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Abstract. We revisit the [JKO98] variational characterization of diffusion as entropic gra-
dient flow, and provide for it a probabilistic interpretation based on stochastic calculus. It
was shown by Jordan, Kinderlehrer, and Otto in [JKO98] that, for diffusions of Langevin
type, the Fokker-Planck probability density flow minimizes the rate of entropy dissipation
as measured by the distance traveled in terms of the Wasserstein metric. We obtain novel,
stochastic-process versions of these features, valid along almost every trajectory of the dif-
fusive motion in both the forward and the backward directions of time, using a very direct
perturbation analysis; the original results follow then simply by taking expectations. As a
bonus, we derive a slightly improved version of the so-called HWI inequality relating relative
entropy, Fisher information and Wasserstein distance.

1. Introduction

We give a trajectorial interpretation of a seminal result by Jordan, Kinderlehrer, and Otto
[JKO98], and provide a proof based on stochastic calculus. The basic theme of our approach is
outlined epigrammatically in the title; more precisely, we follow a stochastic approach to Otto’s
characterization of diffusions of Langevin-Schmoluchowski type as entropic gradient flows in
Wasserstein space. For consistency and better readability we adopt the setting and notation of
[JKO98], and even copy some paragraphs of this paper almost verbatim.

Following the lines of [JKO98] we thus consider a Fokker-Planck equation of the form

∂tρ(t, x) = div
(
∇Ψ(x) ρ(t, x)

)
+ β−1∆ρ(t, x), (t, x) ∈ (0,∞)×Rn, (1.1)

with initial condition
ρ(0, x) = ρ0(x), x ∈ Rn. (1.2)

Here, ρ is a real-valued function defined for (t, x) ∈ [0,∞) × Rn, the function Ψ: Rn → [0,∞)
is smooth and plays the role of a potential, β > 0 is a real constant, and ρ0 is a probability
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density on Rn. The solution ρ(t, x) of (1.1) with initial condition (1.2) stays non-negative and
conserves its mass, which means that the spatial integral∫

Rn
ρ(t, x) dx (1.3)

is independent of the time parameter t > 0 and is thus equal to
∫
ρ0 dx = 1. Therefore, ρ(t, · )

must be a probability density on Rn for every fixed time t > 0.
As in [JKO98] we note that the Fokker-Planck equation (1.1) with initial condition (1.2)

is inherently related to the stochastic differential equation of Langevin-Schmoluchowski type
[Fri75, Gar09, Ris96, Sch80]

dX(t) = −∇Ψ
(
X(t)

)
dt+

√
2β−1 dW (t), X(0) = X0. (1.4)

In the equation above, (W (t))t>0 is an n-dimensional Brownian motion started from 0, and the
Rn-valued random variable X0 is independent of the process (W (t))t>0. The distribution of X0

has probability density ρ0 and, unless specified otherwise, the reference measure will always be
Lebesgue measure on Rn. Then ρ(t, · ), the solution of (1.1) with initial condition (1.2), gives
at any given time t > 0 the probability density function of the random variable X(t) from (1.4).

If the potential Ψ grows rapidly enough so that e−βΨ ∈ L1(Rn), then the partition function

Z(β) =
∫
Rn

e−βΨ(x) dx (1.5)

is finite and there exists a unique stationary solution of the Fokker-Planck equation (1.1); namely,
the probability density ρs of the Gibbs distribution given by [Gar09, JK96, Ris96]

ρs(x) =
(
Z(β)

)−1 e−βΨ(x) (1.6)

for x ∈ Rn. When it exists, the probability measure on Rn with density ρs is called Gibbs
distribution, and is the unique invariant measure for the Markov process (X(t))t>0 defined by
the stochastic differential equation (1.4); see, e.g., [KS91, Exercise 5.6.18, p. 361].
In [JK96] it is shown that the stationary density ρs satisfies the following variational principle:

it minimizes the free energy functional

F (ρ) = E(ρ) + β−1S(ρ) (1.7)

over all probability densities ρ on Rn. Here, the functional

E(ρ) :=
∫
Rn

Ψρdx (1.8)

models the potential energy, whereas the internal enegery is given by the negative of the Gibbs-
Boltzmann entropy functional

S(ρ) :=
∫
Rn
ρ log ρdx. (1.9)

In accordance with [JKO98] we consider the following regularity assumptions.
Assumptions 1.1 (Regularity assumptions of [JKO98, Theorem 5.1]).

(i) The potential Ψ: Rn → [0,∞) is smooth and satisfies, for some C ∈ (0,∞), the bound

|∇Ψ| 6 C(Ψ + 1). (1.10)

(ii) The distribution of X(0) in (1.4) has a probability density function ρ0(x) with respect to
Lebesgue measure on Rn, which has finite second moment as well as finite free energy, i.e.,∫

Rn
ρ0(x) |x|2 dx <∞ and F (ρ0) <∞. (1.11)
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These assumptions are not strong enough to ensure that the constant Z(β) in (1.5) is finite,
thereby allowing for cases in which the stationary density ρs does not exist. In fact, in [JKO98]
the authors point out explicitly that, even when the stationary density ρs is not defined, the free
energy (1.7) of a density ρ(t, x) satisfying the Fokker-Planck equation (1.1) with initial condition
(1.2) may be defined, provided that F (ρ0) is finite.
In the present paper, however, we also impose the more restrictive assumption that the sta-

tionary density ρs actually defines a probability measure, i.e., Z(β) < ∞. We do believe that
our methods can be adapted to cover also the case Z(β) = ∞, but this will need additional
work.
For these reasons we place ourselves in the following setting.

Assumptions 1.2 (Regularity assumptions of the present paper). In addition to condi-
tions (i) and (ii) of Assumptions 1.1, we also impose that:

(iii) The constant Z(β) in (1.5) is finite, so that the invariant probability measure with density
ρs exists. In addition, we suppose that Ψ is sufficiently well-behaved to guarantee that the
solution of (1.1) with initial condition (1.2) is smooth in the space variable x, Lipschitz in
the time variable t on each interval [ε, T ], and strictly positive, for each ε, t, T > 0. For
example, by requiring that all derivatives of Ψ grow at most exponentially, as |x| converges
to infinity, one may adapt the arguments from [Rog85] showing that this is indeed the case.

2. The stochastic approach

Thus far, we have been mostly quoting from [JKO98]. We take now a more probabilistic point
of view, and translate our setting into the language of stochastic processes and probability
measures. For notational convenience, and without loss of generality, we fix the constant β > 0
to equal 2, so that the stochastic differential equation (1.4) becomes

dX(t) = −∇Ψ
(
X(t)

)
dt+ dW (t), t > 0. (2.1)

We shall study the stochastic differential equation (2.1) under two different initial distribu-
tions. We let P (0) be a probability measure with density p0 := ρ0, and denote by Q(0) the
invariant probability measure on Rn with stationary density q(0) := ρs as in (1.6).
While we make an effort to follow the setting and notation of [JKO98] as closely as possible,

our notation differs slightly from [JKO98]. To conform with our more probabilistic approach,
we shall use the letters p(0) and q(0) rather than ρ0 and ρs.

The initial probability measures P (0) and Q(0) on Rn, defined by the densities p(0) and q(0),
induce probability measures P and Q on the path space Ω = C(R+;Rn) of Rn-valued continuous
functions on R+ = [0,∞), so that the canonical coordinate process (X(t)(ω))t>0 ≡ (ω(t))t>0
satisfies the stochastic differential equation (2.1) with initial distribution P (0) under P, and
Q(0) under Q. We shall denote by P (t) and Q(t) the distributions of the random vector X(t)
under the probability measures P and Q, respectively, at each time t > 0; and by p(t) ≡ p(t, · ),
q(t) ≡ q(t, · ) the respective probability density functions. Of course, Q(t) does not depend on
time and equals the invariant distribution Q ≡ Q(0) with stationary density q ≡ q(t) for all
times t > 0.

An important role will be played by the Radon-Nikodým derivative, or likelihood ratio process,

dP
dQ

∣∣∣∣
σ(X(t))

= dP (t)
dQ

(
X(t)

)
= `

(
t,X(t)

)
, where `(t, x) := p(t, x)

q(x) (2.2)

for t > 0 and x ∈ Rn.
The relative entropy of P (t) with respect to Q is defined by

H
(
P (t) |Q

)
:= EP

[
log `

(
t,X(t)

)]
=
∫
Rn

log
(
p(t, x)
q(x)

)
p(t, x) dx, t > 0. (2.3)
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The evaluation of the free energy functional F in (1.7) for the probability density function
p(t, · ) can be interpreted as the relative entropy H(P (t) |Q); the following well-known iden-
tity (2.4) spells this out. In light of condition (ii) in Assumptions 1.1, this identity implies
H(P (0) |Q) <∞, so the quantity in (2.3) is well-defined and finite for t = 0.

Lemma 2.1. Along the curve of probability measures (P (t))t>0, the free energy functional in
(1.7) and the relative entropy in (2.3) are related for each t > 0 through the equation

2F
(
p(t, · )

)
= H

(
P (t) |Q

)
− logZ(2). (2.4)

Proof. Indeed,

EP
[
log `

(
t,X(t)

)]
= EP

[
log

(
Z(2) e2Ψ(X(t)) p

(
t,X(t)

))]
= logZ(2) + EP

[
2Ψ
(
X(t)

)]
+ EP

[
log p

(
t,X(t)

)]
= logZ(2) + 2

∫
Rn

Ψ(x) p(t, x) dx+
∫
Rn
p(t, x) log p(t, x) dx,

which equals 2F (p(t, · )), up to the constant logZ(2).

At this point we notice that the normalizing constant Z(2) is irrelevant for the present problem
of studying the decay of the free energy functional F (p(t, · )). For notational convenience we
therefore may and do assume throughout this paper that the constant Z(2) in (1.5) is normalized
to equal one.

3. The theorems

As already indicated in (1.1) and (1.4), the probability density function p(t, · ) : Rn → (0,∞)
solves the Fokker-Planck or forward Kolmogorov [Kol31] equation [Fri75, Gar09, Ris96, Sch80]

∂tp(t, x) = div
(
∇Ψ(x) p(t, x)

)
+ 1

2∆p(t, x), (t, x) ∈ (0,∞)×Rn, (3.1)

with initial condition
p(0, x) = p0(x), x ∈ Rn. (3.2)

By contrast, the stationary density ρs( · ) = q( · ) does not depend on the temporal variable, and
solves the stationary version of the forward Kolmogorov equation (3.1), namely

0 = div
(
∇Ψ(x) q(x)

)
+ 1

2∆q(x), x ∈ Rn. (3.3)

In the light of Lemma 2.1, the object of interest in [JKO98] is to relate the decay of the
relative entropy functional

P2(Rn) 3 P 7−→ H(P |Q) ∈ R+ (3.4)

along the curve (P (t))t>0, to the quadratic Wasserstein distance W2( · , · ), defined in (5.3) in
Section 5. We resume the remarkable relation between these two quantities in the following two
theorems.

