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Abstract. We revisit the variational characterization of diffusion as entropic gradient flux and
provide for it a probabilistic interpretation based on stochastic calculus. It was shown by Jordan,
Kinderlehrer, and Otto that, for diffusions of Langevin-Smoluchowski type, the Fokker-Planck
probability density flow minimizes the rate of relative entropy dissipation, as measured by the
distance traveled in the ambient space of probability measures with finite second moments, in
terms of the quadratic Wasserstein metric. We obtain novel, stochastic-process versions of these
features, valid along almost every trajectory of the diffusive motion in both the forward and,
most transparently, the backward, directions of time, using a very direct perturbation analysis.
By averaging our trajectorial results with respect to the underlying measure on path space, we
establish the minimum rate of entropy dissipation along the Fokker-Planck flow and measure
exactly the deviation from this minimum that corresponds to any given perturbation. As a bonus
of our perturbation analysis we derive the so-called HWI inequality relating relative entropy (H),
Wasserstein distance (W) and relative Fisher information (I).
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1. Introduction
We provide a trajectorial interpretation of a seminal result by Jordan, Kinderlehrer, and Otto
[JKO98], and present a proof based on stochastic calculus. The basic theme of our approach could
be described epigrammatically as “applying Itô calculus to Otto calculus”. More precisely, we fol-
low a stochastic analysis approach to Otto’s characterization of diffusions of Langevin-Smoluchowski
type as entropic gradient fluxes in Wasserstein space, and provide stronger, trajectorial versions of
these results. For consistency and better readability we adopt the setting and notation of [JKO98],
and even copy some paragraphs of this paper almost verbatim in the remainder of this introductory
section.
Following the lines of [JKO98] we thus consider a Fokker-Planck equation of the form

∂tρ(t, x) = div
(
∇Ψ(x) ρ(t, x)

)
+ β−1∆ρ(t, x), (t, x) ∈ (0,∞)×Rn, (1.1)

with initial condition
ρ(0, x) = ρ0(x), x ∈ Rn. (1.2)

Here, ρ is a real-valued function defined for (t, x) ∈ [0,∞) × Rn, the function Ψ: Rn → [0,∞) is
smooth and plays the role of a potential, β > 0 is a real constant, and ρ0 is a probability density
on Rn. The solution ρ(t, x) of (1.1) with initial condition (1.2) stays non-negative and conserves its
mass, which means that the spatial integral∫

Rn
ρ(t, x) dx (1.3)

is independent of the time parameter t > 0 and is thus equal to
∫
ρ0 dx = 1. Therefore, ρ(t, · ) must

be a probability density on Rn for every fixed time t > 0.
As in [JKO98] we note that the Fokker-Planck equation (1.1) with initial condition (1.2) is in-

herently related to the stochastic differential equation of Langevin-Smoluchowski type [Fri75, Gar09,
Ris96, Sch80]

dX(t) = −∇Ψ
(
X(t)

)
dt+

√
2β−1 dW (t), X(0) = X0. (1.4)

In the equation above, (W (t))t>0 is an n-dimensional Brownian motion started from 0, and the Rn-
valued random variable X0 is independent of the process (W (t))t>0. The probability distribution
of X0 has density ρ0 and, unless specified otherwise, the reference measure will always be Lebesgue
measure on Rn. Then ρ(t, · ), the solution of (1.1) with initial condition (1.2), gives at any given time
t > 0 the probability density function of the random variable X(t) from (1.4).
If the potential Ψ grows rapidly enough so that e−βΨ ∈ L1(Rn), then the partition function

Z(β) =
∫
Rn

e−βΨ(x) dx (1.5)

is finite and there exists a unique stationary solution of the Fokker-Planck equation (1.1); namely,
the probability density ρs of the Gibbs distribution given by [Gar09, JK96, Ris96]

ρs(x) =
(
Z(β)

)−1 e−βΨ(x) (1.6)

for x ∈ Rn. When it exists, the probability measure on Rn with density function ρs is called Gibbs
distribution, and is the unique invariant measure for the Markov process (X(t))t>0 defined by the
stochastic differential equation (1.4); see, e.g., [KS98, Exercise 5.6.18, p. 361].
In [JK96] it is shown that the stationary probability density ρs satisfies the following variational

principle: it minimizes the free energy functional

F (ρ) = E(ρ) + β−1 S(ρ) (1.7)
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over all probability densities ρ on Rn. Here, the functional

E(ρ) :=
∫
Rn

Ψρdx (1.8)

models the potential energy, whereas the internal energy is given by the negative of the Gibbs-
Boltzmann entropy functional

S(ρ) :=
∫
Rn
ρ log ρ dx. (1.9)

Similarly as in [JKO98, Theorem 5.1] we consider the following regularity assumptions.
Assumptions 1.1.

