S.

Hence, for fixed C ě pC there is a smallest t0 P r0,8s such that pt, b, |b|q P S if and
only if

t

|b|2
ě t0. (8)

In fact, we have t0 P p0,8q.

The next result is a standard result in optimal control theory and also intuitively
rather obvious. Again, the proof is deferred to the appendix.

Lemma 2.5. Suppose C ě pC and let pt, b, b˚q be in the non-stop region NS. Consider a
Brownian motion pBpuqqtďu starting at time t conditionally on Bptq “ b and B˚ptq “ b˚.
Let τ be the first hitting time of the stopping region S, i.e.

τ “ inftu ě t : pu,Bpuq, B˚puqq P Su (9)

Then the value process stopped at time τ

Mpuqτ :“ V pu^ τ,Bpu^ τq, B˚pu^ τqq, u ě t, (10)

is a martingale.
The unstopped value process

Mpuq :“ V pu,Bpuq, B˚puqq, u ě t, (11)

still is a supermartingale.
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We conclude this section with a minor technical remark. In the above statement, as
well as in most of the paper, we follow the usual language of optimal control theory to
condition on the event tBptq “ b, B˚ptq “ b˚u. As this is a null set under P this procedure
needs some proper interpretation in order to make it rigorous.

Let us now introduce some notation to make this a bit clearer.
We denote by pFpuqquě0 the (right-continuous, saturated) filtration generated by the

Brownian motion pBpuqquě0. Of course, in definition (2) the stopping time τ P T ptq
is understood with respect to this filtration. But it is clear from the Markov property
that, for fixed pt, b, b˚q, we may assume that τ P T ptq depends only on the behavior of the
Brownian motion pBpuqquět after time t and not on the previous behavior of pBpuqq0ďuďt
(except for the requirements Bptq “ b and B˚ptq “ b˚).

To formalize this fact, we denote by pGptqpuqquět the (right-continuous, saturated)
filtration generated by pBpuq ´ Bptqquět. A stopping time τ P T ptq (i.e., with respect
to the filtration pFpuqquě0) then may also be considered as a randomized stopping time
with respect to the filtration pGptqpuqquět, the randomization given by the trajectories of
pBpuqq0ďuďt. As pBpuqq0ďuďt is independent of the filtration pGptqpuqquět, we conclude
that the value of (2) does not change whether we optimize over the randomized or
the non-randomized stopping times with respect to the filtration pGptqpuqquět. For an
introduction to the notion of randomized stopping times, please refer to [3]

The bottom line of these considerations is that we may assume w.l.o.g. in (2) that
τ P T ptq is a stopping time with respect to the filtration pGptqpuqquět.

Now, the statement Lemma 2.5 could be rephrased without referring to conditioning
on a null set, by noting that τ is a stopping time with respect to the filtration pGptqpuqqtďu.

All other statements in the paper referring to conditioning on the values Bptq and
B˚ptq could be made rigorous in an analogous way if the reader insists, but we do not
further elaborate on these technicalities.

3. The Value Function from an Analytic Perspective

Again fix C ě pC. Differentiating the scaling equation (7) with respect to a and setting
a “ 1 we obtain, at least formally, the PDE

2tVt ` bVb ` b
˚Vb˚ “ V. (12)

The optimal constant C for inequality (1) will be determined by analyzing whether
this PDE has a reasonable solution for given C ą 0 or not.

We need some preparation. For 0 ă h ă 1 we denote by fhpsq the density of the
distribution of the stopping time ρh “ inftt : |Bptq| “ 1u, where B is a Brownian motion
starting at Bp0q “ 1´ h.

Define

gpsq “ lim
hŒ0

fhpsq

h
, s ą 0.
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It is well-known (e.g. [11, Exercise 2.2.8.11]) that there is an explicit representation
of fhpsq as an infinite sum. By differentiation of each summand we obtain an explicit
infinite sum representation also for gpsq (see the appendix below).

The function g appears in the formulation of the subsequent lemma which will turn
out to be of crucial relevance for our analysis.

Lemma 3.1. Let W : D Ñ R` be a continuous function such that

(a) b˚ ÞÑW pt, b, b˚q is Lipschitz continuous and
(b) W pt, 1, 1q ´

?
t is decreasing.

Furthermore let S Ď D be defined by SW :“ tpt, b, |b|q P D : t{b2 ě tW u for some fixed
tW . Consider a standard Brownian Motion Bptq and define τW to be the first hitting time
of SW . Suppose that Xptq :“ W pt, Bptq, B˚ptqq is a supermartingale and Xpt ^ τW q is
a martingale. Further assume that the process Xpt ^ τW ^ σhq is uniformly integrable
where σh is given by σh :“ infts ě t : |Bpsq| “ 1` hu.

Then,

(i)

Wb˚pt, 1, 1q :“ lim
hŒ0

1

h
rW pt, 1, 1` hq ´W pt, 1, 1qs “ 0 (13)

for 0 ă t ă tW

(ii)

Wbpt, 1, 1q :“ lim
hŒ0

1

h
rW pt, 1, 1q ´W pt, 1´ h, 1s (14)

“ ´

ż 8

0

rW pt` s, 1, 1q ´W pt, 1, 1qsgpsqds

Observe that (i) in the above Lemma would follow directly from Ito’s formula if we
assume that W is sufficiently differentiable by considering

dXptq “ pWt `
1
2Wbbqdt`WbdBptq `Wb˚dB

˚ptq (15)

which is the increment of a martingale. The process dB˚ptq is non-decreasing and its
variation is a.s. singular with respect to Lebesgue measure. A necessary condition for
pW pt, Bptq, B˚ptqqqτWět to be a martingale therefore is that Wb˚ vanishes a.s. with re-
spect to the variation measure of dB˚. This indicates that Wb˚pt, b, b

˚q “ 0 should hold
true whenever |b| “ b˚ and pt, b, b˚q is in the non-stop region NS. In particular, we should
have Wb˚pt, 1, 1q “ 0, for t ă tW .

Proof of 3.1. (i) For h ą 0 as in (13) define, conditionally on Bptq “ 1 and B˚ptq “ 1,
the stopping times

σh :“ inftu ě t : |Bpuq| “ 1` hu and (16)

τh :“ σh ^ τW . (17)
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Recall that the random variable τW is a stopping time with respect to the filtration
pGptqpuqqtďu. Note that the process pu,Bpuq, B˚puqquět, starting at Bptq “ 1 and B˚ptq “
1`h, also remains in DzSW up to the stopping time τW . To see this, we distinguish two
cases:

(i) t ď u ă τh: Here we have Bpuq ă 1`h “ B˚puq and thus pu,Bpuq, B˚puqq P DzSW .
(ii) τh ď u ă τW : In this case B˚puq is the same for B˚ptq “ 1 and B˚ptq “ 1` h.

As t ă t0 we have that τ is a.s. strictly positive. This implies that

lim
hŒ0

Prσh “ τhs “ 1, (18)

as limhŒ0 σ
h “ t, almost surely.

We may write

W pt, 1, 1` hq ´W pt, 1, 1q (19)

“ Ept,1,1`hqrW pτh, Bpτhq, B˚pτhqqs ´ Ept,1,1qrW pτh, Bpτhq, B˚pτhqqs

“ Ept,1,1`hqrW pτh, Bpτhq, 1` hqs ´ Ept,1,1qrW pτh, Bpτhq, B˚pτhqqs.

Here we use that B˚pτhq “ 1 ` h conditionally on B˚ptq “ 1 ` h as τh ď σh by
definition. Furthermore we make use of the martingale property of W pt, Bptq, B˚ptqq and
the optional stopping theorem. For the use of the latter we need the assumption that
pW pu^ τh, Bpu^ τhq, B˚pu^ τhqqquět is uniformly integrable.

On the set tσh “ τhu we have B˚pτhq “ B˚pσhq “ 1 ` h for both initial conditions
Bptq “ 1, B˚ptq “ 1`h andBptq “ 1, B˚ptq “ 1. Therefore, the valueW pτh, Bpτhq, B˚pτhqq
is the same under both initial conditions. It follows that

Ept,1,1`hqrW pτh, Bpτhq, 1` hq1tσh“τhus

´ Ept,1,1qrW pτh, Bpτhq, B˚pτhqq1tσh“τhus “ 0.

On the remaining set tτh ă σhu we have B˚pτhq P r1, 1` hs. Because W is Lipschitz
continuous in the variable b˚ with some constant L we may estimate

Ept,1,1`hqrW pτh, Bpτhq, 1` hq1tτhăσhus

´ Ept,1,1qrW pτh, Bpτhq, B˚pτhq1tτhăσhus ď LhPrτh ă σhs.