Theorem 3.1. Under the Assumptions 1.2, for each t0 > 0 we have

lim
t↓t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
W2
(
P (t), P (t0)

) = −
√
I
(
P (t0) |Q

)
(3.5)

as well as, for t0 > 0,

lim
t↑t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
W2
(
P (t), P (t0)

) =
√
I
(
P (t0) |Q

)
. (3.6)
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The expression on the left-hand sides of (3.5) and (3.6) may be interpreted as the slope of the
relative entropy functional P 7→ H(P |Q) at P = P (t0) along the curve (P (t))t>0, if we measure
distances in P2(Rn) by the quadratic Wasserstein distance W2( · , · ) of (5.3). The quantity
appearing on the right-hand sides of (3.5) and (3.6) is the relative Fisher information (see, e.g.,
[CT06]), defined as

I
(
P (t0) |Q

)
:= EP

[∣∣∇ log `
(
t0, X(t0)

)∣∣2] (3.7)

and, written more explicitly in terms of the “score function” ∇`(t, · )/`(t, · ), as

I
(
P (t0) |Q

)
= EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
]

=
∫
Rn

∣∣∣∣∇p(t0, x)
p(t0, x) + 2∇Ψ(x)

∣∣∣∣2 p(t0, x) dx. (3.8)

The remarkable insight of [JKO98] states that the slope in (3.5) and (3.6) in the direction of
the curve (P (t))t>0 is, in fact, the slope of steepest descent for the relative entropy functional
at P (t0).
To formalize this assertion, we fix t0 > 0 as well as a compactly supported, and possibly time-

dependent, vector field β : [t0,∞)×Rn → Rn of class C1,∞, which will serve as a perturbation.
Consider the thus perturbed Fokker-Planck equation

∂tp
β(t, x) = div

((
∇Ψ(x) + β(t, x)

)
pβ(t, x)

)
+ 1

2∆pβ(t, x), (t, x) ∈ (t0,∞)×Rn, (3.9)

with initial condition
pβ(t0, x) = p(t0, x), x ∈ Rn. (3.10)

We denote by Pβ the probability measure on the path space Ω = C([t0,∞);Rn) under which
the canonical coordinate process (X(t))t>t0 satisfies the stochastic differential equation

dX(t) = −
(
∇Ψ

(
X(t)

)
+ β

(
t,X(t)

))
dt+ dW (t), t > t0, (3.11)

with initial distribution P (t0). The distribution of X(t) under Pβ on Rn will be denoted by
P β(t); once again, the corresponding probability density function pβ(t) ≡ pβ(t, · ) is a solution
of the equation (3.9) subject to the initial condition (3.10).

Theorem 3.2. Under the Assumptions 1.2, we fix t0 > 0 and let β : [t0,∞) × Rn → Rn be
a gradient vector field, i.e., of the form β(t, · ) = ∇B(t, · ) for some time-dependent potential
B(t, · ), for t > t0. Assume that β is compactly supported and of class C1,∞, introduce the
elements a = ∇ log `(t0, X(t0)) and b = β(t0, X(t0)) of the Hilbert space L2(P;Rn), and suppose
that ‖a+ 2b‖L2(P;Rn) > 0. Then

lim
t↓t0

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
W2
(
P β(t), P β(t0)

) = lim
t↓t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
W2
(
P (t), P (t0)

) (3.12)

+ ‖a‖L2(P;Rn) −
〈
a ,

a+ 2b
‖a+ 2b‖L2(P;Rn)

〉
L2(P;Rn)

. (3.13)

Remark 3.3. On the strength of the Cauchy-Schwarz inequality, the expression (3.13) is non-
negative, and vanishes if and only if a and b are collinear. Consequently, if the vector field β(t0, · )
is not a scalar multiple of ∇ log `(t0, · ), the slope on the left-hand side of (3.12) is strictly bigger
than the corresponding (negative) slope in (3.5), i.e., the right-hand side of (3.12). �

These two theorems are essentially well known. They build upon a vast amount of previous
work.
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In the quadratic case Ψ(x) = |x|2/4, i.e., when the invariant measure in (1.6) is standard
Gaussian, the relation

d
dt H

(
P (t) |Q

)
= −1

2 I
(
P (t) |Q

)
(3.14)

has been known since [Sta59] as de Bruijn’s identity; we revisit this identity in (3.22) below in our
more general context, along the lines of the seminal work [BÉ85]. This relationship between the
two fundamental information measures, due to Shannon and Fisher, respectively, is a dominant
theme in many aspects of information theory and probability. We refer to the book [CT06] by
Cover and Thomas for an excellent account of the results by Barron, Blachman, Brown, Linnik,
Rényi, Shannon, Stam and many others in this vein, as well as to the book [Vil03] by Villani.
See also the paper by Carlen and Soffer [CS91] on the relation of (3.14) to the central limit
theorem.
The paper [JKO98] broke new ground in this respect, as it considered a general potential

Ψ and established the relation to the quadratic Wasserstein distance, culminating with the
characterization of (p(t, · ))t>0 as a gradient flow. This relation was further investigated by Otto
in the paper [Ott01], where the theory now known as “Otto calculus” was developed.
The precise statements of our Theorems 3.1 and 3.2 complement the existing results in some

detail, e.g., the precise form (3.13), measuring the difference of the two slopes appearing in (3.12).
The main novelty of our approach will only become apparent, however, with the formulation of
Theorems 3.4 and 3.5, below. These two results are the trajectorial counterparts of Theorems
3.1 and 3.2.

We shall investigate Theorems 3.1 and 3.2 in a trajectorial fashion, by considering the relative
entropy process

log `
(
t,X(t)

)
= log

(
p
(
t,X(t)

)
q
(
X(t)

) ) , 0 6 t 6 T (3.15)

along the trajectory (X(t))06t6T and calculating its dynamics (stochastic differential) under the
probability measures P and Q. A decisive tool in this endeavor is to pass to reverse time, and
to use a remarkable insight due to Fontbona and Jourdain [FJ16]. These authors consider the
coordinate process (X(t))06t6T on path space Ω = C([0, T ];Rn) in the reverse direction of time,
i.e., they work with the time-reversed process (X(T −t))06t6T ; it is then notationally convenient
to consider a finite time interval [0, T ], rather than R+. Of course, this does not restrict the
generality of the arguments.

At this stage it is important to mention the relevant filtrations: We denote by (F(t))t>0 the
usual filtration generated by the coordinate process (X(t))t>0, that is,

F(t) := σ
(
X(u) : 0 6 u 6 t

)
, t > 0; (3.16)

while by (G(T − t))06t6T we denote the filtration generated by the time-reversed coordinate
process (X(T − t))06t6T , namely,

G(T − t) := σ
(
X(T − u) : 0 6 u 6 t

)
, 0 6 t 6 T. (3.17)

As already mentioned, the following two theorems are the main new results of this paper.
They can be regarded as trajectorial versions of Theorems 3.1 and 3.2. The message of Theorem
3.4 right below, is that the trade-off between the decay of relative entropy and the “Wasserstein
transportation cost”, both of which are characterized in terms of the relative Fisher information,
is valid not only in expectation, but also along (almost) each trajectory, provided we run time
in the reverse direction.1

1As David Kinderlehrer kindly pointed out to the second named author, the implicit Euler scheme used in
[JKO98] also reflects the idea of going back in time, at each step in the discretization.
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Theorem 3.4. Under the assumptions of Theorem 3.1, we define the Fisher information process
(F (T − t))06t6T accumulated from the right, as

F (T − t) :=
∫ t

0

∣∣∇`(T − u,X(T − u)
)∣∣2

`
(
T − u,X(T − u)

)2 du

=
∫ t

0

∣∣∣∣∇p
(
T − u,X(T − u)

)
p
(
T − u,X(T − u)

) + 2 Ψ
(
X(T − u)

)∣∣∣∣2 du
(3.18)

for t ∈ [0, T ]. Then the difference

M(T − t) := log `
(
T − t,X(T − t)

)
− 1

2 F (T − t) , 0 6 t 6 T (3.19)

is a P-martingale with respect to the filtration (G(T − t))06t6T . More explicitly, at any given
time t ∈ [0, T ], this martingale can be represented as

M(T − t) = M(T ) +
∫ t

0

∇`
(
T − u,X(T − u)

)
`
(
T − u,X(T − u)

) dWP(T − u), (3.20)

where
(
W
P(T − t)

)
06t6T is a P-Brownian motion with respect to the filtration (G(T − t))06t6T .

This result implies Theorem 3.1, as we argue presently; one simply has to take expectations
with respect to P. Indeed, passing from reversed time to the original time direction, Theorem
3.4 entails, for 0 6 t, t0 6 T ,

EP
[
log `

(
t,X(t)

)]
− EP

[
log `

(
t0, X(t0)

)]
= −1

2 EP

[ ∫ t

t0

∣∣∇`(u,X(u)
)∣∣2

`
(
u,X(u)

)2 du
]
. (3.21)

In particular, this shows that the relative entropy function t 7→ H(P (t) |Q) from (2.2), and thus
also the free energy function t 7→ F (p(t, · )) from (2.4), is strictly decreasing provided `(t, · ) is
not constant. Furthermore, equation (3.21) yields in the limit the generalized de Bruijn identity

lim
t→t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
t− t0

= −1
2 EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
]
, (3.22)

as well as

lim
t→t0

∣∣H(P (t) |Q
)
−H

(
P (t0) |Q

)∣∣
|t− t0|

= 1
2 EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
]
. (3.23)

On the other hand, as is carefully worked out in [AGS08], we know the limiting behavior of
the Wasserstein distance (see Theorem 5.1 in Section 5 below for the details), namely

lim
t→t0

W2
(
P (t), P (t0)

)
|t− t0|

= 1
2

(
EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
])1/2

. (3.24)

Dividing the one-sided limits corresponding to (3.23) by the one-sided limits corresponding to
(3.24) and using the definition of the relative Fisher information (3.7), as well as (3.8), we obtain
equations (3.5) and (3.6) of Theorem 3.1 (the latter for t0 > 0).
Summing up, we have deduced Theorem 3.1 from Theorem 3.4.

Next, we state also a trajectorial version of Theorem 3.2. As above, we consider the pertur-
bation β and denote the perturbed likelihood ratio function by

`β(t, x) := pβ(t, x)
q(x) , (t, x) ∈ [t0,∞)×Rn. (3.25)
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Theorem 3.5. Under the assumptions of Theorem 3.2, for each t0 > 0 we have

lim
t↓t0

EPβ
[

log `β
(
t,X(t)

) ∣∣ F(t0)
]
− EP

[
log `

(
t,X(t)

) ∣∣ F(t0)
]

t− t0

= div β
(
t0, X(t0)

)
− 2

〈
β
(
t0, X(t0)

)
,∇Ψ

(
X(t0)

)〉
L2(P;Rn)

,

(3.26)

the limit holding true P-almost surely and in the norm of L1(P). Furthermore,

lim
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

= 1
2

(
EP

[ ∣∣∣∣∇`
(
t0, X(t0)

)
`
(
t0, X(t0)

) + 2β
(
t0, X(t0)

)∣∣∣∣2
])1/2

. (3.27)

Remark 3.6. In the statement of Theorem 3.5 above, the limit (3.26) also exists Pβ-almost
surely and in the norm of L1(Pβ). Furthermore, the expectation EP appearing in (3.27) can be
replaced by EPβ . The reason is simply that X(t0) has the same distribution under P, as it does
under Pβ. �
Again, Theorem 3.5 implies Theorem 3.2 by taking expectations. Indeed, we can calculate

the limits of the four terms appearing in the numerators and denominators in (3.12) explicitly,
after normalizing by the factor t − t0. Recalling the abbreviations a = ∇ log `(t0, X(t0)) and
b = β(t0, X(t0)), we claim that

lim
t↓t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
t− t0

= −1
2 ‖a‖

2
L2(P;Rn), (3.28)

lim
t↓t0

W2
(
P (t), P (t0)

)
t− t0

= 1
2 ‖a‖L2(P;Rn), (3.29)

lim
t↓t0

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
t− t0

= −
〈
a, a2 + b

〉
L2(P;Rn), (3.30)

lim
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

= 1
2 ‖a+ 2b‖L2(P;Rn). (3.31)

Subtracting the quotient of (3.28) and (3.29) from the quotient of (3.30) and (3.31), we arrive
at the expression

‖a‖L2(P;Rn) −
〈
a ,

a+ 2b
‖a+ 2b‖L2(P;Rn)

〉
L2(P;Rn)

, (3.32)

which is just (3.13).
We still have to verify the claims (3.28) – (3.31). The limits (3.29) and (3.31) are well-known

[AGS08] and follow from (3.27), as will be explained in Section 5. As regards (3.28), we have
already computed this limit in (3.22). We still have to show (3.30). Taking expectations in
(3.26) yields

lim
t↓t0

EPβ
[

log `β
(
t,X(t)

)]
− EP

[
log `

(
t,X(t)

)]
t− t0

= EP

[
div β

(
t0, X(t0)

)
− 2

〈
β
(
t0, X(t0)

)
,∇Ψ

(
X(t0)

)〉]
.