(i) The potential Ψ: Rn → [0,∞) is of class C∞(Rn; [0,∞)).

(ii) The distribution of X(0) in (1.4) has a probability density function ρ0(x) with respect to
Lebesgue measure on Rn, which has finite second moment as well as finite free energy, i.e.,∫

Rn
ρ0(x) |x|2 dx <∞ and F (ρ0) ∈ R. (1.10)

In [JKO98] it is also assumed that the potential Ψ satisfies, for some real constant C > 0, the bound
|∇Ψ| 6 C (Ψ + 1), which we do not need here. However, we shall impose the following, additional
assumptions.
Assumptions 1.2 (Regularity assumptions for the trajectorial results of the present paper). In addition
to conditions (i) and (ii) of Assumptions 1.1, we also impose that:

(iii) The potential Ψ satisfies, for some real constants c > 0 and R > 0, the drift (or coercivity)
condition 〈

x ,∇Ψ(x)
〉
Rn

> −c |x|2 (1.11)

for all x ∈ Rn with |x| > R.

(iv) The potential Ψ is sufficiently well-behaved to guarantee that the solution of (1.4) is well-
defined for all t > 0, and that the solution (t, x) 7→ ρ(t, x) of (1.1) with initial condition (1.2) is
continuous and strictly positive on (0,∞)×Rn, differentiable with respect to the time variable
t for each x ∈ Rn, and smooth in the space variable x for each t > 0. We also assume that
the logarithmic derivative (t, x) 7→ ∇ log ρ(t, x) is continuous on (0,∞)×Rn. For example, by
requiring that all derivatives of Ψ grow at most exponentially as |x| tends to infinity, one may
adapt the arguments from [Rog85] showing that this is indeed the case.

For the formulation of Theorem 3.4 we will need a vector field β : Rn → Rn which is the gradient of
a potential B : Rn → R satisfying the following regularity assumption:

(v) The potential B : Rn → R is of class C∞(Rn;R) and has compact support. Consequently, its
gradient β := ∇B : Rn → Rn is of class C∞(Rn;Rn) and again compactly supported. We also
assume that the perturbed potential Ψ +B satisfies condition (iv).

The Assumptions 1.2 are satisfied by typical convex potentials Ψ. They also accommodate examples
such as double-well potentials of the form Ψ(x) = (x2−α2)2 on the real line, for real constants α > 0.
Furthermore, they guarantee that the second-moment condition in (1.10) propagates in time, i.e.,∫

Rn
ρ(t, x) |x|2 dx <∞, t > 0; (1.12)
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see Lemma 2.1 below. It is important to point out, that these assumptions do not rule out the case
when the constant Z(β) in (1.5) is infinite; thus, they allow for cases (such as Ψ = 0) in which the
stationary probability density function ρs does not exist. In fact, in [JKO98] the authors point out
explicitly that, even when the stationary probability density ρs is not defined, the free energy (1.7)
of a density ρ(t, x) satisfying the Fokker-Planck equation (1.1) with initial condition (1.2) can be
defined, provided that the free energy F (ρ0) is finite.
Assumptions 1.3 (Regularity assumptions regarding the Wasserstein distance). In addition to conditions
(i) – (v) of Assumptions 1.2, and in order to compute explicitly the metric derivative of the quadratic
Wasserstein distance along the Fokker-Planck probability density flow, which is the purpose of Section
5, we require that:

(vi) For every t > 0, there exists a sequence of functions
(
ϕm(t, · )

)
m>1 ⊆ C

∞
c (Rn;R), whose gradi-

ents
(
∇ϕm(t, · )

)
m>1 converge in L

2(P (t)) to the time-dependent velocity field v(t, · ) = ∇ϕ(t, · )
of gradient type as in (5.4) with ϕ(t, x) = −Ψ(x)− 1

2 log ρ(t, x), as m→∞. Here, P (t) denotes
the probability measure on the Borel sets of Rn with density ρ(t, · ).