Dividing (19) by h and passing to the limit we obtain from (18) that

Wb˚pt, 1, 1q :“ lim
hŒ0

1

h
rW pt, 1, 1` hq ´W pt, 1, 1qs “ 0

(ii) As X is a martingale before hitting SW we have for ρh as above that

W pt, 1´ h, 1q “ Ept,1´h,1qrW pρh, 1, 1qs “
ż 8

0

W pt` s, 1, 1qfhpsqds,
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where the density fh is given by

fhpsq :“
1

?
2πs3

8
ÿ

n“´8

„

p4n` hqe´
p4n`hq2

2s ` p4n` 2´ hqe´
p4n`2´hq2

2s



. (20)

We can use this relation to calculate the derivative w.r.t. the second component:

´Wbpt, 1, 1q :“ lim
hŒ0

1

h

ż 8

0

rW pt` s, 1, 1q ´W pt, 1, 1qsfhpsqds

We split this integral into two parts at some point α ą 0 and observe that fhpsq is
continuous and fhpsq Œ 0 for hŒ 0 pointwise at s ą 0 and thus by Dini’s Theorem also
uniformly (monotone) on any interval rα,Ks, for 0 ă h ă h0pαq. Therefore we have

lim
hŒ0

1

h

ż K

α

rW pt` s, 1, 1q ´W pt, 1, 1qsfhpsqds (21)

“

ż K

α

rW pt` s, 1, 1q ´W pt, 1, 1qsgpsqds

for g given by

gpsq :“ lim
hŒ0

fhpsq

h
“

1
?

2πs3

«

1` 2 ¨
8
ÿ

n“1

p´1qn
ˆ

1´
p2nq2

s

˙

e´
p2nq2

2s

ff

. (22)

As before, because u ÞÑ W pu, 1, 1q ´
?
u is decreasing and s ÞÑ

?
t` s ´

?
t is concave,

we have W pt ` s, 1, 1q ´W pt, 1, 1q ď
?
t` s ´

?
t ď s 1

2
?
t
. Therefore the integrand is

dominated by sfhpsq

2
?
th

.

For K ą 0 we can then estimate

1

h

ż 8

K

sfhpsqds “
1

h
Prρh ą KsErpBρh ´B0q

2|ρh ą Ks

“ Prρh ą Ksp2´ hq ď 2Prρh ą Ks.

This probability tends to 0 uniformly inK, thus the integrals over rK,8q can be neglected
and we can replace K by 8 in (21).

For the other part of the integral we first observe that

lim
hŒ0

1

h

ż α

0

sfhpsqds

“ lim
hŒ0

1

h

ż 8

0

sfhpsqds´
1

h

ż 8

α

sfhpsqds

“ lim
hŒ0

1

h
Erρhs ´

1

h

ż 8

α

sfhpsqds

“ lim
hŒ0

2´ h´
1

h

ż 8

α

sfhpsqds “ 2´

ż 8

α

s gpsqds.
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The last integral converges to 2 for αÑ 0 by monotone convergence.
We conclude by setting M ě |Wtpu, 1, 1q| for u P rt, t` αs, making the estimate

ˇ

ˇ

ˇ

ˇ

1

h

ż α

0

rW pt` s, 1, 1q ´W pt, 1, 1qsfhpsqds

ˇ

ˇ

ˇ

ˇ

ď
M

h

ż α

0

sfhpsqds

hÑ0
Ñ M

ˆ

2´

ż 8

α

sgpsqds

˙

,

and then taking the limit for αÑ 0.

We can now apply this technical Lemma to our value function V by checking that the
assumptions of the previous Lemma are satisfied by the value function V :

Lemma 3.2. Let V : D Ñ R be the value function for (2). Then,

(i)

Vb˚pt, 1, 1q :“ lim
hŒ0

1

h
rV pt, 1,1` hq ´ V pt, 1, 1qs “ 0 (23)

for 0 ă t ă t0

(ii)

Vbpt, 1, 1q :“ lim
hŒ0

1

h
rV pt, 1, 1q ´ V pt, 1´ h, 1s (24)

“ ´

ż 8

0

rV pt` s, 1, 1q ´ V pt, 1, 1qsgpsqds

Proof. V is continuous by Lemma 2.1 and Lipschitz-continuous in b˚ by definition. We
also have V pt, 1, 1q ´

?
t is decreasing by Lemma 2.1. Furthermore V pt, Bptq, B˚ptqq is a

martingale up to hitting S by Lemma 2.5. Thus, setting W “ V , SW “ S and tW “ t0,
it remains to check the required uniform integrability condition. We have

0 ďV pu^ τh, Bpu^ τhq, B˚pu^ τhqq

ď V pt, Bpu^ τhq, B˚pu^ τhqq ` p
?
u^ τh ´

?
tq

ď V pt, 0, 1` hq `
?
τh ď V pt, 0, 1` hq `

1

4
` τh.

where the first estimate follows because the function u ÞÑ V pu, b, b˚q ´
?
u is decreasing

in u. The second inequality is due to the fact that V is decreasing in |b| and increasing
in b˚ as well as B˚pu^ τhq ď 1`h. Now, τh ď σh and σh has exponential moments and
is therefore integrable which yields the desired uniform integrability.

Observe that τh is smaller than the first hitting time of the non-stop region NS no
matter whether we condition on pt, 1, 1q or pt, 1, 1`hq which warrants the use of Lemma
2.5.
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The subsequent lemma shows that, for t ą t0, the behavior of Vb and Vb˚ follows a
different pattern than the one given by Lemma 3.2. We find that

Vb˚pt, 1, 1q ` Vbpt, 1, 1q “ ´C (25)

where we have to interpret this equation properly.

Lemma 3.3. For t ą t0 we have

lim
hŒ0

1

h
rV pt, 1` h, 1` hq ´ V pt, 1, 1qs “ ´C. (26)

Proof. For t ą t0 we have

V pt, b˚, b˚q “ t
1
2 ´ Cb˚,

for b˚ in a neighbourhood of 1.

To abbreviate notation we shall sometimes denote by V ptq the function V pt, 1, 1q

(recall that we keep C ě pC and the corresponding t0 “ t0pCq fixed). We thus obtain the
following integro-differential equation for V ptq.

Lemma 3.4. The function V ptq satisfies the following equations

2tV 1ptq “ V ptq ` C, t ą t0, (27)

2tV 1ptq “ V ptq `

ż 8

0

rV pt` sq ´ V ptqsgpsqds, t ă t0. (28)

Proof. The first assertion is obvious, as we have

V ptq “ t
1
2 ´ C, for t ą t0. (29)

The second equation follows, at least formally, from (12), (23) and (24).
To justify (28) in a more pedantic way, note that for a ą 1 we obtain from (7)

aV pt, 1, 1q ´ V pt, 1, 1q “ V pa2t, a, aq ´ V pt, 1, 1q

“ pV pa2t, a, aq ´ V pt, a, aqq

` pV pt, a, aq ´ V pt, 1, aqq

` pV pt, 1, aq ´ V pt, 1, 1qq.

Dividing by a´ 1 and letting a decrease to 1, we deduce (28) from Lemma 3.2.

Let us discuss the behaviour of the function V ptq at t “ t0. As observed in the previous
section, V ptq is continuous so that we must have “continuous pasting” at t0. It is the
immediate reflex – at least it was so for the present authors – to expect smooth pasting
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of V ptq at t “ t0 i.e. limtŒt0 V
1ptq “ limtÕt0 V

1ptq. By (27) and (28) this would result

in determining t0 by equating C with
ş8

0
pV pt0 ` sq ´ V pt0qqgpsqds. To our big surprise

this turned out not to be the case; after some time of reconsidering we had to conclude
that there is little reason why the smooth pasting principle should prevail in the present
context. Here is one intuitive reason: for a fixed number t0 ą 0 we have that for almost
all trajectories of a Brownian motion B “ pBptqqtě0, starting at Bp0q “ 0, there is no

t ą 0 such that the two equalities |Bptq| “ B˚ptq “ p tt0 q
1
2 are simultaneously verified. By

Lemma 2.4 we conclude that a discontinuity of the derivatives of V pt, Bptq, B˚ptqq can
only take place where these two equations are simultaneously satisfied. Roughly speaking:
the Brownian motion B “does not see” a kink of the function V ptq at t “ t0.