(3.33)

The numerator of the left-hand side of (3.33) equals

EPβ

[
log

(
`β
(
t,X(t)

)
`β
(
t0, X(t0)

))]− EP
[

log
(
`
(
t,X(t)

)
`
(
t0, X(t0)

))], (3.34)

8



as `β(t0, X(t0)) = `(t0, X(t0)), and the expression (3.34) is equal to

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
−
(
H
(
P (t) |Q

)
−H

(
P (t0) |Q

) )
, (3.35)

where we know already the asymptotics of the second half of the expression (3.35); namely, (3.28)
once again. The first half contains what we want to calculate, namely (3.30). The right-hand
side of (3.33) equals ∫

Rn

(
div β(t0, x)− 2

〈
β(t0, x),∇Ψ(x)

〉
Rn

)
p(t0, x) dx. (3.36)

Using integration by parts and the fact that the perturbation β(t0, · ) is assumed to be smooth
and have compact support, this expression becomes

−
∫
Rn

〈
β(t0, x),∇ log p(t0, x) + 2∇Ψ(x)

〉
Rn
p(t0, x) dx, (3.37)

which is the same as

−
〈
β
(
t0, X(t0)

)
,∇ log `

(
t0, X(t0)

)〉
L2(P;Rn)

= −〈b, a〉L2(P;Rn). (3.38)

Combining (3.33), (3.35), (3.38) and (3.28), we obtain (3.30).
Summing up, we have proved that Theorem 3.5 implies Theorem 3.2.

Remark 3.7. In Theorems 3.2 and 3.5 we have required β : [t0,∞)×Rn → Rn to be a gradient
field, i.e., of the form β(t, · ) = ∇B(t, · ) for some time-dependent potential B(t, · ) : Rn → R.
This assumption is crucial for the rate of change of the Wasserstein distance in (3.31) to be

valid, as is well known [AGS08] and will be recalled in Section 5 below. On the other hand, for
the limiting behavior of the relative entropy in (3.30), this assumption plays no role. If β(t, · ) is
a (smooth and compactly supported) vector field which is not necessarily induced by a potential
B(t, · ), the assertion (3.30) is still valid as will become clear from the proof of Theorem 3.5
below. �

Theorem 3.2 and, in particular, equation (3.30) above, show — at least on a formal level —
that the functional

P2(Rn) 3 P 7−→ H(P |Q)−H(P (0) |Q) (3.39)
can be linearly approximated in the neighborhood of P (0) by the functional

P2(Rn) 3 P 7−→ 〈a, c〉L2(P;Rn), (3.40)

where the random variable c corresponds to −a
2 − b in (3.30). Now we fix a general element

P ∈ P2(Rn) and let γ : Rn → Rn be the optimal transport map from P (0) to P . Then (3.30)
suggests that the “displacement interpolation” (Pt)06t61 between P0 = P (0) and P1 = P , to be
defined in (3.42) below, is tangent to the curve (P β(t))t>0 as in Theorems 3.2 and 3.5, if γ and
β are related via

γ(x) = −1
2 ∇ log `(0, x)− β(x). (3.41)

We formalize these intuitive geometric insights in the subsequent lemma, and place ourselves
in the following setting.
Assumptions 3.8. In addition to Assumptions 1.2, we impose that:
(iv) P0 and P1 are probability measures in P2(Rn) with smooth densities, which are compactly

supported and strictly positive on the interior of their respective supports. Hence there is
a map γ : Rn → Rn of the form γ = ∇Γ for some convex function Γ: Rn → R, uniquely
defined on and supported by the support of P0, and smooth in the interior of this set. The
map γ induces the optimal quadratic Wasserstein transport from P0 to P1 via

T γt (x) := x+ tγ(x) and (T γt )#(P0) =: Pt (3.42)

for 0 6 t 6 1; to wit, the displacement interpolation between P0 and P1.
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Remark 3.9. For the existence and uniqueness of the optimal transport map γ : Rn → Rn we
refer to [Vil03, Theorem 2.44], and for its smoothness to [Vil03, Theorem 4.14] as well as [Vil03,
Remarks 4.15]. �
Remark 3.10. We warn at this point, that we have chosen the subscript notation for Pt in order
not to confuse it with the probability measure P (t) from our Section 2 here. While P0 = P (0),
the flow (Pt)06t61 from P0 to P1 will have otherwise very little to do with the flow (P (t))t>0
from P (0) to Q appearing in Theorems 3.1 and 3.2. Similarly, the likelihood ratio function

`t(x) = pt(x)
q(x) , (t, x) ∈ [0, 1]×Rn, (3.43)

is different from `(t, · ), as now pt( · ) is the density function of the probability measure Pt. We
relegate the proof of Lemma 3.11 below to Appendix C. �

Lemma 3.11. Under the Assumptions 3.8, recall the probability measure Q on Rn with density
q = ρs as in (1.6), and let X0 be a random variable with distribution P0 = P (0), defined on
some probability space (S,S, ν). Then we have

lim
t↓0

H(Pt |Q)−H(P0 |Q)
t

=
〈
∇ log `0(X0), γ(X0)

〉
L2(ν;Rn). (3.44)

Combining Lemma 3.11 with well-known arguments, in particular, a fundamental result on
displacement convexity due to McCann [McC95, McC97], we obtain an improvement of the HWI
inequality obtained by Otto and Villani [OV00] relating the fundamental quantities of relative
entropy (H), Wasserstein distance (W) and Fisher information (I).

Theorem 3.12 (HWI inequality). Under the Assumptions 1.2, we let P0 = P (0) and Q be
the probability measure on Rn with density q = ρs as in (1.6). We suppose in addition that the
potential Ψ: Rn → [0,∞) satisfies a curvature lower bound

Hess(Ψ) > κ Id, (3.45)

for some κ ∈ R. Let P1 ∈P2(Rn) be such that H(P1 |Q) <∞, then we have

H(P0 |Q)−H(P1 |Q) 6 −
〈
∇ log `0(X0), γ(X0)

〉
L2(ν;Rn) −

κ
2 W

2
2 (P0, P1), (3.46)

where the random variable X0, the likelihood ratio function `0, and the probability measure ν are
as in Lemma 3.11.

On the strength of the Cauchy-Schwarz inequality, we have

−
〈
∇ log `0(X0), γ(X0)

〉
L2(ν;Rn) 6 ‖∇ log `0(X0)‖L2(ν;Rn) ‖γ(X0)‖L2(ν;Rn), (3.47)

with equality if and only if ∇ log `0( · ) and γ( · ) are negatively collinear. Now the relative Fisher
information of P0 with respect to Q equals

I(P0 |Q) = Eν

[
|∇ log `0(X0)|2

]
= ‖∇ log `0(X0)‖2L2(ν;Rn), (3.48)

and by Brenier’s theorem [Vil03, Theorem 2.12] we have

‖γ(X0)‖L2(ν;Rn) = W2(P0, P1). (3.49)

Consequently, we get the inequality

−
〈
∇ log `0(X0), γ(X0)

〉
L2(ν;Rn) 6

√
I(P0 |Q) W2(P0, P1). (3.50)
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Inserting (3.50) into (3.46) we obtain the usual form of the HWI inequality

H(P0 |Q)−H(P1 |Q) 6W2(P0, P1)
√
I(P0 |Q)− κ

2 W
2
2 (P0, P1). (3.51)

When there is a non-trivial angle between ∇ log `0(X0) and γ(X0) in L2(ν;Rn), the inequality
(3.46) gives a sharper bound than (3.51). We refer to the original paper [OV00], as well as
to [Vil03, Chapter 5], and the recent paper [GLRT18] for a detailed discussion of the HWI
inequality (3.51), which contains as special cases Talagrand’s inequality [Tal96], as well as the
logarithmic Sobolev inequality [Gro75].

Proof of Theorem 3.12. As elaborated in [Vil03, Section 9.4] we may assume without loss of gen-
erality that P0 and P1 satisfy the assumptions of Lemma 3.11. For the existence and smoothness
of the optimal transport map γ we refer to Remark 3.9.
We consider now the relative entropy with respect to Q along the constant-speed geodesic

(Pt)06t61, namely, the function

f(t) := H(Pt |Q), 0 6 t 6 1. (3.52)

The displacement convexity results of McCann [McC97], see also [Vil03, Section 5.2], imply

f ′′(t) > κW 2
2 (P0, P1), 0 6 t 6 1. (3.53)

We appeal now to Lemma 3.11, according to which we have

f ′(0+) = lim
t↓0

f(t)− f(0)
t

=
〈
∇ log `0(X0), γ(X0)

〉
L2(ν;Rn). (3.54)

In conjunction with (3.53) and (3.54), the formula f(1) = f(0) + f ′(0+) +
∫ 1
0 (1− t)f ′′(t) dt now

yields (3.46).

Remark 3.13. It is worth noting at this point that, in the hands of [BÉ85], the strong non-
degeneracy condition (3.45) leads — via quite intricate and detailed analysis — to the expo-
nential temporal dissipation of the Fisher information. For an exposition of the Bakry-Émery
theory we refer to [Gen14]. �

4. Details and proofs

In this section we provide the proofs of Theorems 3.4 and 3.5. In fact, all we have to do is
to apply Itô’s formula to calculate the dynamics, i.e., the stochastic differentials of the relative
entropy process

log `
(
t,X(t)

)
= log

(
p
(
t,X(t)

)
q
(
X(t)

) ) , t > 0, (4.1)

as well as those of the perturbed relative entropy process

log `β
(
t,X(t)

)
= log

(
pβ
(
t,X(t)

)
q
(
X(t)

) )
, t > 0, (4.2)

under the measures P and Pβ respectively. We may (and shall) do this in both the forward and
the backward directions of time.
However, this brute force approach does not provide a hint as to why we obtain the remarkable

form of the drift term of the time-reversed relative entropy process

log `
(
T − t,X(T − t)

)
= log

(
p
(
T − t,X(T − t)

)
q
(
X(T − t)

) )
, 0 6 t 6 T, (4.3)
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as stated in Theorem 3.4, namely

d log `
(
T − t,X(T − t)

)
=
∇`
(
T − t,X(T − t)

)
`
(
T − t,X(T − t)

) dWP(T − t)

+ 1
2

∣∣∇`(T − t,X(T − t)
)∣∣2

`
(
T − t,X(T − t)

)2 dt,

(4.4)

for 0 6 t 6 T , with respect to the filtration (G(T − t))06t6T . As we have seen, the stochastic
differential (4.4) of the process (4.3) yields a very direct and illuminating “trajectorial” sharp-
ening of Theorem 3.1. When deducing Theorem 3.1 from Theorem 3.4 we did not have to argue
with partial integration. Taking expectations of the dynamics of (4.3) one can directly observe
the trade-off between the decay of entropy and the traveled Wasserstein distance along each
trajectory. We mention already here that partial integration appears to be unavoidable when
working with the processes (4.1) and (4.2) in the forward direction.
The eye-opener (at least for the present authors) leading to (4.4) is the subsequent remarkable

insight due to Fontbona and Jourdain [FJ16]. It provided the present authors with much of the
original motivation, to start this line of research. This theorem holds true in much greater
generality (essentially one only needs the Markovian structure of the process (X(t))t>0) but we
only state it in the present setting given by (2.1) under the Assumptions 1.2.

Theorem 4.1 ([FJ16]). Under the Assumptions 1.2, for any given T > 0, the time-reversed
likelihood ratio process

`
(
T − t,X(T − t)

)
=
p
(
T − t,X(T − t)

)
q
(
X(T − t)

) , 0 6 t 6 T, (4.5)

is a Q-martingale with respect to the reverse filtration (G(T − t))06t6T .