Remark 1.4. The last-mentioned requirement guarantees, for every t > 0, that the time-dependent
velocity field v(t, · ) is an element of the tangent space of P2(Rn) at the point P (t) ∈ P2(Rn) in
the sense of [AGS08, Definition 8.4.1]. For the details we refer to our Section 5, in particular, the
display (5.10). However, we do not know whether this condition (vi) in Assumptions 1.3 is actually
an additional requirement, or whether it is automatically satisfied in our setting. But as this issue
only affects the Wasserstein distance, and has no relevance for our novel trajectorial results which
constitute the main point of this work, we will not pursue this question here any further.
The condition (vi) in Assumptions 1.3 is satisfied by simple potentials such as for example Ψ ≡ 0

or Ψ(x) = |x|2/4. More generally, potentials with a curvature lower bound Hess(Ψ) > κ In, for some
κ ∈ R (as in (3.66) below), for instance the double-well potential Ψ(x) = (x2 − α2)2 on the real line,
satisfy this condition; this follows from [AGS08, Theorem 10.4.13]. The above condition (vi) is also
satisfied, whenever

∫
Rn ϕ

2(t, x) ρ(t, x) dx <∞ holds for all t > 0.

1.1. Preview

We set up in Section 2 our model for the Langevin-Smoluchowski diffusion and introduce its fundamen-
tal quantities, such as the current and the invariant distribution of particles, the resulting likelihood
ratio process, as well as the associated concepts of free energy, relative entropy, and relative Fisher
information.
Section 3 presents our basic results. These include Theorem 3.1, which computes in terms of

the relative Fisher information the rate of relative entropy decay in the ambient Wasserstein space
of probability density functions with finite second moment; as well as its “perturbed” counterpart,
Theorem 3.4. We compute explicitly the difference between these perturbed and unperturbed rates
and show that it is always non-negative, in fact strictly positive unless the perturbation and the
gradient of the log-likelihood ratio are collinear. This way, the Langevin-Smoluchowski diffusion
emerges as the steepest descent (or “gradient flux”) of the relative entropy functional with respect to
the Wasserstein metric.
We also show that both Theorems 3.1 and 3.4 follow as very simple consequences of their stronger,

trajectorial versions, Theorems 3.6 and 3.8, respectively. These latter are the main results of this
work; they provide very detailed descriptions of the semimartingale dynamics for the relative entropy
process, in both its “pure” and “perturbed” forms. Such descriptions are most transparent when
time is reversed, so we choose to present them primarily in this context. Several important conse-
quences and ramifications of Theorems 3.6, 3.8 are developed in Subsections 3.2 and 3.3, including a
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derivation of the famous HWI inequality of Otto and Villani [OV00, Vil03, Vil09] (see also Cordero-
Erausquin [CE02]) that relates relative entropy (H) to Wasserstein distance (W) and to relative Fisher
information (I).
Most of the detailed arguments and proofs are collected in Section 4 and in the appendices. In

particular, Appendix G presents a completely self-contained account of time reversal for Itô diffusion
processes. The necessary background on optimal Wasserstein transport is recalled in Section 5.

2. The stochastic approach
Thus far, we have been mostly quoting from [JKO98]. We adopt now a more probabilistic point of
view, and translate our setting into the language of stochastic processes and probability measures.
For notational convenience, and without loss of generality, we fix the constant β > 0 to equal 2, so
that the stochastic differential equation (1.4) becomes

dX(t) = −∇Ψ
(
X(t)

)
dt+ dW (t), t > 0. (2.1)

Let P (0) be a probability measure on the Borel sets of Rn with density function p0(x) := ρ0(x).
We shall study the stochastic differential equation (2.1) with initial probability distribution P (0).
While we do make an effort to follow the setting and notation of [JKO98] as closely as possible,

our notation here differs slightly from [JKO98]. To conform with our probabilistic approach, we shall
use from now onward the familiar letters p0 and p(0, · ) rather than ρ0 and ρ(0, · ).
The initial probability measure P (0) on Rn with density function p(0, · ), induces a probability

measure P on the path space Ω = C(R+;Rn) ofRn-valued continuous functions onR+ = [0,∞), under
which the canonical coordinate process (X(t, ω))t>0 = (ω(t))t>0 satisfies the stochastic differential
equation (2.1) with initial probability distribution P (0). We shall denote by P (t) the probability
distribution of the random vector X(t) under P, and by p(t) ≡ p(t, · ) the corresponding probability
density function, at each time t > 0. This function solves the equation (1.1) with initial condition
(1.2).
We shall see in Appendix B that, in conjunction with the second-moment condition in (1.10), the

drift condition (1.11) guarantees finite second moments of the probability density functions p(t) at
all times t > 0; equivalently, membership of the probability distribution P (t) in the space P2(Rn) of
definition (5.1) in Section 5, for all t > 0. This property also holds when the potential Ψ is replaced
by Ψ +B as in condition (v) of Assumptions 1.2; see Lemma 3.3.

Lemma 2.1. Under the Assumptions 1.2, the Langevin-Smoluchowski diffusion equation (2.1) with
initial distribution P (0) admits a pathwise unique, strong solution, which satisfies P (t) ∈P2(Rn) for
all t > 0.