As a matter of fact, this natural example of a case of non-smooth pasting in the case
of continuous martingales seems to us a remarkable feature of the present paper. The
literature on non-smooth pasting is generally revolving around non-continuous processes.
Some examples of non-smooth pasting for processes with jumps can be found in [1], [2],
[6], [9] and [14].

4. The Integro-Differential-Equation

Fix the parameters C ą 0 and t0 ą 0. We consider the ordinary integro-differential
equation for the function U “ UC,t0

Uptq “ t
1
2 ´ C, t ě t0, (30)

2tU 1ptq “ Uptq `

ż 8

0

rUpt` sq ´ Uptqsgpsqds, 0 ă t ď t0, (31)

where g is given by (22).
Here the fixed behaviour (30) of Uptq, for t ě t0, is considered as the initial condition,

and subsequently the OIDE (ordinary integro-differential equation) (31) is solved by
letting t decrease from t0 to 0. For t “ t0, the derivative U 1pt0q in (31) is understood as
the left limit of U 1ptq when t increases to t0.

It is standard to verify that, for C ą 0, t0 ą 0, and ε ą 0 the solution UC,t0 of (30)
is well-defined for t P rε,8q and depends smoothly on the parameters C and t0. On the
other hand, the 2t term on the left hand side of (31) indicates that only for special cases
of C and t0 this solution can be extended to a continuous and finitely valued function
Uptq, defined for all t P r0,8q.

The evidence resulting from our numerical analysis of the solutions pUC,t0ptqqtą0, in
dependence of C and t0, can be resumed as follows:

Numerical Evidence 4.1.

(i) There is a smallest number qC ą 0 as well as a unique number qt0 ą 0 such that

the OIDE (31) admits a solution U
qC,qt0ptq which has a finite limit limtÑ0 U

qC,qt0ptq.

This solution is monotone increasing and U
qC,qt0ptq ě t

1
2 ´ qC.
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(ii) For 0 ă C ă qC there does not exist t0 ą 0 such that Uptq “ UC,t0ptq remains
bounded from below as tŒ 0.

(iii) For C ą qC there are precisely two values t1 “ t1pCq, t2 “ t2pCq depending on C in
a continuous and one-to-one way such that UC,tiptq has a finite limit, as tŒ 0, for

i “ 1, 2. These solutions satisfy UC,tiptq ě t
1
2 ´ C.

For t0 P pt1, t2q, the solutions of the OIDE (31) tend to `8, for t Œ 0, while, for
t0 R rt1, t2s, the solutions tend to ´8, for tŒ 0. We have t1pCq ă qt0 ă t2pCq and
limCÑ qC t1pCq “ limCÑ qC t2pCq “

qt0.
The functions UC,t1 and UC,t2 are monotone increasing and

UC,t1ptq ă U
qC,qt0ptq , for all t P r0,8r. (32)

Finally, we find the numerical values

qC « 1.27267 . . . and qt0 « 0.9036 . . . (33)

We have not been able to provide a mathematically rigorous proof of the above asser-
tions and only rely on the numerical evidence (which is based on Euler-type simulations
in Python with variable step sizes). We therefore consider the above statements rather
as hypotheses underlying our subsequent results and we shall carefully point out in the
subsequent statements where we rely on this evidence.

For example, for C “ 1.25 ă qC which is case (ii) above we illustrate the situation by
Figure 1.

For C “ 1.274 ą qC, which is case (iii) above, we find t1 « 0.85 . . . and t2 « 0.95 . . . ,
as illustrated in Figure 2.

When C decreases to the critical value qC « 1.27267 . . . the numerics suggest that the
length t2 ´ t1 of the intervals pt1, t2q decreases to zero and that these intervals shrink
to a single point qt0 P s0,8r for which we find qt0 « 0.9036 . . . . It is convincing from the

numerics that the limiting solution U
qC,qt0ptq then is well-defined for all t ě 0 by letting

U
qC,qt0p0q :“ limtŒ0 U

qC,qt0ptq. This function U
qC,qt0ptq is monotone increasing and such that

U
qC,qt0ptq lies above the function U

qC,0ptq “ t
1
2 ´ qC. Clearly we expect that U

qC,qt0 must be
the “right” solution, which may be identified with the value function V defined in (2) for

the optimal constant pC “ qC and, in particular, that qC « 1.27267 . . . equals the optimal
constant pC in the Burkholder-Davis-Gundy inequality (1). We shall subsequently deduce
this result more formally.

5. Identifying the Value-Function

Admitting the Numerical Evidence 4.1 we shall show that the function U
qC,qt0ptq, obtained

above from the analysis of the OIDE (31), indeed determines the value function V pt, b, b˚q
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Figure 1. The subcritical case C ă qC: Numerical solutions for C “ 1.25 and various values for the
pasting position t0 in the interval r0.8, 1s. The graph underneath is t1{2 ´C through which all solutions
cut in the subcritical case when they get close to 0.

as defined in (2) for the constant pC “ qC and that this constant is indeed the optimal
Burkholder-Davis-Gundy constant in inequality (1).

Starting from a solution Uptq “ UC,t0ptq of the OIDE (31) for parameters C ą 0
and t0 ą 0 such that Uptq extends continuously to a finite value Up0q we may extend
this solution (by slight abuse of notation) to a function Upt, b, b˚q, defined on D, by first
letting

Upt, b, 1q :“

ż 8

0

Upt` sqf1´|b|psqds, for 0 ď |b| ă 1, (34)

where fhpsq is defined in Section 3. For general pt, b, b˚q P D we use (7) to define

Upt, b, b˚q “ b˚U
´ t

pb˚q2
,
b

b˚
, 1
¯

. (35)

For later reference, we note that Uptq ě
?
t´ C implies

Upt, b, b˚q ě
?
t´ Cb˚, for all pt, b, b˚q P D (36)

Lemma 5.1. Fix C ą 0 and t0 ą 0 such that Uptq extends continuously to a finite
Up0q and admit the Numerical Evidence 4.1 (i) and (iii). Let pBpuqquět be a Brow-
nian motion starting at some time t ą 0 at Bptq “ b and B˚ptq “ b˚. The process
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Figure 2. The supercritical case C ą qC: Numerical solutions for C “ 1.274 and and various values
for the pasting position t0 in the interval r0.6, 1.2s. We find that while solutions for t0 in an interval
pt1, t2q with t1 « 0.85 and t2 « 0.95 stay above the graph of t1{2 ´ C (in fact, they tend to `8, as
t Ñ 0), the solutions fall to ´8 for t Ñ 0 if t0 R rt1, t2s. At the transition of these two regimes lie
the bounded solutions UC,t1 and UC,t2 (which are not explicitly displayed in the above figure but are
squeezed between the neighbouring solutions UC,t).

Upu,Bpuq, B˚puqquět is then a local super-martingale. It is a local martingale up to en-
tering the stopping area S :“ tpt, b, b˚q : |b| “ b˚, t{pb˚q2 ě t0u.

For the proof we need the following Lemma to justify the use of Ito’s formula for
a function that is not smooth everywhere but where the Brownian Motion hardly ever
touches the set where it is not differentiable.

Lemma 5.2. Let W : D Ñ R be a continuous function and tW ą 0 such that

(a) the derivatives Wt and Wbb exist and are continuous on the interior of D, and
(b) Wt `

1
2Wbb “ 0,

(c) Wb˚ ď 0, and
(d) Wb˚pt, b, |b|q “ 0 for t

b2 ă tW .

Define SW :“ tpt, b, |b|q P D : t
b2 ě tW u. For a standard Brownian Motion Bptq let τW

be the first hitting time of S for pt, Bptq, B˚ptqq. Then,

(i) Xptq :“W pt, Bptq, B˚ptqq is a local supermartingale, and
(ii) Xpt^ τW q is a local martingale.
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Proof. This follows at least formally from the assumptions and Ito’s formula

dXptq “ pWt `
1
2Wbbqdt`WbdBptq `Wb˚dB

˚ptq. (37)

To address this in a more formal way, let ε ą 0 and define the stopping times pρεnq
8
n“0

by ρε0 “ 0 and
ρεn “ inftt : t ě ρεn´1 ` ε and |Bptq| “ B˚ptqu.