For the convenience of the reader we recall in Appendix B the surprisingly straightforward
proof of Theorem 4.1.
Our aim is to calculate the dynamics of the time-reversed relative entropy process (4.3) under

the probability measure P. In order to do this, we start by calculating the stochastic differential
of the time-reversed process (X(T − t))06t6T under P, which is a well-known and classical
theme; see e.g. [Föl85, Föl86], [HP86], [Mey94], [Nel01], and [Par86]. For the convenience of the
reader we present the theory of time reversal of diffusion processes in Appendix D. The idea of
time reversal goes back to the thoughts of Boltzmann [Bol96, Bol98a, Bol98b] and Schrödinger
[Sch31, Sch32], as well as Kolmogorov [Kol37]. In fact, as we shall recall in Appendix A, the
relation between time-reversal of a Brownian motion and the quadratic Wasserstein distance
may in nuce be traced back to an insight of Bachelier in his thesis [Bac00, Bac06] from 1900; at
least when admitting a good portion of wisdom of hindsight.
Recall that we defined the probability measure P on the path space Ω = C(R+;Rn) such that

the canonical coordinate process (X(t)(ω))t>0 ≡ (ω(t))t>0 satisfies the stochastic differential
equation (2.1) with initial distribution P (0) under P. In other words, the process

W (t) := X(t)−X(0) +
∫ t

0
∇Ψ

(
X(u)

)
du, t > 0, (4.6)

defines a Brownian motion under P with respect to the filtration (F(t))t>0, where the integral in
(4.6) is to be understood in a pathwise Riemann-Stieltjes sense. Passing to the reverse direction
of time, the following result is well known to hold under the Assumptions 1.2.
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Proposition 4.2. The process
(
W
P(T − t)

)
06t6T defined by

W
P(T − t) := W (T − t)−W (T )−

∫ t

0

∇p
(
T − u,X(T − u)

)
p
(
T − u,X(T − u)

) du, 0 6 t 6 T, (4.7)

is a Brownian motion under P, adapted to the filtration (G(T − t))06t6T . Moreover, the time-
reversed process (X(T − t))06t6T satisfies the stochastic differential equation

dX(T − t) = ∇ log `
(
T − t,X(T − t)

)
dt−∇Ψ

(
X(T − t)

)
dt+ dWP(T − t), (4.8)

for 0 6 t 6 T , with respect to the filtration (G(T − t))06t6T .

Since Theorem 4.1 states that the time-reversed likelihood ratio process (4.5) is a Q-martingale
with respect to the filtration (G(T − t))06t6T , we will first need the analogue of Proposition 4.2
in terms of the probability measure Q, which is induced by the invariant distribution Q.

Proposition 4.3. The process
(
W
Q(T − t)

)
06t6T defined by

W
Q(T − t) := W (T − t)−W (T ) + 2

∫ t

0
Ψ
(
X(T − u)

)
du, 0 6 t 6 T, (4.9)

is a Brownian motion under Q, adapted to the filtration (G(T − t))06t6T . Furthermore, the
time-reversed process (X(T − t))06t6T satisfies the stochastic differential equation

dX(T − t) = −∇Ψ
(
X(T − t)

)
dt+ dWQ(T − t), (4.10)

for 0 6 t 6 T , with respect to the filtration (G(T − t))06t6T .

We provide proofs and references for these well-known results in Theorems D.2 and D.5 of
Appendix D. In the following lemma we determine the drift term in order to change from the
Brownian motion

(
W
Q(T − t)

)
06t6T to the Brownian motion

(
W
P(T − t)

)
06t6T and vice versa.

Lemma 4.4. For 0 6 t 6 T , we have

dWQ(T − t) =
∇`
(
T − t,X(T − t)

)
`
(
T − t,X(T − t)

) dt+ dWP(T − t). (4.11)

Proof. One just has to compare the equations (4.8) and (4.10).

The next corollary is a direct consequence of Theorem 4.1, Proposition 4.3 and Itô’s formula.

Corollary 4.5. Under Assumptions 1.2, the time-reversed likelihood ratio process (4.5) and its
logarithm satisfy the stochastic differential equations

d`
(
T − t,X(T − t)

)
= ∇`

(
T − t,X(T − t)

)
dWQ(T − t), (4.12)

respectively

d log `
(
T − t,X(T − t)

)
=
∇`
(
T − t,X(T − t)

)
`
(
T − t,X(T − t)

) dWQ(T − t)

− 1
2

∣∣∇`(T − t,X(T − t)
)∣∣2

`
(
T − t,X(T − t)

)2 dt,

(4.13)

for 0 6 t 6 T , with respect to the filtration (G(T − t))06t6T .
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Proof. To prove (4.12), the decisive insight is provided by Theorem 4.1 due to Fontbona and
Jourdain [FJ16]. It implies that the drift term in (4.12) must vanish, so that it suffices to
calculate the diffusion term in front of dWQ(T − t) in (4.12), which is an easy task using (4.10).

We note that the fact that the drift term in (4.12) vanishes can also be obtained from me-
chanically applying Itô’s formula to the process (4.5), and using (4.10) as well as the backwards
Kolmogorov equation (4.21) for the likelihood ratio function `(t, x). But such a procedure does
not provide a hint as to why this miracle happens.
Having said this, we apply Itô’s formula to the process (4.5) to obtain (4.12). Assertion (4.13)

follows from applying Itô’s formula to the logarithm of the process (4.5) and using (4.12).

Now we have all the ingredients to show Theorem 3.4.

Proof of Theorem 3.4. Plugging formula (4.11) into the stochastic equation (4.13) we see that
the time-reversed relative entropy process (4.3) satisfies the stochastic differential equation

d log `
(
T − t,X(T − t)

)
=
∇`
(
T − t,X(T − t)

)
`
(
T − t,X(T − t)

) dWP(T − t)

+ 1
2

∣∣∇`(T − t,X(T − t)
)∣∣2

`
(
T − t,X(T − t)

)2 dt,

(4.14)

for 0 6 t 6 T , with respect to the filtration (G(T − t))06t6T . Hence, for ε > 0, the process
(M(T − t))06t6T−ε in (3.19) is a true martingale. Indeed, by condition (iii) of Assumptions 1.2,
the coefficients in (4.14) remain uniformly bounded as long as 0 6 t 6 T − ε. To show that, in
fact, (M(T − t))06t6T is a true martingale, we have to rely on the finite free energy condition
(1.11), which in the light of Lemma 2.1 asserts that the relative entropy H(P (0) |Q) is finite.
This implies that

EP

[ ∫ T

0

1
2

∣∣∇`(T − t,X(T − t)
)∣∣2

`
(
T − t,X(T − t)

)2 dt
]
<∞. (4.15)

Indeed,

EP

[ ∫ T

0

1
2

∣∣∇`(T − t,X(T − t)
)∣∣2

`
(
T − t,X(T − t)

)2 dt
]

= lim
ε↓0

EP

[ ∫ T−ε

0

1
2

∣∣∇`(T − t,X(T − t)
)∣∣2

`
(
T − t,X(T − t)

)2 dt
]

(4.16)

= lim
ε↓0

H
(
P (ε) |Q

)
−H

(
P (T ) |Q

)
<∞, (4.17)

where the equality (4.17) follows after taking expectations with respect to the probability mea-
sure P in (4.14) at time t = T − ε, and using that (M(T − t))06t6T−ε is a true martingale. From
(4.15) we deduce that the stochastic integral in (4.14) defines an L2(P)-bounded martingale for
0 6 t 6 T .
Summing up, we conclude that (M(T−t))06t6T is a martingale satisfying (3.20), which finishes

the proof of Theorem 3.4.

Our next goal is to calculate the limit (3.26) from Theorem 3.5. To this end, we do not rely on
[FJ16] and time reversal any longer, but rather pass to explicit calculations. We first compute
the differentials of the likelihood ratio process

`
(
t,X(t)

)
=
p
(
t,X(t)

)
q
(
X(t)

) , t > 0, (4.18)

and its logarithm under the measure P in the forward direction of time.
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We start by recalling the Fokker-Planck equation (3.1), which we write in the form

∂tp(t, x) = 1
2∆p(t, x) +

〈
∇p(t, x),∇Ψ(x)

〉
Rn

+ p(t, x) ∆Ψ(x), t > 0. (4.19)

As p(t, x) can be represented in the form

p(t, x) = `(t, x) q(x) = `(t, x) e−2Ψ(x), (4.20)

we find that the likelihood ratio function `(t, x) solves the backwards Kolmogorov equation

∂t`(t, x) = 1
2∆`(t, x)−

〈
∇`(t, x),∇Ψ(x)

〉
Rn
. (4.21)

We note that equation (4.21) also follows from the proof of Corollary 4.5. With its help, we can
compute the forward dynamics of the likelihood ratio process (4.18) in the following manner.

Lemma 4.6. The likelihood ratio process (4.18) and its logarithm satisfy the stochastic differ-
ential equations

d`
(
t,X(t)

)
= ∆`

(
t,X(t)

)
dt− 2

〈
∇`
(
t,X(t)

)
,∇Ψ

(
X(t)

)〉
Rn

dt+∇`
(
t,X(t)

)
dW (t), (4.22)

respectively

d log `
(
t,X(t)

)
=

∆`
(
t,X(t)

)
`
(
t,X(t)

) dt−
2
〈
∇`
(
t,X(t)

)
,∇Ψ

(
X(t)

)〉
Rn

`
(
t,X(t)

) dt

− 1
2

∣∣∇`(t,X(t)
)∣∣2

`
(
t,X(t)

)2 dt+
∇`
(
t,X(t)

)
`
(
t,X(t)

) dW (t),

(4.23)

for t > 0, with respect to the filtration (F(t))t>0.

Proof. The canonical coordinate process (X(t))t>0 satisfies the stochastic equation (2.1). Ap-
plying Itô’s formula, using (2.1) and (4.21), we obtain (4.22). One more application of Itô’s
formula leads to (4.23).

Next, we calculate the differentials of the perturbed likelihood ratio process

`β
(
t,X(t)

)
=
pβ
(
t,X(t)

)
q
(
X(t)

) , t > t0, (4.24)

and its logarithm, again in the forward direction.
Similarly as before, we write the perturbed Fokker-Planck equation (3.9) as

∂tp
β(t, x) = 1

2∆pβ(t, x) +
〈
∇pβ(t, x),∇Ψ(x) + β(t, x)

〉
Rn

+ pβ(t, x)
(
∆Ψ(x) + div β(t, x)

)
, t > t0.

(4.25)

Using the relation
pβ(t, x) = `β(t, x) q(x) = `β(t, x) e−2Ψ(x), (4.26)

a straightforward computation shows that the perturbed likelihood ratio function `β(t, x) satisfies
the partial differential equation

∂t`
β(t, x) = 1

2∆`β(t, x) +
〈
∇`β(t, x), β(t, x)−∇Ψ(x)

〉
Rn

+ `β(t, x)
(

div β(t, x)− 2
〈
β(t, x),∇Ψ(x)

〉
Rn

)
,

(4.27)

the analogue of the backwards Kolmogorov equation (4.21) in this “perturbed” context. This
helps us obtain the forward dynamics of the perturbed likelihood ratio process (4.24), as follows.
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Lemma 4.7. The perturbed likelihood ratio process (4.24) and its logarithm satisfy the stochastic
differential equations

d`β
(
t,X(t)

)
`β
(
t,X(t)

) =
∆`β

(
t,X(t)

)
`β
(
t,X(t)

) dt−
2
〈
∇`β

(
t,X(t)

)
,∇Ψ

(
X(t)

)〉
Rn

`β
(
t,X(t)

) dt

+ div β
(
t,X(t)

)
dt− 2

〈
β
(
t,X(t)

)
,∇Ψ

(
X(t)

)〉
Rn

dt+
∇`β

(
t,X(t)

)
`β
(
t,X(t)

) dW (t),

(4.28)

and

d log `β
(
t,X(t)

)
=

∆`β
(
t,X(t)

)
`β
(
t,X(t)

) dt−
2
〈
∇`β

(
t,X(t)

)
,∇Ψ

(
X(t)

)〉
Rn

`β
(
t,X(t)

) dt

+ div β
(
t,X(t)

)
dt− 2

〈
β
(
t,X(t)

)
,∇Ψ

(
X(t)

)〉
Rn

dt

− 1
2

∣∣∇`β(t,X(t)
)∣∣2

`β
(
t,X(t)

)2 dt+
∇`β

(
t,X(t)

)
`β
(
t,X(t)

) dW (t),

(4.29)

for t > t0, with respect to the filtration (F(t))t>t0.