An important role will be played by the Radon-Nikodým derivative, or likelihood ratio process,

dP (t)
dQ

(
X(t)

)
= `

(
t,X(t)

)
, where `(t, x) := p(t, x)

q(x) = p(t, x) e2Ψ(x) (2.2)

for t > 0 and x ∈ Rn. Here and throughout, we denote by Q the σ-finite measure on the Borel sets
of Rn, whose density with respect to Lebesgue measure is

q(x) := e−2Ψ(x), x ∈ Rn. (2.3)

The relative entropy and the relative Fisher information (see, e.g., [CT06]) of P (t) with respect to
this measure Q, are defined respectively as

H
(
P (t) |Q

)
:= EP

[
log `

(
t,X(t)

)]
=
∫
Rn

log
(
p(t, x)
q(x)

)
p(t, x) dx, t > 0, (2.4)
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I
(
P (t) |Q

)
:= EP

[ ∣∣∇ log `
(
t,X(t)

)∣∣2 ] =
∫
Rn

∣∣∇ log `(t, x)
∣∣2 p(t, x) dx, t > 0. (2.5)

Remark 2.2. Following the approach of [Léo14, Section 2], we show in Appendix C that the relative
entropy H(P |Q) is well-defined for every probability measure P in P2(Rn) and takes values in
(−∞,∞].
The following well-known identity (2.6) states that the relative entropy H(P (t) |Q) is equal to the

free energy F (p(t, · )), up to a multiplicative factor of 2, for all t > 0. In light of condition (ii) in
Assumptions 1.1, this identity implies H(P (0) |Q) ∈ R, so the quantity in (2.4) is finite for t = 0;
thus, on account of (3.32) below, finite also for t > 0.

Lemma 2.3. Under the Assumptions 1.2, and along the curve of probability measures (P (t))t>0, the
free energy functional in (1.7) and the relative entropy in (2.4) are related for each t > 0 through the
equation

2F
(
p(t, · )

)
= H

(
P (t) |Q

)
. (2.6)

Proof. Indeed,

EP
[
log `

(
t,X(t)

)]
= EP

[
log

(
e2Ψ(X(t)) p

(
t,X(t)

))]
= EP

[
2 Ψ
(
X(t)

)]
+ EP

[
log p

(
t,X(t)

)]
(2.7)

= 2
∫
Rn

Ψ(x) p(t, x) dx+
∫
Rn
p(t, x) log p(t, x) dx, (2.8)

which equals 2F (p(t, · )).

The identity (2.6) shows that studying the decay of the free energy F (p(t, · )), is equivalent to
studying the decay of the relative entropy H(P (t) |Q), a key aspect of thermodynamics.
Remark 2.4. In conjunction with (2.6), the condition F (p(0, · )) ∈ R in (1.10), and (1.7) – (1.9),
the decrease of the relative entropy established in (3.32) shows that EP

[
Ψ(X(t))

]
is finite for all

t > 0. Thus, if the potential Ψ dominates a quadratic, we deduce that EP
[
|X(t)|2

]
< ∞, i.e.,

P (t) ∈ P2(Rn), also holds for all t > 0, without invoking the coercivity condition (1.11). But of
course, (1.11) accommodates functions, such as Ψ ≡ 0, that fail to dominate a quadratic.

3. The theorems
As already indicated in (1.1) and (1.4), the probability density function p : [0,∞) × Rn → [0,∞)
solves the Fokker-Planck or forward Kolmogorov [Kol31] equation [Fri75, Gar09, Ris96, Sch80]

∂tp(t, x) = div
(
∇Ψ(x) p(t, x)

)
+ 1

2∆p(t, x), (t, x) ∈ (0,∞)×Rn, (3.1)

with initial condition
p(0, x) = p0(x), x ∈ Rn. (3.2)

By contrast, the function q( · ) does not depend on the temporal variable, and solves the stationary
version of the forward Kolmogorov equation (3.1), namely

0 = div
(
∇Ψ(x) q(x)

)
+ 1

2∆q(x), x ∈ Rn. (3.3)

In light of Lemma 2.3, the object of interest in [JKO98] is to relate the decay of the relative entropy
functional

P2(Rn) 3 P 7−→ H(P |Q) ∈ (−∞,∞] (3.4)
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along the curve (P (t))t>0, to the quadratic Wasserstein distance W2 defined in (5.3) of Section 5.
We resume the remarkable relation between these two quantities in the following two theorems;
these provide a way to quantify the relationship between displacement in the ambient space (the
denominator of the expression in (3.7)) and fluctuations of the free energy, or equivalently of the
relative entropy (the numerator in the expression (3.7)). The proofs will be given in Subsection 3.2
below.