We also denote by Aε the union
Ť8

n“0Jρ
ε
n, ρ

ε
n ` εK which is a predictable subset of

ΩˆR`. Denoting by A0 “
Ş8

n“0A
1
n , the set A0 simply equals t|Bptq| “ B˚ptqu. Fixing

T ą 0, the Lebesgue-measure of tωu ˆ r0, T s XAε tends to zero, for almost all ω P Ω.
Fix a bounded stopping time τ such that pBptqq0ďtďτ remains bounded. It follows

that Wt as well as Wbb also remain bounded on Aε X J0, τK so that

Xεptq :“

ż t

0

1BεdXpsq

is a martingale and Bε “ pΩ ˆ R`qzAε is the complement of Aε. Indeed, it suffices
to reason on the stochastic intervals Jρεn´1 ` ε, ρεnK and to observe that B˚ptq remains
constant on these intervals.

Turning to the remaining part

Y εptq :“

ż t

0

1AεdXpsq “ Xptq ´Xεptq

we shall show that along a sequence these processes tend almost surely to the non-
increasing process

Y 0ptq “

ż t

0

1A0dXpsq

“

ż t

0

1A0Wb˚pt, Bptq, B
˚ptqqdB˚ptq.

Indeed, the dominated convergence theorem for Ito-Integrals yields convergence in prob-
ability and thus subsequence convergence almost surely. Fixing this sequence of ε’s we
can take the process to the appropriate limit.

Proof of Lemma 5.1. It follows from definition (34) that, for pt, b, b˚q P D such that
t ą 0 and 0 ď |b| ă b˚, the heat equation

Ut `
1

2
Ubb “ 0

is satisfied.
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On the boundary, for t ă t0, we can apply the definition of U to obtain

Ubpt, 1, 1q ` Ub˚pt, 1, 1q :“ lim
hŒ0

1

h
rUpt, 1` h, 1` hq ´ Upt, 1, 1qs

“ lim
hŒ0

1

h
rUpt{p1` hq2q ´ Uptqs ` Upt{p1` hq2q

“ ´2tU 1ptq ` Uptq

“ ´

ż 8

0

rUpt` sq ´ Uptqsgpsqds

The last equality is exactly the OIDE (31). Applying Lemma 3.1 (ii) one obtains that
the last expression is equal to

Ubpt, 1, 1q :“ ´ lim
hŒ0

1

h
rUpt, 1´ h, 1q ´ Upt, 1, 1qs,

where all the assumptions of this Lemma are easily checked. Clearly the left and right
derivatives of Ub agree. It follows that Ub˚pt, 1, 1q “ 0 and more generally that Ub˚pt, b, |b|q “
0 for t{b2 ă t0. For t ě t0 we can derive as in Lemma 3.3 that

Ub˚pt, 1, 1q “ ´Ubpt, 1, 1q ´ C “

ż 8

0

rpt` sq
1
2 ´ t

1
2 sgpsqds´ C.

This expression is monotone decreasing in t, and is necessarily non-positive at t0 so that
Upt, 1, 1q ě t

1
2 ´ C holds. We conclude that, for arbitrary t ą 0, Ub˚ ď 0.

Having established that Ub˚ ď 0 and Ub˚pt, b, |b|q “ 0 for t
b2 ă t0 we may derive, at

least formally, the assertion of the present lemma from (57) and Ito’s formula as in (15).
Now, we can conclude using Lemma 5.2

Let us now observe the following relations between value functions to the optimal
stopping problem and solutions to the OIDE (31).

Lemma 5.3. Let V C be the value function as defined in (2) for a constant C ą 0
that satisfies the inequality (1). Take t0 “ t0pCq P p0,8q to be the corresponding point
separating S from NS (see (6)). Then V Cptq :“ V Cpt, 1, 1q satisfies the OIDE (31) for
this choice of C and t0.

Proof. For t ě t0, we have V Cptq “ t
1
2 ´ C.

For t ă t0 denote by τh “ σh^ τ the stopping time as in (17) above, conditionally on
pt, 1, 1q. Note that pV Cpu,Bpuq, B˚puqqqtďuďτh then is a uniformly integrable martingale.
To see this, we make a distinction for u ď ν and u ą ν where ν is the stopping time
ν :“ infts : B˚psq2t0 ď su:

1. u ď νh :“ ν^τh: The domain of ppu,Bpuq, B˚puqq is bounded by |Bpuq| ď B˚puq ď
1`h and u ď νh ď B˚pνhq2t0 ď p1`hq

2t0. Clearly V C is bounded on this domain.
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2. u ą νh: Here the properties of V C given in Lemma 2.5 allow us to see that one can
rewrite the process as

V Cpu,Bpuq, B˚puqq “ Epu,Bpuq,B
˚
puqqrσ

1
2 s ´ CB˚puq

where σ is again the first time where Bpuq “ B˚puq holds. Note that this holds
because B˚pvq is now constant for u ď v ď σ, and it is clearly the definition
of a uniformly integrable martingale, provided the conditional expectation is well
defined, which it is by the estimate

Epu,Bpuq,B
˚
puqqrσ

1
2 s ď u

1
2 `B˚puq.

Hence the formula

V Cpt, 1, 1q “ Ept,1,1qrV Cpτh, Bpτhq, B˚pτhqs

is justified. This was the only assumption of Lemma 3.1 which is not immediate from the
definition of V C . Now the claim follows from Lemma 3.1.

Proposition 5.4. Admitting the Numerical Evidence 4.1 (i) and (ii), the constant qC

obtained in (33) equals the optimal constant pC for (1), and the function U
qC,qt0pt, b, b˚q

obtained in (34) and (35) equals the value function V pt, b, b˚q as defined in (2) for the

constant pC “ qC.
The value pt0 associated to pC by Lemma 2.4 equals the constant qt0 in (33).

Proof. To show pC ě qC, suppose that C ą 0 is a constant satisfying the Burkholder-
Davis-Gundy inequality (1), i.e. suppose that C ě pC. Then by Lemma 5.3 we have that
V Cptq :“ V Cpt, 1, 1q satifies the OIDE (31) for this choice of C and the corresponding
t0pCq separating S from NS.

As V Cptq is increasing in t and satisfies V Cp0q ě ´C we conclude from the Numerical

Evidence 4.1 (i) and (ii) that C ě qC. This yields pC ě qC.

To show conversely that pC ď qC consider the function U
qC,qt0pt, b, b˚q. By Lemma 5.1 the

process pU
qC,qt0pt, Bptq, B˚ptqqtě0 is a local supermartingale. Hence we have, conditionally

on pt, b, b˚q P D and for each bounded stopping time τ ě t and localizing sequence
pτnq

8
n“1.

U
qC,qt0pt, b, b˚q ě Ept,b,b

˚
qrU

qC,qt0pτ ^ τn, Bpτ ^ τnq, B
˚pτ ^ τnqqs

ě Ept,b,b
˚
qrpτ ^ τnq

1
2 ´ qCB˚pτ ^ τnqs

where the second inequality derives from (36). In the limit for n Ñ 8 this yields

U
qC,qt0pt, b, b˚q ě Ept,b,b˚qrτ 1

2 ´ qCB˚pτqs. Hence U
qC,qt0pt, b, b˚q dominates the value func-

tion V
qCpt, b, b˚q as defined in (2) for the constant qC. This shows qC ě pC as well as

U
qC,qt0 ě V

qC “ V
pC .
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We can finally summarize these results to proof the main theorem.

Proof of Theorem 1.2. Suppose that C “ pC is the optimal constant for (1) and let
pt0 P p0,8q the corresponding critical value given by Lemma 2.4. Then V “ V ptq satisfies
the OIDE (30) and this solution is increasing in t and satisfies V p0q ě ´C.

As shown in the previous section there is a minimal C allowing for such a solution,
for an appropriately chosen t0 P p0,8q. This value of C therefore must coincide with the

optimal value pC for the Burkholder-Davis-Gundy inequality (1).
Conversely if C is chosen such that for some t0 P p0,8q the OIDE (30),(31) has a

solution on r0, T s then the numerical evidence 4.1 (ii) gives that C ě C̄ “ Ĉ and so (1)
holds.

Remark 5.5. It is interesting to consider, for a fixed constant C ą pC, the relation
between the value-function V Cpt, b, b˚q defined in (2) and the corresponding solutions of
the OIDE (31). In this case the numerical evidence 4.1 (iii) indicates that there are two
bounded solutions UC,t1ptq and UC,t2ptq. Which of the two is the “good one”, i.e. which
one equals the value function V Cpt, 1, 1q?

To answer this question, first note that, for C ą pC, we clearly have the monotonicity

relation V Cpt, b, b˚q ď V
pCpt, b, b˚q. It is also easy to see that t0pCq ă t0p pCq “ pt0 “ qt0,

where t0pCq is associated to the value function V Cpt, b, b˚q via Lemma 2.4. In other

words, the stopping region S for the function t
1
2 ´ CB˚ptq in (2) is bigger than the

stopping region S for the function t
1
2 ´ pCB˚ptq.