Proof. The canonical coordinate process (X(t))t>0 satisfies the stochastic equation (3.11). To-
gether with (4.27) and Itô’s formula, this yields the stochastic equations (4.28) and (4.29).

Proof of Theorem 3.5. Relying on (4.23), we compute the limit

lim
t↓t0

EP

[
log `

(
t,X(t)

) ∣∣ F(t0)
]

t− t0
= log `

(
t0, X(t0)

)
+

∆`
(
t0, X(t0)

)
`
(
t0, X(t0)

)

−
2
〈
∇`
(
t0, X(t0)

)
,∇Ψ

(
X(t0)

)〉
Rn

`
(
t0, X(t0)

) − 1
2

∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2 ,

(4.30)

where we used the fact that the conditional expectation of the stochastic integral in (4.23) with
respect to F(t0) vanishes. Similarly, by means of (4.29), we obtain

lim
t↓t0

EPβ
[

log `β
(
t,X(t)

) ∣∣ F(t0)
]

t− t0
= log `β

(
t0, X(t0)

)
+

∆`β
(
t0, X(t0)

)
`β
(
t0, X(t0)

)

−
2
〈
∇`β

(
t0, X(t0)

)
,∇Ψ

(
X(t0)

)〉
Rn

`β
(
t0, X(t0)

) − 1
2

∣∣∇`β(t0, X(t0)
)∣∣2

`β
(
t0, X(t0)

)2
+ div β

(
t0, X(t0)

)
− 2

〈
β
(
t0, X(t0)

)
,∇Ψ

(
X(t0)

)〉
Rn
.

(4.31)

Finally, subtracting (4.30) from (4.31) and noting that `β(t0, X(t0)) = `(t0, X(t0)), we obtain
as difference

div β
(
t0, X(t0)

)
− 2

〈
β
(
t0, X(t0)

)
,∇Ψ

(
X(t0)

)〉
Rn
, (4.32)

which is indeed the right-hand side of (3.26).
It remains to compute the limit (3.27). This is a well-known result and will be shown in

Theorem 5.3.
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For the sake of completeness, in the remainder of this section we compute also the stochastic
differentials of the time-reversed perturbed likelihood ratio process

`β
(
T − t,X(T − t)

)
=
pβ
(
T − t,X(T − t)

)
q
(
X(T − t)

) , 0 6 t 6 T − t0, (4.33)

and its logarithm. We only do that to make clear that in the perturbed situation the time
reversal does not work as nicely as in Theorem 3.4.
By analogy with previous developments (see Theorems D.2 and D.5), the following result is

well known to hold under the Assumptions 1.2 and our assumptions on β.

Proposition 4.8. The process
(
W
Pβ (T − t)

)
06t6T−t0 defined by

W
Pβ (T − t) := W (T − t)−W (T )−

∫ t

0

∇pβ
(
T − u,X(T − u)

)
pβ
(
T − u,X(T − u)

) du, 0 6 t 6 T − t0, (4.34)

is a Brownian motion with respect to the measure Pβ and the filtration (G(T − t))06t6T−t0.
Furthermore, the semimartingale decomposition for the time-reversed process (X(T−t))06t6T−t0
is given by

dX(T − t) = ∇ log `β
(
T − t,X(T − t)

)
dt−∇Ψ

(
X(T − t)

)
dt

+ β
(
T − t,X(T − t)

)
dt+ dWPβ (T − t),

(4.35)

for 0 6 t 6 T − t0, with respect to the filtration (G(T − t))06t6T−t0.

With these preparations, we obtain the following stochastic differentials for our objects of
interest.

Lemma 4.9. The time-reversed perturbed likelihood ratio process (4.33) and its logarithm satisfy
the stochastic differential equations

d`β
(
T − t,X(T − t)

)
`β
(
T − t,X(T − t)

) =
∣∣∇`β(T − t,X(T − t)

)∣∣2
`β
(
T − t,X(T − t)

)2 dt− div β
(
T − t,X(T − t)

)
dt

+ 2
〈
β
(
T − t,X(T − t)

)
,∇Ψ

(
X(T − t)

)〉
Rn

dt

+
∇`β

(
T − t,X(T − t)

)
`β
(
T − t,X(T − t)

) dWPβ (T − t),

(4.36)

and

d log `β
(
T − t,X(T − t)

)
= 1

2

∣∣∇`β(T − t,X(T − t)
)∣∣2

`β
(
T − t,X(T − t)

)2 dt− div β
(
T − t,X(T − t)

)
dt

+ 2
〈
β
(
T − t,X(T − t)

)
,∇Ψ

(
X(T − t)

)〉
Rn

dt

+
∇`β

(
T − t,X(T − t)

)
`β
(
T − t,X(T − t)

) dWPβ (T − t),

(4.37)

for 0 6 t 6 T − t0, with respect to the filtration (G(T − t))06t6T−t0.

Proof. The stochastic equations (4.36) and (4.37) follow from Itô’s formula together with (4.35)
and (4.27).
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5. The Wasserstein transport

For the convenience of the reader we review in this section some well-known results on Wasser-
stein transport to show the limits (3.24) and (3.27) in order to complete the proofs of Theorems
3.1 and 3.5.

We recall the definitions of the quadratic Wasserstein space P2(Rn) and of the quadratic
Wasserstein distanceW2( · , · ). We follow the setting of [AGS08], from where we borrow most of
the notation and terminology used in this section. Thus, for unexplained notions and definitions,
the reader may consult this beautiful book.
We denote by P(Rn) the collection of probability measures on the Borel subsets of Rn.

The quadratic Wasserstein space P2(Rn) is the subset of P(Rn) consisting of the probability
measures with finite second moment, i.e.,

P2(Rn) :=
{
P ∈P(Rn) :

∫
Rn
|x|2 dP (x) <∞

}
. (5.1)

If p : Rn → [0,∞) is a probability density function on Rn, we can identify it with the proba-
bility measure P ∈ P(Rn) having density p with respect to Lebesgue measure L n on Rn. In
particular, if p is a probability density with finite second moment, i.e.,∫

Rn
|x|2 p(x) dx <∞, (5.2)

then we can identify p with an element of P2(Rn).
We denote by Γ(P,Q) the collection of all transport plans, that is, probability measures

γ ∈ P(Rn × Rn) with given marginals P,Q ∈ P(Rn). More precisely, if πi : Rn × Rn → Rn

are the canonical projections, for i ∈ {1, 2}, then π1
#γ = P and π2

#γ = Q. The quadratic
Wasserstein distance between two probability measures P,Q ∈P2(Rn) is defined by

W 2
2 (P,Q) := inf

{∫
Rn×Rn

|x− y|2 dγ(x, y) : γ ∈ Γ(P,Q)
}
. (5.3)

The quadratic Wasserstein space P2(Rn) endowed with the quadratic Wasserstein distance
W2( · , · ) is a Polish space [AGS08, Proposition 7.1.5].
In this section we consider the solution (p(t))t>0 of the Fokker-Planck equation (3.1) with

initial condition (3.2) as a curve in the quadratic Wasserstein space. To this end, we define the
time-dependent velocity field

[0, T ]×Rn 3 (t, x) 7−→ v(t, x) := −
(1

2
∇p(t, x)
p(t, x) +∇Ψ(x)

)
∈ Rn. (5.4)

Then the Fokker-Planck equation (3.1), satisfied by the curve of probability density functions
(p(t))06t6T in P(Rn), can be written as

∂tp(t, x) + div
(
v(t, x) p(t, x)

)
= 0, (t, x) ∈ (0, T ]×Rn. (5.5)

According to (4.15), we have

2
∫ T

0

(∫
Rn
|v(t, x)|2 p(t, x) dx

)
dt <∞, (5.6)

since the expressions in (4.15) and (5.6) are simply the same. In particular, (5.6) implies that we
have ‖v(t)‖L1(Rn,p(t)) ∈ L1(0, T ), and we can apply [AGS08, Lemma 8.1.2] in order to choose a
continuous representative. In other words, there exists a narrowly continuous curve (p̃(t))06t6T
in P(Rn) such that p(t) = p̃(t) for L 1-a.e. t ∈ (0, T ). For convenience, we denote the continuous
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representative (p̃(t))06t6T again by (p(t))06t6T . The narrowly continuous curve (p(t))06t6T in
P(Rn) with p(0) ∈P2(Rn) satisfies the continuity equation (5.5), and condition (5.6). Hence we
can use approximation by regular curves [AGS08, Lemma 8.1.9] and the representation formula
for the continuity equation [AGS08, Proposition 8.1.8] in order to see that the assumption
p(0) ∈ P2(Rn) already implies that the curve (p(t))06t6T is in P2(Rn). Therefore, we are
indeed allowed to view (p(t))06t6T as a curve in the quadratic Wasserstein space P2(Rn).
As (p(t))06t6T is a narrowly continuous curve in P2(Rn) satisfying the continuity equation

(5.5) and ‖v(t)‖L2(Rn,p(t)) ∈ L1(0, T ), according to (5.6), we can invoke the second implication
of [AGS08, Theorem 8.3.1]. The cited theorem relates absolutely continuous curves and the
continuity equation. In particular, it tells us that the curve (p(t))06t6T is absolutely continuous
[AGS08, Definition 1.1.1]. As a consequence, its metric derivative [AGS08, Theorem 1.1.2]

|p′|(t) := lim
s→t

W2
(
p(s), p(t)

)
|s− t|

(5.7)

exists for L 1-a.e. t ∈ (0, T ). Furthermore, [AGS08, Theorem 8.3.1] provides the estimate

|p′|(t) 6 ‖v(t)‖L2(Rn,p(t)) (5.8)

for L 1-a.e. t ∈ (0, T ). On the other hand, the time-dependent velocity field v(t) ≡ v(t, · ) of
(5.4) is a gradient, and therefore an element of the tangent space [AGS08, Definition 8.4.1] of
P2(Rn) at the point p(t) ∈P2(Rn), i.e.,

v(t) ∈ Tanp(t)P2(Rn) :=
{
∇ϕ : ϕ ∈ C∞c (Rn)

}L2(Rn,p(t))
. (5.9)

Since (p(t))06t6T is an absolutely continuous curve in P2(Rn) satisfying the continuity equation
(5.5) for the time-dependent velocity field v(t) ≡ v(t, · ), which is tangent to the curve, we
can apply [AGS08, Proposition 8.4.5]. This result characterizes tangent vectors to absolutely
continuous curves, and entails for L 1-a.e. t ∈ (0, T ) the inequality

‖v(t)‖L2(Rn,p(t)) 6 |p′|(t). (5.10)

Combining (5.8) and (5.10), we obtain for L 1-a.e. t ∈ (0, T ) the equality

|p′|(t) = ‖v(t)‖L2(Rn,p(t)). (5.11)

Using the metric derivative (5.7) of the curve (p(t))06t6T , we can compute the arc length L of
the curve with respect to the quadratic Wasserstein distance W2( · , · ) by

L =
∫ T

0
|p′|(t) dt. (5.12)

This arc length L is nothing other than the quadratic Wasserstein distance between p(0) and
p(T ) along the curve (p(t))06t6T .
Let t1, t2 > 0. Motivated by (5.12), we define the Wasserstein transportation cost of moving

p(t1) to p(t2) along the curve (p(t))t>0 as

Tc
(
p(t1), p(t2)

)
:=
∫ t2

t1
|p′|(t) dt (5.13)

so that, in particular Tc(p(0), p(T )) = L is the quantity of (5.12). According to (5.11), this
transportation cost can be computed as

Tc
(
p(t1), p(t2)

)
=
∫ t2

t1

(∫
Rn
|v(t, x)|2 p(t, x) dx

)1/2
dt. (5.14)
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Furthermore, we note that

W2
(
p(t1), p(t2)

)
6 Tc

(
p(t1), p(t2)

)
(5.15)

for 0 6 t1 6 t2, see [AGS08, p. 186].
We rephrase these well-known results as follows.