Theorem 3.1. Under the Assumptions 1.3, the relative Fisher information I(P (t0) |Q) is finite for
Lebesgue-almost every t0 > 0, and we have the generalized de Bruijn identity

lim
t→t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
t− t0

= −1
2 I
(
P (t0) |Q

)
, (3.5)

as well as the local behavior of the quadratic Wasserstein distance

lim
t→t0

W2
(
P (t), P (t0)

)
|t− t0|

= 1
2

√
I
(
P (t0) |Q

)
, (3.6)

so that

lim
t→t0

(
sgn(t− t0) ·

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
W2
(
P (t), P (t0)

) )
= −

√
I
(
P (t0) |Q

)
. (3.7)

Furthermore, if t0 > 0 is chosen so that the generalized de Bruijn identity (3.5) does hold, then the
limiting assertions (3.6) and (3.7) are also valid.

The ratio on the left-hand side of (3.7) can be interpreted as the slope of the relative entropy
functional (3.4) at P = P (t0) along the curve (P (t))t>0, if we measure distances in the ambient space
P2(Rn) of probability measures by the quadratic Wasserstein distance W2 of (5.3). The quantity
appearing on the right-hand side of (3.7) is the square root of the relative Fisher information in (2.5),
written more explicitly in terms of the “score function” ∇`(t, · )/`(t, · ) as

I
(
P (t0) |Q

)
= EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
]

=
∫
Rn

∣∣∣∣∇p(t0, x)
p(t0, x) + 2∇Ψ(x)

∣∣∣∣2 p(t0, x) dx. (3.8)

Remark 3.2. Under the Assumptions 1.2 it is perfectly possible for the relative Fisher information
I(P (t0) |Q) to be infinite at t0 = 0. For instance, think of p(0, · ) as the indicator function of a subset
of Rn with Lebesgue measure equal to 1.
For future reference, we denote by N the set of exceptional points t0 > 0 for which the right-sided

limiting assertion

lim
t↓t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
t− t0

= −1
2 I
(
P (t0) |Q

)
(3.9)

fails. According to Theorem 3.1, this exceptional set N has zero Lebesgue measure.

The remarkable insight of [JKO98] states that the slope in (3.7) in the direction of the curve
(P (t))t>0 is, in fact, the slope of steepest descent for the relative entropy functional (3.4) at the point
P = P (t0). To formalize this assertion, we fix a time t0 > 0 and let the vector field β = ∇B : Rn → Rn

be the gradient of a potential B of class C∞(Rn;R) with compact support, as in condition (v) of
Assumptions 1.2. This gradient vector field β will serve as a perturbation, and we consider the thus
perturbed Fokker-Planck equation

∂tp
β(t, x) = div

((
∇Ψ(x) + β(x)

)
pβ(t, x)

)
+ 1

2∆pβ(t, x), (t, x) ∈ (t0,∞)×Rn (3.10)
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with initial condition
pβ(t0, x) = p(t0, x), x ∈ Rn. (3.11)

We denote by Pβ the probability measure on the path space Ω = C([t0,∞);Rn), under which the
canonical coordinate process (X(t))t>t0 satisfies the stochastic differential equation

dX(t) = −
(
∇Ψ

(
X(t)

)
+ β

(
X(t)

))
dt+ dW β(t), t > t0 (3.12)

with initial probability distribution P (t0). Here, the process (W β(t))t>t0 is Brownian motion under
Pβ. The probability distribution of X(t) under Pβ on Rn will be denoted by P β(t), for t > t0;
once again, the corresponding probability density function pβ(t) ≡ pβ(t, · ) solves the equation (3.10)
subject to the initial condition (3.11).
In the following analogue of Lemma 2.1, we state that the perturbed probability density functions

pβ(t, · ) of (3.10), (3.11) also admit finite second moments at all times t > t0. For the proof we refer
again to Appendix B.

Lemma 3.3. Under the Assumptions 1.2, let t0 > 0. Then the perturbed diffusion equation (3.12)
with initial distribution P β(t0) = P (t0) admits a pathwise unique, strong solution, which satisfies
P β(t) ∈P2(Rn) for all t > t0.

After these preparations we can state the result formalizing the gradient flux, or steepest descent,
property of the flow (P (t))t>0 generated by the Langevin-Smoluchowski diffusion (2.1) in the ambient
space of probability measures P2(Rn) endowed with the Wasserstein metric.