It follows from the numerical evidence that the value t1pCq for which we have t1pCq ă
pt0 is the only candidate for the “good” solution while for t2pCq for which we have t2pCq ą
pt0, we cannot have UC,t2pCqptq “ V Cpt, 1, 1q. We can conclude from Lemma 5.3 that the
value function V Cpt, 1, 1q indeed equals the solution UC,t1pCqptq of the OIDE (31).

The fact that UC,t2pCqptq cannot be the “good” solution has the following consequence
which is interesting in its own right (compare [15]).

Proposition 5.6. Admitting the Numerical Evidence 4.1 (iii) we have that, for t2 ą pt0,
the stopping time

ρ “ inf
!

s ě 1 :
s

pB˚psqq2
ě t2

)

(38)

satisfies

Erρ
1
2 s “ 8. (39)

Proof. Define the stopping time τ by

τ :“ inf

"

s ě 1 :
s

B˚psqq2
ě t2 and |Bpsq| “ B˚psq

*

. (40)
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Clearly τ ě ρ, as we may equivalently define

τ :“ infts ě ρ : |Bpsq| “ B˚psqu. (41)

We claim that Erρ 1
2 s ă 8 if and only if Erτ 1

2 s ă 8. Indeed, it follows from (41) that
the law of τ ´ ρ, conditionally on pρ,Bpρq, B˚pρqq, is that of the first hitting time σ
of the level B˚pρq by the absolute value of a Brownian motion pW puqquě0 starting at
W p0q “ Bpρq. We may (very crudely) estimate Erσs ď B˚pρq2.

Noting that at time ρ we have B˚pρq2 ď ρ
t2

we may estimate

Erτ ´ ρ|ρ,Bpρq, B˚pρqs ď
ρ

t2
.

Hence we obtain

Erτ
1
2 s “ Erρ

1
2 s ` ErErτ

1
2 ´ ρ

1
2 |ρ,Bpρq, B˚pρqss

ď Erρ
1
2 s ` ErErpτ ´ ρq

1
2 |ρ,Bpρq, B˚pρqss

ď Erρ
1
2 s ` ErErτ ´ ρ|ρ,Bpρq, B˚pρqs

1
2 s

ď

ˆ

1`
1
?
t2

˙

Erρ
1
2 s,

which readily shows that Erρ 1
2 s ă 8. This implies that Erτ 1

2 s ă 8.

So let us suppose that Erτ 1
2 s ă 8 and work towards a contradiction.

Define the stopping region Spt2q relative to t2 as

Spt2q “

"

pt, b, |b|q P D :
t

b2
ě t2

*

.

and the corresponding non-stopping region by NSpt2q “ DzSpt2q.
We condition on some fixed p1, b, b˚q P NSpt2q. Note that τ is the first time when

pt, Bptq, B˚ptqqtě1 leaves NSpt2q.

Admitting the Numerical Evidence 4.1 (iii), associate to t2 ą pt0 the constant C ą pC
such that UC,t2ptq is a solution of the OIDE (31) which remains bounded as t Œ 0. We
write UC,t2pt, b, b˚q for its extension defined in (35). In contrast, we denote by V Cpt, b, b˚q
the value function as defined in (2) for the constant C.

The process pUC,t2pt, Bptq, B˚ptqqq1ďtďτ is a local martingale by Lemma 5.1, where
the present t2 corresponds to t0 in the statement of this lemma.

In addition we show that this local martingale is a uniformly integrable martingale up
to time τ , i.e. the family of random variables UC,t2pσ,Bpσq, B˚pσqq, where σ ranges in
the stopping times 1 ď σ ď τ , is uniformly integrable. Recall the scaling relation

UC,t2pσ,Bpσq, B˚pσqq “ B˚pσqUC,t2
ˆ

σ

B˚pσq2
,
Bpσq

B˚pσqq
, 1

˙

,
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and note that σ
B˚pσq2 remains in the interval r0, t2s so that, by compactness, the term

|UC,t2p σ
B˚pσq2 ,

Bpσq
B˚pσqq , 1q| remains bounded by some constant M ą 0. Therefore

|UC,t2pσ,Bpσq, B˚pσqq| ďMB˚pσq ďMB˚pτq.

If Erτ 1
2 s ă 8 we infer from the Burkholder-Davis-Gundy inequality (this time the reverse

inequality to (1)) that the random variable B˚pτq is integrable. Hence the family of
random variables UC,t2pσ,Bpσq, B˚pσqq is dominated by the integrable random variable
MB˚pτq which shows that the local martingale UC,t2pt, Bptq, B˚ptqq1ďtďτ is of class D
and is thus a uniformly integrable martingale.

Hence, conditionally on p1, b, b˚q P NSpt2q we obtain

UC,t2p1, b, b˚q “ Ep1,b,b
˚
qrUC,t2pτ,Bpτq, B˚pτqqs. (42)

We now pass to the process pV Cpt, Bptq, B˚ptqqtě1 again conditionally on p1, b, b˚q P
NSpt2q. By Lemma 2.5 we know that this process is a supermartingale. Repeating the
above argument, we obtain that this supermartingale is uniformly integrable up to time
τ . Hence

V Cp1, b, b˚q ě Ep1,b,b
˚
qrV Cpτ,Bpτq, B˚pτqqs. (43)

Noting that at time τ we arrived in the stopping region Spt2q we obtain

UC,t2pτ,Bpτq, B˚pτqq “ V Cpτ,Bpτq, B˚pτqq “ τ
1
2 ´ CB˚pτq.

Hence (42) and (43) yield

V Cp1, b, b˚q ě UC,t2p1, b, b˚q,

for all p1, b, b˚q P D. As we have seen that V C “ UC,t1pCq ď UC,t2pCq, and UC,t1pCq is not
equal to UC,t2pCq, we arrive at the desired contradiction.

The above result is complemented by the following estimate in the reverse direction.

Proposition 5.7. Admitting the Numerical Evidence 4.1 (iii), we have, for t1 ă pt0,
that the stopping time

ρ “ inf
!

s ě 1 :
s

pB˚psqq2
ě t1

)

(44)

satisfies

Erρ
1
2 s ă 8. (45)
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Proof. Similarly as in the proof of the previous proposition, we define

τ :“ infts ě 1 :
s

pB˚psqq2
ě t1 and |Bpsq| “ B˚psqu.

We shall show that
Erτ

1
2 s ă 8 (46)

which will imply (45).
We condition on p1, b, b˚q in the non-stop region NSpt1q defined as in the preceding

proof, and will show

Ep1,b,b
˚
qrτ

1
2 s ď Kb˚ (47)

for some constant K ą 0, which will imply (46) by integrating over the values Bp1q “ b
and B˚p1q “ b˚.

We associate to t1 ă pt0 the corresponding C ą pC such that the solution UC,t1ptq of
the OIDE (31) remains bounded (Numerical Evidence 4.1 (iii)).

Using the Numerical Evidence 4.1 (iii) there is some α ą 0 such that the solutions

UC,t1ptq of the OIDE (31) and the value function V
pCptq “ U

qC,qt0ptq for the optimal

constant pC “ qC are separated by some α ą 0, i.e.

V
pCptq ě UC,t1ptq ` α, for all t ě 0. (48)

Indeed, for t ě pt0 we have UC,t1 “ t
1
2 ´ C and U

pC,pt0ptq “ t
1
2 ´ pC. For t P r0,pt0s we

have U
pC,pt0ptq ă UC,t0ptq by (32) so that by compactness we obtain a separating constant

α ą 0.
More generally, we obtain from (34)

V
pCpt, b, 1q ě UC,t1pt, b, 1q ` α, for all pt, b, 1q P D. (49)

Similarly as in the above proof we consider, conditionally on p1, b, b˚q, the processes

pUC,t1pu,Bpuq, B˚puqqq1ďuďτ and pV
pCpu,Bpuq, B˚puqqq1ďuďτ .

Both are local martingales up to time τ . Let pτnq
8
n“1 be a sequence of localizing,

bounded stopping times, τn ě 1, increasing to τ .