Theorem 5.1. Let (p(t))t>0 be a solution of the Fokker-Planck equation (3.1) with initial con-
dition p(0) ∈P2(Rn) satisfying Assumptions 1.2. For each t1 > 0 we have

lim
t→t1

W2
(
p(t), p(t1)

)
|t− t1|

= 1
2

(
EP

[ ∣∣∇`(t1, X(t1)
)∣∣2

`
(
t1, X(t1)

)2
])1/2

, (5.16)

where for t1 = 0 one has to interpret (5.16) as a limit from the right. Furthermore, for t1, t2 > 0,
the Wasserstein transportation cost of moving p(t1) to p(t2) along the curve (p(t))t>0 amounts
to

Tc
(
p(t1), p(t2)

)
= 1

2

∫ t2

t1

(∫
Rn

|∇`(t, x)|2

`(t, x)2 p(t, x) dx
)1/2

dt. (5.17)

Proof. The identity (5.16) is just another way of phrasing the equality (5.11). The Wasserstein
transportation cost (5.17) was derived in (5.14).

Remark 5.2. We note that, in the case t1 = 0, it may very well happen that the Fisher infor-
mation I(P (0) |Q) diverges although Assumptions 1.2 guarantee that H(P (0) |Q) <∞. In this
case (5.16) has to be interpreted as ∞ =∞. �

Now we consider the solution (pβ(t))t>t0 of the perturbed Fokker-Planck equation (3.9) with
initial condition (3.10), and define the time-dependent perturbed velocity field

[t0, T ]×Rn 3 (t, x) 7−→ vβ(t, x) := −
(1

2
∇pβ(t, x)
pβ(t, x) +∇Ψ(x) + β(t, x)

)
∈ Rn. (5.18)

Then the perturbed Fokker-Planck equation (3.9), satisfied by the perturbed curve (pβ(t))t06t6T ,
can be written as

∂tp
β(t, x) + div

(
vβ(t, x) pβ(t, x)

)
= 0, (t, x) ∈ (t0, T ]×Rn. (5.19)

To follow the same reasoning as above, we need that v(t, · ) is a gradient, and hence we see why
we have required β : [t0,∞)×Rn → Rn to be a gradient field, i.e., of the form β(t, · ) = ∇B(t, · )
for some time-dependent potential B(t, · ) : Rn → R. Now, by the same token as above, and
using the regularity assumption that the time-dependent gradient vector field (β(t, · ))t>t0 is
compactly supported and of class C1,∞, we obtain the following result.

Theorem 5.3. Let (pβ(t))t>t0 be a solution of the perturbed Fokker-Planck equation (3.9) with
initial condition pβ(t0) as in (3.10). Then

lim
t↓t0

W2
(
pβ(t), pβ(t0)

)
t− t0

= 1
2

(
EP

[ ∣∣∣∣∇`
(
t0, X(t0)

)
`
(
t0, X(t0)

) + 2β
(
t0, X(t0)

)∣∣∣∣2
])1/2

, (5.20)

and for each t1 > t0, we have

lim
t→t1

W2
(
pβ(t), pβ(t1)

)
|t− t1|

= 1
2

(
EPβ

[ ∣∣∣∣∇`β
(
t1, X(t1)

)
`β
(
t1, X(t1)

) + 2β
(
t1, X(t1)

)∣∣∣∣2
])1/2

. (5.21)

Moreover, for t1, t2 > t0, the Wasserstein transportation cost of moving pβ(t1) to pβ(t2) along
the perturbed curve (pβ(t))t>t0 amounts to

Tc
(
pβ(t1), pβ(t2)

)
= 1

2

∫ t2

t1

(∫
Rn

∣∣∣∣∇`β(t, x)
`β(t, x) + 2β(t, x)

∣∣∣∣2 p(t, x) dx
)1/2

dt. (5.22)
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Remark 5.4. Since X(t0) has the same distribution under P, as it does under Pβ, the expectation
EP appearing in (5.20) can be replaced by EPβ . �

Appendices

A. Bachelier’s work relating Brownian motion to the heat equation

In this section, which is only of historical interest, we want to point out that Bachelier already
had some thoughts on “horizontal transport of probability measures” in his thesis “Théorie de
la spéculation” [Bac00, Bac06], which he defended in 1900.
In this work he was the first to consider a mathematical model of Brownian motion. Bachelier

argued using infinitesimals by visualizing Brownian motion (W (t))t>0 as an infinitesimal version
of a random walk. Suppose that the grid in space is given by

. . . , xn−2, xn−1, xn, xn+1, xn+2, . . . (A.1)

having the same (infinitesimal) distance ∆x = xn−xn−1, for all n, and such that at time t these
points have probabilities

. . . , ptn−2, p
t
n−1, p

t
n, p

t
n+1, p

t
n+2, . . . (A.2)

under the random walk under consideration. What are the probabilities

. . . , pt+∆t
n−2 , p

t+∆t
n−1 , p

t+∆t
n , pt+∆t

n+1 , p
t+∆t
n+2 , . . . (A.3)

of these points at time t+ ∆t?
The random walk moves half of the mass ptn, sitting on xn at time t, to the point xn+1. En

revanche, it moves half of the mass ptn+1, sitting on xn+1 at time t, to the point xn. The net
difference between ptn/2 and ptn+1/2, which Bachelier has no scruples to identify with

− 1
2 (pt)′(xn) ∆x = −1

2 (pt)′(xn+1) ∆x, (A.4)

is therefore transported from the interval (−∞, xn] to [xn+1,∞). In Bachelier’s own words this
is very nicely captured by the following passage of his thesis:

Each price x during an element of time radiates towards its neighboring price an amount of
probability proportional to the difference of their probabilities. I say proportional because it is
necessary to account for the relation of ∆x to ∆t. The above law can, by analogy with certain
physical theories, be called the law of radiation or diffusion of probability.

Passing formally to the continuous limit and denoting by

P (t, x) =
∫ x

−∞
p(t, z) dz (A.5)

the distribution function associated to the Gaussian density function p(t, x), Bachelier deduces
in an intuitively convincing way the relation

∂P

∂t
= 1

2
∂p

∂x
, (A.6)

where we have normalized the relation between ∆x and ∆t to obtain the constant 1/2. By
differentiating (A.6) with respect to x one obtains the usual heat equation

∂p

∂t
= 1

2
∂2p

∂x2 (A.7)
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for the density function p(t, x). Of course, the heat equation was known to Bachelier, and he
notes regarding (A.7): C’est une équation de Fourier.

But let us still remain with the form (A.6) of the heat equation and analyze its message in
terms of “horizontal transport of probability measures”. To accomplish the movement of mass
−1

2 p
′(t, x) dx from (−∞, x] to [x,∞) one is naturally led to define the flow induced by the

velocity field

v(t, x) := −1
2
p′(t, x)
p(t, x) , (A.8)

which has the natural interpretation as the “speed” of the transport induced by p(t, x). We thus
encounter in nuce the ubiquitous “score function” ∇p(t, x)/p(t, x) appearing throughout all the
above considerations. We also note that an “infinitesimal transport” on R is automatically an
optimal transport. Intuitively this corresponds to the geometric insight in the one-dimensional
case that the transport lines of infinitesimal length cannot cross each other.
Let us go one step beyond Bachelier’s thoughts and consider the relation of the above in-

finitesimal Wasserstein transport to time reversal (which Bachelier had not yet considered in his
lonely exploration of Brownian motion). Visualizing again the grid (A.1) and the corresponding
probabilities (A.2) and (A.3), a moment’s reflection reveals that the transport from pt+∆t to pt,
i.e., in reverse direction, is accomplished by going from xn to xn+1 with probability 1

2 + p′(t,x)
p(t,x) dx

and from xn+1 to xn with probability 1
2 −

p′(t,x)
p(t,x) dx, with the identifications x = xn = xn+1, and

dx = ∆x. In other words, the above Brownian motion (W (t))t>0 considered in reverse direction
(W (T − t))06t6T is not a Brownian motion, as the transition probabilities are not (1/2, 1/2) any
more. Rather, one has to correct these probabilities by a term which — once again — involves
our familiar score function ∇p(t, x)/p(t, x). At this stage, it should come as no surprise, that
the passage to reverse time is closely related to the Wasserstein transport induced by p(t, x).

We finish the section by returning to Bachelier’s thesis. The rapporteur of Bachelier’s thesis
was no less a figure than Poincaré. Apparently he saw the enormous potential of these ideas
when he added to his very positive report the handwritten phrase: On peut regretter que M.
Bachelier n’ait pas développé davantage cette partie de sa thèse. That is: One might regret that
Monsieur Bachelier did not develop further this part of his thesis.

B. Proof of the Fontbona-Jourdain result

Proof of Theorem 4.1. For 0 6 t 6 T , we define the random variableM(T−t) as the conditional
expectation of the random variable

`
(
0, X(0)

)
=
p
(
0, X(0)

)
q
(
X(0)

) ∈ L1(C[0, T ],G(0),Q
)

(B.1)

with respect to the filtration (G(T − t))06t6T , i.e.,

M(T − t) := EQ

[
`
(
0, X(0)

) ∣∣ G(T − t)
]
, 0 6 t 6 T. (B.2)

Obviously the stochastic process (M(T − t))06t6T is a Q-martingale with respect to the reverse
filtration (G(T − t))06t6T . Now we make the following elementary, but crucial, observation: as
the stochastic process (X(t))06t6T , which solves the stochastic differential equation (2.1), is a
Markov process, the time-reversed process (X(T − t))06t6T is a Markov process, too, under P
as well as under Q. Hence

M(T − t) = EQ

[
`
(
0, X(0)

) ∣∣ X(T − t)
]
, 0 6 t 6 T. (B.3)

We have to show that this last conditional expectation equals `(T − t,X(T − t)). To this end,
we fix t ∈ [0, T ] as well as a Borel set A ⊆ Rn, and denote by π(T − t;x,A) the transition
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probability of the event {X(T − t) ∈ A}, conditionally on X(0) = x. Note that this transition
probability does not depend on whether we consider the process (X(t))06t6T under P or under
Q. Then we find

EQ

[
p
(
0, X(0)

)
q
(
X(0)

) 1A
(
X(T − t)

)]
=
∫
Rn

p(0, x)
q(x) π(T − t;x,A) q(x) dx = P (T − t)[A]. (B.4)

Note also that

EQ

[
p
(
T − t,X(T − t)

)
q
(
X(T − t)

) 1A
(
X(T − t)

)]
= P (T − t)[A]. (B.5)

Because the Borel set A ⊆ Rn is arbitrary, we deduce from (B.4) and (B.5) that

EQ

[
p
(
0, X(0)

)
q
(
X(0)

) ∣∣∣∣ X(T − t)
]

=
p
(
T − t,X(T − t)

)
q
(
X(T − t)

) = `
(
T − t,X(T − t)

)
. (B.6)

C. Proof of Lemma 3.11

In order to show (3.44), we define the time-dependent velocity field

[0, 1]×Rn 3 (t, x) 7−→ vt(x) := γ
((
T γt
)−1(x)

)
∈ Rn, (C.1)

which is well-defined Pt-almost everywhere, for every t ∈ [0, 1]. Then (vt)06t61 is the velocity
field associated with (T γt )06t61, i.e.,

d
dt T

γ
t (x) = vt

(
T γt (x)

)
. (C.2)