Theorem 3.4. Under the Assumptions 1.3, the following assertions hold for every point t0 > 0 at
which the right-sided limiting identity (3.9) is valid (i.e., every t0 ∈ R+ \N):
The Rn-valued random vectors

a := ∇ log `
(
t0, X(t0)

)
= ∇ log p

(
t0, X(t0)

)
+ 2∇Ψ

(
X(t0)

)
, b := β

(
X(t0)

)
(3.13)

are elements of the Hilbert space L2(P), and the perturbed version of the generalized de Bruijn identity
(3.5) reads

lim
t↓t0

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
t− t0

= −1
2 I
(
P (t0) |Q

)
− 〈a, b〉L2(P) = −1

2
〈
a, a+ 2b

〉
L2(P). (3.14)

Furthermore, the local behavior of the quadratic Wasserstein distance (3.6) in this perturbed context
is given by

lim
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

= 1
2 ‖a+ 2b‖L2(P). (3.15)

Combining (3.14) with (3.15), and assuming ‖a+ 2b‖L2(P) > 0, we have

lim
t↓t0

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
W2
(
P β(t), P β(t0)

) = −
〈
a ,

a+ 2b
‖a+ 2b‖L2(P)

〉
L2(P)

, (3.16)

and therefore

lim
t↓t0

(
H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
W2
(
P β(t), P β(t0)

) −
H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
W2
(
P (t), P (t0)

) )
(3.17)

= ‖a‖L2(P) −
〈
a ,

a+ 2b
‖a+ 2b‖L2(P)

〉
L2(P)

. (3.18)
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Remark 3.5. On the strength of the Cauchy-Schwarz inequality, the expression in (3.18) is non-
negative, and vanishes if and only if a and b are collinear. Consequently, when the vector field β is
not a scalar multiple of ∇ log `(t0, · ), the difference of the two slopes in (3.17) is strictly positive. In
other words, the slope quantified by the first term of the difference (3.17), is then strictly bigger than
the (negative) slope expressed by the second term of (3.17).

These two theorems are essentially well known. They build upon a vast amount of previous work.
In the quadratic case Ψ(x) = |x|2/4, i.e., when the process (X(t))t>0 in (2.1) is Ornstein-Uhlenbeck
with invariant measure in (1.6) standard Gaussian, the relation

d
dt H

(
P (t) |Q

)
= −1

2 I
(
P (t) |Q

)
(3.19)

has been known since [Sta59] as de Bruijn’s identity. This relationship between the two fundamental
information measures, due to Shannon and Fisher, respectively, is a dominant theme in many aspects
of information theory and probability. We refer to the book [CT06] by Cover and Thomas for an
account of the results by Barron, Blachman, Brown, Linnik, Rényi, Shannon, Stam and many others
in this vein, as well as to the paper [MV00] by Markowich and Villani, and the book [Vil03] by Villani.
See also the paper by Carlen and Soffer [CS91] and the book by Johnson [Joh04] on the relation of
(3.19) to the central limit theorem. For the connections with large deviations we refer to [ADPZ13]
and [Fat16].
In (3.5), the de Bruijn identity (3.19) is established for more general measures Q, those that satisfy

Assumptions 1.2; in a similar vein, see also the seminal work [BÉ85] by Bakry and Émery.
The paper [JKO98] broke new ground in this respect, as it considered a general potential Ψ and

established the relation to the quadratic Wasserstein distance, culminating with the characterization
of (P (t))t>0 as a gradient flux. This relation was further investigated by Otto in the paper [Ott01],
where the theory now known as “Otto calculus” was developed. For a recent application of Otto
calculus to the Schrödinger problem, see [GLR20].
The statements of our Theorems 3.1, 3.4 complement the existing results in some important details,

e.g., the precise form (3.18), measuring the difference of the two slopes appearing in (3.17). The main
novelty of our approach, however, will only become apparent with the formulation of Theorems 3.6,
3.8 below, the trajectorial versions of Theorems 3.1 and 3.4.

We shall thus investigate Theorems 3.1 and 3.4 in a trajectorial fashion, by considering the relative
entropy process

log `
(
t,X(t)

)
= log

(
p
(
t,X(t)

)
q
(
X(t)

) ) = log p
(
t,X(t)

)
+ 2 Ψ

(
X(t)

)
, t > 0 (3.20)

along each trajectory of the canonical coordinate process (X(t))t>0, and calculating its dynamics
(stochastic differential) under the probability measure P. The expectation with respect to P of this
quantity is, of course, the relative entropy in (2.4).

A decisive tool in the analysis of the relative entropy process (3.20) is to reverse time, and use
a remarkable insight due to Fontbona and Jourdain [FJ16]. These authors consider the canonical
coordinate process (X(t))06t6T on the path space Ω = C([0, T ];Rn) in the reverse direction of time,
i.e., they work with the time-reversed process (X(T − s))06s6T ; it is then notationally convenient to
consider a finite time interval [0, T ], rather than R+. Of course, this does not restrict the generality
of the arguments.