V
pCp1,b, b˚q “ Ep1,b,b

˚
qrV

pCpτn, Bpτnq, B
˚pτnqs

“ Ep1,b,b
˚
q
”

B˚pτnqV
pC
´

τn
B˚pτnq2

, Bpτnq
B˚pτnq

, 1
¯ı

ě Ep1,b,b
˚
q
”

B˚pτnqU
C,t1

´

τn
B˚pτnq2

, Bpτnq
B˚pτnq

, 1
¯ı

` αEp1,b,b
˚
qrB˚pτnqs

“ UC,t1p1, b, b˚q ` αEp1,b,b
˚
qrB˚pτnqs.

Hence, letting nÑ8, for each p1, b, b˚q

V
pCp1, b, b˚q ´ UC,t1p1, b, b˚q ě αEp1,b,b

˚
qrB˚pτqs.
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Using the scaling relation again, we get

V
pC

ˆ

1

pb˚q2
,
b

b˚
, 1

˙

´ UC,t1
ˆ

1

pb˚q2
,
b

b˚
, 1

˙

ě
α

b˚
Ep1,b,b

˚
qrB˚pτqs. (50)

Observe that we can also find a bound β such that

β ě V
pCptq ´ UC,t1ptq, for all t ě 0

as the difference equals C ´ pC for t ě pt0 and is bounded for the compact interval r0, pt0s.

This directly yields β as a bound on V
pCpt, b, 1q ´UC,t1pt, b, 1q which shows that the left

hand side of (50) remains uniformly bounded. This yields (47) with K “ β{α and finishes
the proof.

Remark 5.8. As regards the limiting case when we define ρ in (44) by replacing t1 by

the critical value pt0, we conjecture that we obtain Erρ 1
2 s “ 8. But we were not able to

prove this result.

6. A pointwise version of one of Davis’ inequalities

The value function V allows to derive a pointwise version of the Burkholder-Davis-Gundy
inequality (1), which holds true in an almost sure sense rather than in expectation as
stated in (1). This line of argument, inspired by the idea of robust superhedging from
mathematical finance, is well-known (see e.g. [5] and [4]).

Theorem 6.1. Denote by V “ V
pC the value function (2) associated to the optimal

constant pC and consider the Brownian motion B “ pBptqqtě0 with its (right continuous,
saturated) natural filtration pFptqqtě0.

There is a predictable process Hptq satisfying Er
şT

0
H2ptqdts ă 8, for each T ą 0,

given a.s. by
Hptq “ Vbpt, Bptq, B

˚ptqq (51)

for Lebesgue almost all t ą 0, such that, for every bounded stopping time τ ,

τ
1
2 ´ CB˚pτq ď

ż τ

0

HptqdBptq, a.s.. (52)

Before giving the proof we observe the well-known fact that (52) trivially implies (2)
by taking expectations on both sides of (52).

Proof. Lemma 2.5 states that the continuous process

Xptq “ V pt, Bptq, B˚ptqq
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is a super-martingale, starting at Xp0q “ V p0, 0, 0q “ 0. sBy Doob-Meyer we may de-
compose X as

X “M ´A (53)

where M is a continuous local martingale and A is a continuous non-decreasing pre-
dictable process, and Mp0q “ Ap0q “ 0.

In fact, M is a square integrable martingale as we will show in Lemma A.1 in the
appendix.

By martingale representation we may find a predictable processH with Er
şT

0
Hptq2dts ă

8, for each T ą 0 such that

Mptq “

ż t

0

HpuqdBpuq.

By applying Ito to both sides of (53) we obtain the relation (51) which must hold true,
for P-almost each ω and for Lebesgue almost all t (the null set depending on ω). The
formal application of Ito’s formula can be justified using the result in Lemma 5.2.

7. BDG-Inequalities for general 0 ă p ă 2

The above procedure can be easily modified to obtain similar results for the inequalities
Erτ

p
2 s ď CpErpB˚pτqqps with 0 ă p ă 2. Lemma 2.2 and 2.4 stay essentially the same,

with a different scaling given by

V pa2t, ab, ab˚q “ apV pt, b, b˚q.

This leads to the PDE
2tVt ` bVb ` b

˚Vb˚ “ pV

and the OIDE

2tVtptq “ pV ptq `

ż 8

0

rV pt` sq ´ V ptqsgpsqds

for 0 ď t ď t0 and the starting condition V ptq “ t
p
2 ´ C for t ě t0.

In principle a similar analysis as in the present paper should provide explicit numerical
values pCppq and pt0ppq, in dependence of 0 ă p ă 2. We leave this task to future research.

On the other hand, for p ą 2 the present method does not seem to apply and some
new idea is needed.

8. Relation to the Burkholder constant pC “
?

3

In this section we consider martingales also allowing for jumps and we focus (w.l.o.g.)
on martingales pMnq

N
n“0 defined on a finite probability space Ω (see Lemma 8.2 below).

The BDG inequality (1) reads in this context as

ErrM,M s
1
2

N s ď CErM˚
N s, (54)
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where rM,M sn “
řn
j“1pMj ´Mj´1q

2 denotes the quadratic variation process. It was

shown by D. Burkholder [7] that in this context the sharp constant pC equals pC “
?

3.
One may ask for a deeper reason why we obtain a different sharp constant in (1) for

continuous martingales as for martingales also having jumps. One reason is that the value
function V fails to have a certain concavity property.

Fix a point d “ pt, b, b˚q P D as well as α ą 0, β ą 0. Define the points dα, dβ P D by

dα “ pt` α
2, b` α,maxpb˚, |b` α|qq,

dβ “ pt` β
2, b´ β,maxpb˚, |b´ β|qq.

We also define p “ β
α`β and q “ α

α`β .

Proposition 8.1. There exist x P D as well as α ą 0, β ą 0 such that

V pdq ă pV pdαq ` qV pdβq. (55)

Of course, we could verify the above proposition in a trivial way by numerically an-
alyzing the function V pt, b, b˚q and detecting explicitly some d, α and β. It is also clear
where we should search for such a “bad” triple px, α, βq, namely in a neighborhood of
the “kink” related to the “non-smooth pasting” (Figure 1 and 2) which displays a strong
form of non-concavity.

But this is not our point. The purpose of the above statement is to show how the
non-concavity (55) of the value function V is related to the difference between the case
of continuous martingales and the case of martingales with jumps.

Also note that the equations Vt `
1
2Vbb “ 0 in the interior of D and Vb˚ “ 0 on

the non-stopping boundary of D (i.e. (23) and (15) above), imply that in the (properly
interpreted) case of infinitesimal increments α and β we do have a “ď” in (55) above.
This is the message of Lemma 2.5.

Proof of Proposition 8.1. Admitting the subsequent lemma, we consider a dyadic
martingale pMnq

N
n“0 starting at M0 “ 0.

Let us fix some notation: The underlying probability space is given by

Ω “ tpω1, . . . , ωN q : ωn P t´1, 1uu

and the filtration pFnqNn“0 is given by Fn “ σpω1, . . . , ωnq. Consider the process

pXnq
N
n“1 “ pV prM,M sn,Mn,M

˚
n qq

N
n“0

where V “ V
pC is the value function (2) associated to the optimal constant pC «

1, 27267 . . . for continuous processes.
It may happen that pXnq

N
n“0 is a super-martingale. In this case

0 “ X0 ě ErV prM,M sN ,MN ,M
˚
N qs

ě ErrM,M s
1
2

N ´
pCM˚

N s,
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so that we obtain the inequality

ErrM,M s
1
2

N s ď
pCErM˚

N s.

However, we know that pC « 1, 27267 . . . is smaller than the sharp constant pC “
?

3
for martingales with jumps so that there must exist some dyadic martingale pMnq

N
n“1

such that the corresponding process pXnq
N
n“1 fails to be a supermartingale.

This means that there is some 0 ď n ď N ´ 1 and ωpnq “ pω1, . . . , ωnq such that –
with slight abuse of notation – we find

d :“ prM,M snpω
pnqq,Mnpω

pnqq,M˚
n pω

pnqqq

as well as

dα “ prM,M sn`1pω
pnq, 1q,Mn`1pω

pnq, 1q,M˚
n`1pω

pnq, 1qq,

dβ “ prM,M sn`1pω
pnq,´1q,Mn`1pω

pnq,´1q,M˚
n`1pω

pnq,´1qq.

such that inequality (55) holds true.

For the following Lemma recall that a martingale is dyadic if the increment Mn`1´Mn

can attain at most two values, conditionally on σpM1, . . . ,Mnq,.

Lemma 8.2. For a constant C ą 0 the following are equivalent:

(i) Every dyadic martingale pMnq
N
n“0 satisfies (54).

(ii) Every martingale pMnq
N
n“0 defined on a finite probability space satisfies (54).

(iii) Every L2 bounded martingale pMtq0ďtďT satisfies (54).