Let pt( · ) be the probability density function of Pt. Then, according to [Vil03, Theorem 5.34],
the function pt( · ) satisfies the continuity equation

∂tpt(x) + div
(
vt(x) pt(x)

)
= 0, (t, x) ∈ (0, 1)×Rn, (C.3)

which can be written equivalently as

− ∂tpt(x) = div
(
vt(x)

)
pt(x) +

〈
vt(x),∇pt(x)

〉
Rn
, (t, x) ∈ (0, 1)×Rn. (C.4)

Recall that X0 is a random variable with distribution P0 on the probability space (S,S, ν). Then
the integral equation

Xt = X0 +
∫ t

0
vs(Xs) ds, 0 6 t 6 1, (C.5)

or equivalently Pt = (T γt )#(P0), 0 6 t 6 1, defines random variables Xt with distributions Pt
for t ∈ [0, 1]. We have now

dpt(Xt) = ∂tpt(Xt) dt+
〈
∇pt(Xt),dXt

〉
Rn

= −pt(Xt) div
(
vt(Xt)

)
dt (C.6)

on account of (C.4), (C.5), thus also

d log pt(Xt) = −div
(
vt(Xt)

)
dt, 0 6 t 6 1. (C.7)

Recall now the probability density function q(x) = e−2Ψ(x), for which

d log q(Xt) = −2
〈
∇Ψ(Xt),dXt

〉
Rn

= −2
〈
∇Ψ(Xt), vt(Xt)

〉
Rn

dt. (C.8)
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For the likelihood ratio function

`t(x) = pt(x)
q(x) , (t, x) ∈ [0, 1]×Rn (C.9)

we get from (C.7) and (C.8) that

d log `t(Xt) = 2
〈
∇Ψ(Xt), vt(Xt)

〉
Rn

dt − div
(
vt(Xt)

)
dt, 0 6 t 6 1. (C.10)

Taking expectations in the integral version of (C.10), we obtain that the difference

H(Pt |Q)−H(P0 |Q) = Eν
[
log `t(Xt)

]
− Eν

[
log `0(X0)

]
(C.11)

is equal to

Eν

[ ∫ t

0

(
2
〈
∇Ψ(Xs), vs(Xs)

〉
Rn
− div

(
vs(Xs)

))
ds
]

(C.12)

for t ∈ [0, 1]. Consequently,

lim
t↓0

H(Pt |Q)−H(P0 |Q)
t

= Eν

[
2
〈
∇Ψ(X0), v0(X0)

〉
Rn
− div

(
v0(X0)

)]
. (C.13)

Integrating by parts, we see that

Eν
[
div

(
v0(X0)

)]
=
∫
Rn

div
(
v0(x)

)
p0(x) dx (C.14)

= −
∫
Rn

〈
v0(x),∇p0(x)

〉
dx (C.15)

= −
〈
∇ log p0(X0), v0(X0)

〉
L2(ν;Rn). (C.16)

Recalling (C.13), and combining it with the relation ∇ log `t(x) = ∇ log pt(x) + 2∇Ψ(x), as well
as (C.14) and (C.16), we get

lim
t↓0

H(Pt |Q)−H(P0 |Q)
t

=
〈
∇ log `0(X0), v0(X0)

〉
L2(ν;Rn). (C.17)

Since v0(X0) = γ(X0), this leads to (3.44).

D. Time reversal of diffusions

We review in the present section the theory of time reversal of diffusion processes developed by
Föllmer [Föl85, Föl86], Haussmann and Pardoux [HP86], and Pardoux [Par86]. This section can
be read independently of the rest of the paper.

D.1. Introduction

It is very well known that the Markov property is invariant under time reversal. In other words, a
Markov process remains a Markov process under time reversal (e.g., [RW00a, Exercise E60.41, p.
162]). On the other hand, it is also well known that the strong Markov property is not necessarily
preserved under time reversal (e.g., [RW00a, p. 330]), and neither is the semimartingale property
(e.g., [Wal82]). The reason for such failure is the same in both cases: after time reversal, “we
may know too much”. Thus, the following questions arise rather naturally:
Given a diffusion process (in particular, a strong Markov process with continuous paths and

a semimartingale) X = (X(t))06t6T with certain specific drift and dispersion characteristics,
under what conditions might the time-reversed process

X̂(t) := X(T − t), 0 6 t 6 T, (D.1)
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also be a diffusion? if it happens to be, what are the characteristics of the time-reversed diffusion?
Such questions go back at least to Boltzmann [Bol96, Bol98a, Bol98b], Schrödinger [Sch31,

Sch32] and Kolmogorov [Kol37]; they were dealt with systematically by Nelson [Nel01] (see also
Carlen [Car84]) in the context of Nelson’s dynamical theories for Brownian motion and diffusion.
There is now a rather complete theory that answers these questions and provides, as a kind of
“bonus”, some rather unexpected results as well. It was developed by workers in the theory
of filtering, interpolation of extrapolation, where such issues arise naturally — most notably
Haussmann and Pardoux [HP86], and Pardoux [Par86]. Very interesting related results in a
non-Markovian context, but with dispersion structure given by the identity matrix, have been
obtained by Föllmer [Föl85, Föl86]. Here, this theory is presented in the spirit of the expository
paper by Meyer [Mey94].

D.2. The setting

We place ourselves on a filtered probability space (Ω,F ,P), F = (F(t))06t6T rich enough to
support an Rd-valued Brownian motion W = (W1, . . . ,Wd)′ adapted to F, as well as an inde-
pendent F(0)-measurable random vector ξ = (ξ1, . . . , ξn)′ : Ω → Rn. In fact, we shall assume
that F is the filtration generated by these two objects, in the sense that we shall take

F(t) = σ
(
ξ,W (s) : 0 6 s 6 t

)
, 0 6 t 6 T,

modulo P-augmentation. Next, we assume that the system of stochastic equations

Xi(t) = ξi +
∫ t

0
bi
(
s,X(s)

)
ds+

d∑
ν=1

∫ t

0
siν
(
s,X(s)

)
dWν(s), 0 6 t 6 T, (D.2)

for i = 1, . . . , n admits a pathwise unique, strong solution. It is then well known that the
resulting continuous process X = (X1, . . . , Xn)′ is F-adapted (the strong solvability of the
equation (D.2)), which implies that we have also

F(t) = σ
(
X(s),W (s) : 0 6 s 6 t

)
= σ

(
X(0),W (t)−W (u) : 0 6 u 6 t

)
(D.3)

modulo P-augmentation, for 0 6 t 6 T ; as well as that X has the strong Markov property, and
is thus a diffusion process with drifts bi( · , · ) and dispersions siν( · , · ), i = 1, . . . , n, ν = 1, . . . , d.
We shall denote the (i, j)th entry of the covariance matrix a(t, x) := s(t, x) s′(t, x) by

aij(t, x) :=
d∑

ν=1
siν(t, x) sjν(t, x), 1 6 i, j 6 n.

These characteristics are given mappings from [0, T ]×Rn into R with sufficient smoothness;
in particular, such that the probability density function p(t, · ) : Rn → (0,∞) in

P
[
X(t) ∈ A

]
=
∫
A
p(t, x) dx, A ∈ B(Rn),

is smooth. Sufficient conditions on the drift bi( · , · ) and dispersion siν( · , · ) characteristics that
lead to such smoothness, are provided by the Hörmander hypoellipticity conditions; see for
instance [Bel95], [Nua06] for this result, as well as [Rog85] for a very simple argument in the
one-dimensional case (n = d = 1), and to the case of Langevin-type equation (2.1) for arbitrary
n ∈ N. We refer to [Fri75], [RW00b] or [KS91] for the basics of the theory of stochastic equations
of the form (D.2).
The probability density function p(t, · ) : Rn → (0,∞) solves the forward Kolmogorov [Kol31]

equation [Fri75, p. 149]

∂tp(t, x) = 1
2

n∑
i,j=1

D2
ij

(
aij(t, x) p(t, x)

)
−

n∑
i=1

Di
(
bi(t, x) p(t, x)

)
, (t, x) ∈ (0, T ]×Rn. (D.4)
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If the drift and dispersion characteristics do not depend on time, and an invariant probability
measure exists for the diffusion process of (D.2), the density function p( · ) of this measure solves
the stationary version of this forward Kolmogorov equation, to wit

1
2

n∑
i,j=1

D2
ij

(
aij(x) p(x)

)
=

n∑
i=1

Di
(
bi(x) p(x)

)
, x ∈ Rn. (D.5)

D.3. Time reversal and the backwards filtration

Consider now the filtration (F̂(T − t))06t6T given by

F̂(T − t) := σ
(
X(s),W (s)−W (t) : t 6 s 6 T

)
, 0 6 t 6 T. (D.6)

It is not hard to see that this filtration is expressed equivalently as

F̂(T − t) = σ
(
X(t),W (s)−W (t) : t 6 s 6 T

)
= σ

(
X(t),W (s)−W (T ) : t 6 s 6 T

)
= σ

(
X(T ),W (s)−W (t) : t 6 s 6 T

)
= σ

(
X(T )

)
∨ Ĝ(T − t). (D.7)

Here, the σ-algebra of Brownian increments after time t, namely

Ĝ(T − t) := σ
(
W (s)−W (t) : t 6 s 6 T

)
, 0 6 t 6 T, (D.8)

is independent of the random vector X(t). In particular, F̂(T − t) is generated by the terminal
value X(T ) and by the increments of W on [t, T ].

The time-reversed processes X̂ as in (D.1), as well as

W̃ (t) := W (T − t)−W (T ), 0 6 t 6 T, (D.9)

are both adapted to the backwards filtration F̂ := (F̂(t))06t6T , where

F̂(t) = σ
(
X(T − u),W (T − u)−W (T − t) : 0 6 u 6 t

)
= σ

(
X̂(u), W̃ (u)− W̃ (t) : 0 6 u 6 t

)
from (D.6). Note that, by complete analogy with (D.3), we have also

F̂(t) = σ
(
X(T ),W (T − u)−W (T − t) : 0 6 u 6 t

)
= σ

(
X̂(0)

)
∨ Ĝ(t) (D.10)

on account of (D.7), where

Ĝ(t) = σ
(
W (T − u)−W (T − t) : 0 6 u 6 t

)
= σ

(
W̃ (u)− W̃ (t) : 0 6 u 6 t

)
. (D.11)

In words: the σ-algebra F̂(t) is generated by the terminal value X(T ) of the forward process
(i.e., by the original value X̂(0) of the backward process) and by the increments of the time-
reversed process W̃ on [0, t]; see the expressions right above. Furthermore, the σ-algebra F̂(t)
measures all the random variables X̂(u), u ∈ [0, t].
Remark D.1. In fact, the process W̃ is a Brownian motion of the filtration Ĝ := (Ĝ(t))06t6T as
in (D.11), generated by the increments of W after time T − t, 0 6 t 6 T .
This is because it is a martingale with respect to this filtration, has continuous paths, and

its quadratic variation is that of Brownian motion (Lévy’s theorem [KS91, Theorem 5.1]). In
the next subsection we shall see that the process W̃ is only a semimartingale of the backwards
filtration F̂ and identify its semimartingale decomposition. �
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D.4. Some remarkable Brownian motions

Following the exposition and ideas in [Mey94], we start with a couple of observations. First, for
every t ∈ [0, T ] and every integrable, F̂(T − t)-measurable random variable K, we have

E
[
K |F(t)

]
= E

[
K |X(t)

]
, almost surely. (D.12)

Secondly, we fix a function G ∈ C∞0 (Rn) and a time-point t ∈ (0, T ], and define

g(s, x) := E
[
G
(
X(t)

)
|X(s) = x

]
, (s, x) ∈ [0, t]×Rn.

Invoking the Markov property of X, we deduce that the process

g
(
s,X(s)

)
= E

[
G
(
X(t)

)
|X(s)

]
= E

[
G
(
X(t)

)
| F(s)

]
, 0 6 s 6 t

is an F-martingale, and obtain

G
(
X(t)

)
− g

(
s,X(s)

)
= g

(
t,X(t)

)
− g

(
s,X(s)

)
=

n∑
i=1

d∑
ν=1

∫ t

s
Dig

(
u,X(u)

)
siν
(
u,X(u)

)
dWν(u).