At this stage it becomes important to specify the relevant filtrations: We denote by (F(t))t>0 the
smallest continuous filtration to which the canonical coordinate process (X(t))t>0 is adapted. That
is, modulo P-augmentation, we have

F(t) = σ
(
X(u) : 0 6 u 6 t

)
, t > 0; (3.21)
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and we call (F(t))t>0 the “filtration generated by (X(t))t>0”. Likewise, we let (G(T − s))06s6T be
the “filtration generated by the time-reversed canonical coordinate process (X(T − s))06s6T ” in the
same sense as before. In particular,

G(T − s) = σ
(
X(T − u) : 0 6 u 6 s

)
, 0 6 s 6 T, (3.22)

modulo P-augmentation. For the necessary measure-theoretic operations that ensure the continuity
(from both left and right) of filtrations associated with continuous processes, consult Section 2.7 in
[KS98]; in particular, Problems 7.1 – 7.6 and Proposition 7.7.

3.1. Main results

The following two Theorems 3.6 and 3.8 are the main new results of this paper. They can be regarded
as trajectorial versions of Theorems 3.1 and 3.4, whose proofs will follow from Theorems 3.6 and 3.8
simply by taking expectations. Similar trajectorial approaches have already been applied successfully
to the theory of optimal stopping in [DK94], to Doob’s martingale inequalities in [ABP+13], and to
the Burkholder-Davis-Gundy inequality in [BS15].

The significance of Theorem 3.6 right below, is that the trade-off between the decay of relative
entropy and the “Wasserstein transportation cost”, both of which are characterized in terms of the
cumulative relative Fisher information process, is valid not only in expectation, but also along (almost)
each trajectory, provided we run time in the reverse direction.1

Theorem 3.6. Under the Assumptions 1.2, we let T > 0 and define the cumulative relative Fisher
information process, accumulated from the right, as

F (T − s) :=
∫ s

0

1
2

∣∣∇`(T − u,X(T − u)
)∣∣2

`
(
T − u,X(T − u)

)2 du

=
∫ s

0

1
2

∣∣∣∣∇p
(
T − u,X(T − u)

)
p
(
T − u,X(T − u)

) + 2∇Ψ
(
X(T − u)

)∣∣∣∣2 du
(3.23)

for 0 6 s 6 T . Then EP
[
F (0)

]
= 1

2
∫ T

0 I
(
P (t) |Q

)
dt <∞, and the process

M(T − s) :=
(

log `
(
T − s,X(T − s)

)
− log `

(
T,X(T )

))
− F (T − s) (3.24)

for 0 6 s 6 T , is a square-integrable martingale of the backwards filtration (G(T − s))06s6T under the
probability measure P. More explicitly, the martingale of (3.24) can be represented as

M(T − s) =
∫ s

0

〈
∇`
(
T − u,X(T − u)

)
`
(
T − u,X(T − u)

) , dWP(T − u)
〉
Rn

, 0 6 s 6 T, (3.25)

where the stochastic process
(
W
P(T − s)

)
06s6T is a P-Brownian motion of the backwards filtration

(G(T − s))06s6T . In particular, the quadratic variation of the martingale of (3.24) is given by the
non-decreasing process in (3.23), up to a multiplicative factor of 1/2.

Remark 3.7. The finiteness of the expression EP
[
F (0)

]
= 1

2
∫ T
0 I

(
P (t) |Q

)
dt, in conjunction with the

representation (3.25), shows that the martingale of (3.24) is bounded in L2(P).

1As David Kinderlehrer kindly pointed out to the second named author, the implicit Euler scheme used in [JKO98]
also reflects the idea of going back in time at each step of the discretization.
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Next, we state the trajectorial version of Theorem 3.4 — or equivalently, the “perturbed” analogue
of Theorem 3.6. As we did in Theorem 3.4, in particular in the preceding equations (3.10) – (3.12),
we consider the perturbation β : Rn → Rn and denote the perturbed likelihood ratio function by

`β(t, x) := pβ(t, x)
q(x) = pβ(t, x) e2Ψ(x) , (t, x) ∈ [t0,∞)×Rn. (3.26)

The stochastic analogue of this quantity is the perturbed likelihood ratio process

`β
(
t,X(t)

)
=
pβ
(
t,X(t)

)
q
(
X(t)

) = pβ
(
t,X(t)

)
e2Ψ(X(t)) , t > t0. (3.27)

The logarithm of this process is the perturbed relative entropy process

log `β
(
t,X(t)