Proof. The equivalence (ii) ô (iii) is standard but for the convenience of the reader we
will recall the argument for the non-trivial implication (ii) ñ (iii).

First, we can reduce the problem to discrete L2-martingales: Fix an L2-bounded mar-
tingale M “ pMtq0ďtď1, based on a filtered probability space pΩ,F , pFtq0ďtďT ,Pq and
consider the martingales pMk2´nq

2n

k“0 for n P N. If they fulfill (54), then letting n Ñ 8

yields that M satisfies (54).
Now, fix an L2-bounded martingale M “ pMnq0ďnďN on a filtered probability space

pΩ,F , pFnq0ďnďN ,Pq. Consider the net of finite subfiltrations pFnq0ďnďN of this filtration
and their associated martingales MG “ pMGn q

N
n“0 (i.e. MGn “ ErMn|Gns). By (ii), every

MG satisfies (54). The L2 limit of MG is M and (iii) follows.
The implication (ii) ñ (i) is trivial.
To show (i) ñ (ii) first observe that without loss of generality we can assume M0 to

be deterministic. First, we can translate the martingale such that it has mean 0. Second,
if M0 is random, then define a martingale pM 1

nq
N`1
n“0 with M 1

0 :“ 0 and M 1
i :“ Mi´1 for

i ą 0. Then rM 1,M 1sN`1 “ rM,M sN and M
1
˚
N`1 “M˚

N .
Now, suppose first that pMnq

1
n“0 is just a one step martingale on a finite probability

space Ω with M0 “ 0. We then have that M1 is a finitely valued random variable with
ErM1s “M0 “ 0.
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By possibly passing to a bigger (still finite) Ω we may find a partition pA1, . . . , Apq of
Ω such that M1 takes at most 2 values on each Aj and

ErM11Aj s “ 0, j “ 1, . . . , p.

We now define a dyadic martingale pM̃jq
p
j“0 by M̃0 “ 0 and

M̃j ´ M̃j´1 :“M11Aj , j “ 1, . . . , p.

Clearly the variables prM,M s1,M
˚
1 q and prM̃, M̃ sp, M̃

˚
p q are equal in law. This shows

that, at least for N “ 1, we may associate to every finitely values martingale pMnq
1
n“0 a

dyadic martingale pM̃jq
p
j“0 such that (54) holds true for M if and only if it does so for

M̃ .
It is rather obvious how to continue the above construction in an inductive way so

that we may associate to each finitely valued martingale pMnq
N
n“0 a dyadic martingale

pM̃jq
p
j“0 such that prM,M sN ,M

˚
N q and prM̃, M̃ sp, M̃

˚
p q are equal in law. This readily

shows (i) ñ (ii).

Appendix A: The Martingale Property of the Value
Process and Square Integrability

Proof of Lemma 2.5. We denote the function appearing on the right side of (5) by
vpt, b˚q:

vpt, b˚q :“ t
1
2 ´ Cb˚, t, b˚ ě 0.

For fixed pt, b, b˚q P D and t ď T we denote by V T pt, b, b˚q the value function defined
similarly as in (2), but where we only allow for stopping times τ P T ptq which are
bounded by T . Clearly V T pt, b, b˚q increases to V pt, b, b˚q, as T Ñ 8, pointwise for
pt, b, b˚q P D. Also note that V pT, b, b˚q “ vpT, b˚q. Fix pt, b, b˚q and a bounded stopping
time t ď σ ď τ . We have to show that

V pt, b, b˚q “ Ept,b,b
˚
qrV pσ,Bpσq, B˚pσqqs (56)

By the monotone convergence theorem it will suffice to show that

lim
TÑ8

V T pt, b, b˚q “ lim
TÑ8

Ept,b,b
˚
qrV T pσT , BpσT q, B˚pσT qs (57)

for σT :“ σ ^ τT where τT is the stopping time defined conditionally on pt, b, b˚q by

τT “ inftu ě t : V T pu,Bpuq, B˚puqq “ vpu,B˚puqqu.

We then have that τT is bounded by T and increases a.s. to τ . The crucial property is

V T pt, b, b˚q “ Ept,b,b
˚
qrvpτT , B˚pτT qqs,
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and, more generally, for any stopping time t ď ρ ď τT ,

V T pρ,Bpρq, B˚pρqq “ ErvpτT , B˚pτT qq|Fpρqs.

This classical result can be found in [13, Theorem 2.2]. Putting this together and taking
ρ “ σT , we obtain (57).

The proof of the supermartingale property which still holds true, after time τ is iden-
tical with an inequality instead of an equality.

We can even show that the value process is bounded in L2 up to some fixed time T :

Lemma A.1. The supermartingale pXptqq0ďtďT given by

Xptq :“ V pt, Bptq, B˚ptqq

is uniformly bounded from above and bounded in L2. Furthermore the martingale compo-
nent of its Doob-Meyer decomposition Xptq “Mptq ´Aptq is also bounded in L2 and we
obtain the following quantitative estimates for every stopping times σ with 0 ď σ ď T :

(i) Xpσq ď T
1
2 ,

(ii) ErXpσq2s ď KT ,
(iii) ErMpσq2s ď ErMpT q2s ă 8.

Proof. We first observe that V pt, b, |b|q´pt
1
2 ´C|b|q ď V p0, b, |b|q´p´C|b|q ď C|b| holds

as a consequence of the proof of Lemma 2.4 which gives us the estimate V pt, b, |b|q ď t
1
2 .

Letting tÑ 0 this also imples V pt, 0, 0q ď t
1
2 and we can show (i) by

V pt, b, b˚q ď V pt, 0, b˚q ď V pt, 0, 0q ď t
1
2 .

V is monotone increasing in t and monotone decreasing in |b| and b˚. So we can observe
for the positive part of X that

ErpXpσq`q2s ď pV pT, 0, 0q`q2 ď T.

For the negative part Xptq´ we can use V pt, b, b˚q ě t
1
2 ´ Cb˚ ě ´Cb˚ and estimate

ErpXpσq´q2s ď C2ErB˚pT q2s.

In summary we have
ErXpσq2s ď T ` C2ErB˚pT q2s.

To show the last assertion, we now split X into a sum of bounded processes in the
following way. Define the stopping times pσnq

8
n“0 by

σn “ inftt : |Bptq| “ 2nu ^ T,
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and define the processes Xn, obtained by starting X at time σn´1 and stopping it at
time σn:

Xnptq “
σn´1Xσnptq “ pXt^σn ´Xσn´1

q1Jσn´1,T Kptq.

Of course, we have X “
ř8

n“1Xn and the trajectories of pXnptqq0ďtďT are only different
from zero on the set ptσn´1 ă T uq8n“1.

The probability of these events can be estimated by

Prσn´1 ă T s ď c1e
´c222n

, (58)

for some constants c1 “ c1pT q and c2 “ c2pT q.
Using a classical inequality on uniformly bounded supermartingales (apparently due

to P. Meyer [12]) we obtain that each Mn is a square integrable martingale whose norm
can be estimated by

||MnpT q||
2
L2pPq ď c32c4nPrσn´1 ă T s (59)

for some constants c3, c4 depending only on T .
Combining (58) and (59), we deduce that

||MpT q||2L2pPq “
8
ÿ

n“1

||MnpT q||
2
L2pPq ă 8.

For the convenience of the reader we spell out the message of Meyer’s Theorem [12,
Theorem 46] in the present context.

Theorem A.2 (Meyer). Let X “ pXptqq0ďtďT be a uniformly bounded supermartingale

||X||8 :“ sup
0ďtďT

||Xptq||L8 ď c ă 8.

Denoting by X “ M ´ A its Doob-Meyer decomposition we get that M is a square
integrable martingale whose norm can be estimated by ||M ||22 :“ ||MpT q||2L2 ď 18c2

Proof. By standard approximation results it will suffice to show the result for a super-
martingale X “ pXpnqqNn“0 in finite discrete time. Note that in this case we have Ap0q “ 0
and

Apn` 1q ´Apnq “ ErXpn` 1q ´Xpnq|Fpnqs, n “ 1, . . . , N

so that
||∆Apnq||L8 ď 2c.
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We may telescope ApNq “
řN
n“1pApnq ´Apn´ 1qq to obtain

ApNq2 “ 2
N
ÿ

n“1

pApnq ´Apn´ 1qq
N
ÿ

j“n

pApjq ´Apj ´ 1qq

“ 2
N
ÿ

n“1

pApnq ´Apn´ 1qqpApNq ´Apn´ 1qq.