For every index ν = 1, . . . , d this gives, after integrating by parts,

E
[(
Wν(t)−Wν(s)

)
·G
(
X(t)

)]
= E

[(
Wν(t)−Wν(s)

)
·
(
g
(
t,X(t)

)
− g

(
s,X(s)

))]

= E

[ n∑
i=1

∫ t

s
Dig

(
u,X(u)

)
siν
(
u,X(u)

)
du
]

=
n∑
i=1

∫ t

s

∫
Rn

(
Dig · siν

)
(u, x) p(u, x) dx du

= −
n∑
i=1

∫ t

s

∫
Rn
g(u, x)Di

(
p(u, x) siν(u, x)

)
dx du = −

∫ t

s

∫
Rn
g(u, x) div

(
p(u, x) sν(u, x)

)
dx du

= −
∫ t

s
E

[
g
(
u,X(u)

)
· div(p sν)

p

(
u,X(u)

)]
du = −E

[
G
(
X(t)

)
·
∫ t

s

div(p sν)
p

(
u,X(u)

)
du
]
.

Here sν(u, · ) is the νth column vector of the dispersion matrix, and we have set

div
(
p(u, x) sν(u, x)

)
:=

n∑
i=1

Di
(
p(u, x) siν(u, x)

)
, ν = 1, . . . , d.

Comparing the first and last expressions in the above string of equalities, we see that with
0 6 s 6 t we have

E

[
G
(
X(t)

)
·
(
Wν(t)−Wν(s) +

∫ t

s

div(p sν)
p

(
u,X(u)

)
du
)]

= 0 (D.13)

for every G ∈ C∞0 (Rn), and thus by extension for every bounded, measurable G : Rn → R.

Theorem D.2. The vector process B = (B1, . . . , Bd)′ defined as

Bν(t) := W̃ν(t)−
∫ t

0

div(p sν)
p

(
T − u, X̂(u)

)
du (D.14)

=Wν(T − t)−Wν(T )−
∫ T

T−t

div(p sν)
p

(
v,X(v)

)
dv, 0 6 t 6 T, (D.15)

for ν = 1, . . . , d, is Brownian motion with respect to the backwards filtration F̂ = (F̂(t))06t6T .
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Remark D.3. The Brownian motion process B is thus independent of F̂(0), and therefore also
of the F̂(0)-measurable random variable X(T ). A bit more generally,{

B(T − s)−B(T − t) : 0 6 s 6 t
}

is independent of F̂(T − t) ⊇ σ
(
X(u) : t 6 u 6 T

)
.

Note also from (D.14) that

Bν(T − s)−Bν(T − t) = Wν(s)−Wν(t)−
∫ t

s

div(p sν)
p

(
v,X(v)

)
dv, 0 6 s 6 t. �

Reversing time once again, we obtain the following corollary of Theorem D.2.

Corollary D.4. The F-adapted vector process V = (V1, . . . , Vd)′ with components

Vν(t) := Bν(T − t)−Bν(T ) = Wν(t) +
∫ t

0

div(p sν)
p

(
u,X(u)

)
du, 0 6 t 6 T, (D.16)

for ν = 1, . . . , d, is yet another Brownian motion (with respect to its own filtration FV ⊆ F).
This process is independent of the random variable X(T ); and a bit more generally, for every
t ∈ (0, T ], the σ-algebra

FV (t) := σ
(
V (u) : 0 6 u 6 t

)
(D.17)

generated by present-and-past values of V , is independent of σ(X(u) : t 6 u 6 T ), the σ-algebra
generated by present-and-future values of X.

Proof of Theorem D.2. It suffices to show that each Bν is a martingale of F̂; because then, in
view of the continuity of paths and the easily checked property 〈Bν , B`〉(t) = t δν`, we can deduce
that each Bν is a Brownian motion in the backwards filtration F̂ (and of course also in its own
filtration), and that Bν , B` are independent for ` 6= ν, appealing to Lévy’s theorem once again.
Now we have to show E

[(
Bν(T−s)−Bν(T−t)

)
·K
]

= 0 for 0 6 s 6 t 6 T and every bounded,
F̂(T − t)-measurable K; equivalently,

E

[
E
[
K |F(t)

]
·
(
Wν(t)−Wν(s) +

∫ t

s

div(p sν)
p

(
u,X(u)

)
du
)]

= 0,

as the expression inside the curved braces is F(t)-measurable. But recalling (D.12) we have

E
[
K |F(t)

]
= E

[
K |X(t)

]
= G

(
X(t)

)
for some bounded, measurable G : Rn → R, and the desired result follows from (D.13).

D.5. The diffusion property under time reversal

Let us return now to the question, whether the time-reversed process X̂ of (D.1), (D.2) is a
diffusion. We start by expressing Xi of (D.2) in terms of a backwards Itô integral (see Subsection
D.6) as

Xi(t)− ξi −
∫ t

0
bi
(
s,X(s)

)
ds =

d∑
ν=1

∫ t

0
siν
(
s,X(s)

)
dWν(s)

=
d∑

ν=1

(∫ t

0
siν
(
s,X(s)

)
• dWν(s)−

〈
siν( · , X),Wν

〉
(t)
)
.

From (D.2), we have by Itô’s formula that the process

siν( · , X)− siν(0, ξ)−
n∑
j=1

d∑
ν=1

∫ ·
0
Djsiν

(
t,X(t)

)
· sjν

(
t,X(t)

)
dWν(t)
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is of finite first variation, therefore

〈
siν( · , X),Wν

〉
(t) =

n∑
j=1

∫ t

0
sjν
(
s,X(s)

)
Djsiν

(
s,X(s)

)
ds.

We conclude

Xi(t) = ξi −
∫ t

0

( n∑
j=1

d∑
ν=1

sjν Djsiν − bi
)(
s,X(s)

)
ds+

d∑
ν=1

∫ t

0
siν
(
s,X(s)

)
• dWν(s).

Evaluating also at t = T , then subtracting, we obtain

Xi(t) = Xi(T ) +
∫ T

t

( n∑
j=1

d∑
ν=1

sjν Djsiν − bi
)(
s,X(s)

)
ds−

d∑
ν=1

∫ T

t
siν
(
s,X(s)

)
• dWν(s),

as well as

X̂i(t) = X̂i(0) +
∫ t

0

( n∑
j=1

d∑
ν=1

sjν Djsiν − bi
)(
T − s, X̂(s)

)
ds+

d∑
ν=1

∫ t

0
siν
(
T − s, X̂(s)

)
dW̃ν(s)

by reversing time. Note that the backward Itô integral for W becomes a forward Itô integral for
the process W̃ , the time-reversal of W in the manner of (D.9).
But now let us recall (D.14), on the strength of which the above expression takes the form

X̂i(t) = X̂i(0) +
d∑

ν=1

∫ t

0
siν
(
T − s, X̂(s)

)
dBν(s)

+
∫ t

0

( n∑
j=1

d∑
ν=1

sjν Djsiν +
d∑

ν=1
siν

div(p sν)
p

− bi
)(
T − s, X̂(s)

)
ds, 0 6 t 6 T.

But in conjunction with Theorem D.2, this means that the time-reversed process X̂ of (D.1),
(D.2) is a semimartingale of the backwards filtration F̂, with decomposition

X̂i(t) = X̂i(0) +
∫ t

0
b̂i
(
T − s, X̂(s)

)
ds+

d∑
ν=1

∫ t

0
siν
(
T − s, X̂(s)

)
dBν(s) (D.18)

for 0 6 t 6 T , where, for each i = 1, . . . , n, the function b̂i( · , · ) is specified by

b̂i(t, x) + bi(t, x) =
n∑
j=1

d∑
ν=1

sjν(t, x)Djsiν(t, x) +
d∑

ν=1
siν(t, x)

div
(
p(t, x) sν(t, x)

)
p(t, x)

=
n∑
j=1

d∑
ν=1

sjν(t, x)Djsiν(t, x) +
d∑

ν=1

siν(t, x)
p(t, x)

( n∑
j=1

Dj
(
p(t, x) sjν(t, x)

))

=
n∑
j=1

(
Djaij(t, x) + aij(t, x) ·Dj log p(t, x)

)
.

Theorem D.5. Under the assumptions of this section, the time-reversed process X̂ of (D.1),
(D.2) is a diffusion in the backwards filtration F̂, with characteristics as in (D.18), namely,
dispersions siν(T − t, x) and drifts b̂i(T − t, x) given by the generalized Nelson equation

b̂i(t, x) + bi(t, x) =
n∑
j=1

(
Djaij(t, x) + aij(t, x) ·Dj log p(t, x)

)
, i = 1, . . . , n. (D.19)
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Equivalently, and with div
(
a(t, x)

)
:=
(∑n

j=1Djaij(t, x)
)
16i6n, we write

b̂(t, x) + b(t, x) = div
(
a(t, x)

)
+ a(t, x) · ∇ log p(t, x). (D.20)

Remark D.6. This result can be extended to the case where the sums of the distributional
derivatives

∑n
j=1Dj

(
aij(t, x) p(t, x)

)
, i = 1, . . . , n, are only assumed to be locally integrable

functions of x ∈ Rn; see [MNS89, RVW01]. �

D.5.1. Some filtration comparisons

For an invertible matrix s( · , · ), it follows from (D.18) that the Brownian motion B is adapted
to the filtration generated by X̂; that is,

FB(t) ⊆ F X̂(t), 0 6 t 6 T. (D.21)

Now look at (D.14); in its light, the filtration comparison in (D.21) implies FW̃ (t) ⊆ F X̂(t),
0 6 t 6 T , thus

Ĝ(t) ⊆ FW̃ (t) ⊆ F X̂(t), 0 6 t 6 T,

from (D.11), and from (D.10) also

F̂(t) ⊆ F X̂(t), 0 6 t 6 T. (D.22)

These considerations inform our choice of backwards filtration in (3.17).

D.6. The backwards Itô integral

For two continuous semimartingales X = X(0) + M + B and Y = Y (0) + N + C, with B,C
continuous adapted processes of finite variation and M,N continuous local martingales, let us
recall the definition of the Fisk-Stratonovich integral in [KS91, Definition 3.3.13, p. 156], as well
as its properties in [KS91, Problem 3.3.14] and [KS91, Problem 3.3.15].
By analogy with this definition, we introduce the backwards Itô integral∫ ·

0
Y (t) • dX(t) :=

∫ ·
0
Y (t) dM(t) +

∫ ·
0
Y (t) dB(t) + 〈M,N〉, (D.23)

where the first (respectively, the second) integral on the right-hand side is to be interpreted in
the Itô (respectively, the Lebesgue-Stieltjes) sense.
If Π = {t0, t1, . . . , tm} is a partition of the interval [0, T ] with 0 = t0 < t1 < . . . < tm = T ,

then the sums
m−1∑
j=0

Y (tj+1)
(
X(tj+1)−X(tj)

)
(D.24)

converge in probability to
∫ T

0 Y (t) • dX(t) as the mesh ‖Π‖ of the partition tends to zero. Note
that the increments of X here “stick backwards into the past”, as opposed to “sticking forward
into the future” as in the Itô integral.

For the backwards Itô integral we have the change of variable formula

f(X) = f
(
X(0)

)
+

n∑
i=1

∫ ·
0
Dif

(
X(t)

)
• dXi(t)−

1
2

n∑
i,j=1

∫ ·
0
D2
ijf
(
X(t)

)
d〈Mi,Mj〉(t), (D.25)

where now X = (X1, . . . , Xn)′ is a vector of continuous semimartingales X1, . . . , Xn of the form
Xi = Xi(0) + Mi + Bi as above, for i = 1, . . . , n. Note the change of sign, from (+) to (−) in
the last, stochastic correction term.
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