By taking expectations we get

ErApNq2s “ 2
N
ÿ

n“1

ErErpApnq ´Apn´ 1qqpApNq ´Apn´ 1qq|Fpn´ 1qss

“ 2
N
ÿ

n“1

ErpApnq ´Apn´ 1qqErApNq ´Apn´ 1q|Fpn´ 1qss.

The final term is uniformly bounded as

ErApNq ´Apn´ 1q|Fpn´ 1qs “ ErXpNq ´Xpn´ 1q|Fpn´ 1qs ď 2c.

This yields

ErApNq2s ď 4c
N
ÿ

n“1

ErApnq ´Apn´ 1qs

“ 4cErXpNq ´Xp0qs ď 8c2.

To obtain a bound for ||M ||2 we use the relation M “ X `A and ||XpNq||L8 ď c to get

ErMpNq2s ď 2ErApNq2s ` 2c2 ď 18c2.

Appendix B: Some facts on the stopping time of first
leaving a corridor

We discuss the first exit time of the interval r´h, 2 ` hs for some h ą 0 for a standard
Brownian motion B started at Bp0q “ 0.

σh :“ inftt : |Bptq ´ 1| “ 1` hu.

This stopping time has a well-known density and a well-known Laplace-Transform L (see
e.g. [11, Section 2.2.8.C] given by

Lpθq “ coshp
?

2θq

coshpp1` hq
?

2θq
.
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One can calculate the expected value of the stopping time by noting that Erσhs “ ErB2
σhs

so that Erσhs “ hp2` hq. The Jensen-inequality directly implies that the fractional mo-

ments of order less than 1 also exist and one has the estimate Erpσhq 1
2 s ď php2 ` hqq

1
2 .

This motivates to conjecture that Erpσhq
1
2 s

h Ñ 8 for h Ñ 0. We can get an expres-

sion for this moment using the Laplace-transform above by the formula Erpσhq 1
2 s “

´1
Γp 12 q

ş8

0
θ´

1
2L1pθq dθ, which we can evaluate to

Erpσhq
1
2 s “

c

2

π

„
ż 8

0

sinhphuq

u coshpp1` hquq2
du` h

ż 8

0

coshpuq tanhpp1` hquq

u coshpp1` hquq
du



where a substitution u “
?

2θ was used. It can be shown that both of these integrals are in
fact finite for positive h, but we are only interested in the above limiting behavior of this
expression. To see this first note that the integrands of both integrals are always positive.
Furthermore the hyperbolic tangent converges to 1. Therefore we can fix a constant K
such that for h ă 1 we have that tanhpp1 ` hquq ě 1

2 for u ě K. Putting this together
we make the following estimate:

Erpσhq 1
2 s

h
ě

1
?

2π

ż 8

K

coshpuq

u coshpp1` hquq
du

ě
1

2
?

2π

ż 8

K

e´hu

u
du “

1

2
?

2π

ż 8

hK

e´u

u
du.

The last expression now obviously diverges for h Ñ 0. The following Lemma which we
will need later on uses the above observations:

Lemma B.1. Let K ą 0 be an arbitrary constant. There exist t, h ą 0 such that

Erpt` σhq
1
2 ´ t

1
2 s ě Kh.

Proof. By the above observations we can choose h small enough to obtain Erpσhq 1
2 s ě

Kh` 1. We also have Erpσhq 1
2 s ´Erpt` σhq 1

2 ´ t
1
2 s ă 1 for small enough t by monotone

convergence of pt` sq
1
2 ´ t

1
2 to s

1
2 for tÑ 0.

We can now proceed to show the following facts about t0 to prove the final statement
of Lemma 2.4.

Lemma B.2. Let C ě pC and V pt, b, b˚q the corresponding value function. The map

t ÞÑ V pt, 1, 1q´pt
1
2 ´Cq is decreasing and if V p1, 1, 1q ą 1´C it follows that V p1, 1, 1q´

p1´ Cq ă V p0, 1, 1q ´ p´Cq.

Proof. We need a quantitative version of Lemma 2.1 (ii) which already shows that

t ÞÑ V pt, 1, 1q´pt
1
2 ´Cq is decreasing. First choose some ν ě 1 to be a bounded stopping

time which achieves
V p1, 1, 1q ´ Ep1,1,1qrν

1
2 ´ CB˚pνqs ă ε (60)
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such that
Prν ą 1` 2εs ą p2εq

1
2 (61)

for arbitrary ε ą 0. It is clear by definition of V that there exists a stopping time which
satisfies (60). Suppose there is no appropriate stopping time such that (61) is satisfied,
then there is an optimizing sequence of bounded stopping times which converge to 1 in
probability and thus a subsequence which converges almost surely. This would imply that
V p1, 1, 1q “ 1´ C which contradicts the assumptions of the Lemma.

Now, we can consider the stopping time ν as a randomized stopping time with respect
to the filtration pGp1qpuqquě1. The shifted stopping time ν1 :“ ν´1 is then a randomized
stopping time with respect to pGp0qpuqquě0. We can now estimate

rV p0, 1, 1q ´ p´Cqs ´ rV p1, 1, 1q ´ p1´ Cqs

ě Ep0,1,1qrν1
1
2 ´ CB˚pν1qs ´ Ep1,1,1qrν

1
2 ´ CB˚pνqs ` 1´ ε

“ Erpν1q
1
2 ´ p1` ν1q

1
2 ` 1s ´ ε

ě Erppν1q
1
2 ´ p1` ν1q

1
2 ` 1q1ν1ą2εs ´ ε

ě rp2εq
1
2 ´ pp1` 2εq

1
2 ´ 1qsp2εq

1
2 ´ ε

ą ε´
?

2ε
3
2 ą 0.

To get from the second to the third line, we used that by definition ν “ ν1 ` 1 and
Ep0,1,1qrB˚pν1qs “ Ep1,1,1qrB˚pνqs. We dropped the superscript to emphasize that we now
view ν1 as a stopping time with respect to the filtration pGp0qpuqquě0. To obtain the

fourth and the fifth line in the derivation, we observe that the map t ÞÑ t
1
2 ´p1` tq

1
2 ` 1

is non-negative and non-decreasing, and use (61). The sixth line can be derived by noting

that s ÞÑ p1` sq
1
2 ´1 is concave and thus lies completely under its tangent at s “ 0. The

last inequality holds for ε small enough. In the same way one can actually show that as
long as the spread V pt, 1, 1q´pt

1
2 ´Cq is strictly positive, it is also strictly decreasing.

Lemma B.3. Let C ě pC and t0 “ t0pCq the critical point separating S from NS. Then

1. t0 ą 0 and
2. t0 ă 8.

Proof. (1): Assume t0 “ 0. This means that we actually have

V pt, b˚, b˚q “ t
1
2 ´ Cb˚

for all t ą 0. We then obtain for arbitrary t, h ą 0 that

Ept,1,1qrpσhq
1
2 ´ Cp1` hqs ď ptq

1
2 ´ C

by the supermartingale property of the value-process. This is a contradiction to Lemma
B.1 for small enough t and h.
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(2): Assume t0 “ 8. This means that V pt, 1, 1q ą t
1
2 ´ C everywhere. As C ě pC we

also have V p0, 1, 1q ď 0. By Lemma B.2 we can set α :“ V p1, 1, 1q ´ 1 ` C ă C. Now
fix some h ą α

C´α and t ą p1` hq2. We can then make the following estimate, where we

use twice the fact that the function t ÞÑ V pt, b, |b|q ´ pt
1
2 ´ C|b|q is decreasing and σh is

defined as before:

V pt, 1, 1q “ Ept,1,1qrV pσh, 1` h, 1` hqs

ď V pt, 1` h, 1` hq ` Ept,1,1qrpσhq
1
2 ´ t

1
2 s

“ p1` hqV

ˆ

t

p1` hq2
, 1, 1

˙

` Ept,1,1qrpσhq
1
2 ´ t

1
2 s

ď t
1
2 ´ p1` hqpC ´ αq ` Ept,1,1qrpσhq

1
2 ´ t

1
2 s

ă V pt, 1, 1q ´ hpC ´ αq ` α` Ept,1,1qrpσhq
1
2 ´ t

1
2 s

Now we can eliminate V pt, 1, 1q on both sides and note that h, C and α do not depend
on t. The last term however goes to 0 for t Ñ 8 by dominated convergence (since 0 ď
?
t` σh´

?
t ď

?
σh and

?
t` σh´

?
tŒ 0). This leads to the desired contradiction.
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