)
= log

(
pβ
(
t,X(t)

)
q
(
X(t)

) )
= log pβ

(
t,X(t)

)
+ 2 Ψ

(
X(t)

)
, t > t0. (3.28)

Theorem 3.8. Under the Assumptions 1.2, we let t0 > 0 and T > t0. We define the perturbed
cumulative relative Fisher information process, accumulated from the right, as

F β(T − s) :=
∫ s

0

(
1
2

∣∣∇`β(T − u,X(T − u)
)∣∣2

`β
(
T − u,X(T − u)

)2 +
(〈
β , 2∇Ψ

〉
Rn
− div β

)(
X(T − u)

))
du (3.29)

for 0 6 s 6 T − t0. Then EPβ
[
F β(t0)

]
<∞, and the process

Mβ(T − s) :=
(

log `β
(
T − s,X(T − s)

)
− log `β

(
T,X(T )

))
− F β(T − s) (3.30)

for 0 6 s 6 T − t0, is a square-integrable martingale of the backwards filtration (G(T − s))06s6T−t0
under the probability measure Pβ. More explicitly, the martingale of (3.30) can be represented as

Mβ(T − s) =
∫ s

0

〈
∇`β

(
T − u,X(T − u)

)
`β
(
T − u,X(T − u)

) , dWPβ (T − u)
〉
Rn

, 0 6 s 6 T − t0, (3.31)

where the stochastic process
(
W
Pβ (T−s)

)
06s6T−t0 is a P

β-Brownian motion of the backwards filtration
(G(T − s))06s6T−t0.

Remark 3.9. The representation (3.31), in conjunction with the finiteness of EPβ
[
F β(0)

]
, shows that

the martingale of (3.30) is bounded in L2(Pβ).

3.2. Important consequences

We state now several important consequences of these two basic results, Theorems 3.6 and 3.8. In
particular, we indicate how the corresponding assertions in the earlier Theorems 3.1, 3.4 follow directly
from these results by taking expectations.

Corollary 3.10 (Dissipation of relative entropy). Under the Assumptions 1.3, we have for all t, t0 > 0
the relative entropy identity

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
= EP

[
log

(
`
(
t,X(t)

)
`
(
t0, X(t0)

))] = EP

[ ∫ t

t0

(
− 1

2

∣∣∇`(u,X(u)
)∣∣2

`
(
u,X(u)

)2
)
du
]
. (3.32)
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Furthermore, we have for Lebesgue-almost every t0 > 0 the generalized de Bruijn identity

lim
t→t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
t− t0

= −1
2 EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
]
, (3.33)

as well as the local behavior of the quadratic Wasserstein distance

lim
t→t0

W2
(
P (t), P (t0)

)
|t− t0|

= 1
2

(
EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
])1/2

. (3.34)

If t0 > 0 is chosen so that the generalized de Bruijn identity (3.33) does hold, then the limiting
assertion (3.34) pertaining to the Wasserstein distance is also valid.

Proof of Corollary 3.10 from Theorem 3.6: The identity (3.32) follows by taking expectations with
respect to the probability measure P, and invoking the martingale property of the process in (3.24) for
T > max{t0, t}. In particular, (3.32) shows that the relative entropy function t 7→ H(P (t) |Q) from
(2.4), thus also the free energy function t 7→ F (p(t, · )) from (2.6), are strictly decreasing provided
`(t, · ) is not constant.
According to the Lebesgue differentiation theorem, the monotone function t 7→ H(P (t) |Q) is

differentiable for Lebesgue-almost every t0 > 0, in which case (3.32) leads to the identity (3.33).
The limiting behavior of the Wasserstein distance (3.34), for Lebesgue-almost every t0 > 0, is well

known and carefully worked out in [AGS08]; see Section 5 below for the details. In Theorem 5.1 we
will prove the last-mentioned assertion of Corollary 3.10, claiming that the validity of (3.33) for some
t0 > 0 implies that the limiting assertion (3.34) also holds for the same point t0.

Proof of Theorem 3.1 from Theorem 3.6: Recalling the definition of the relative Fisher information
(2.5) as well as (3.8), we realize that the limiting assertions (3.5) and (3.6) in Theorem 3.1 correspond
to the limits (3.33) and (3.34) in the just proved Corollary 3.10. If t0 > 0 is chosen so that the limit
(3.5) exists, the last part of Corollary 3.10 tells us that then the limit (3.6) exists as well. Therefore,
we can divide the first of these limits by the second, in order to obtain the limiting identity (3.7) of
Theorem 3.1 for Lebesgue-almost every t0 > 0.

In a manner similar to the derivation of the above Corollary 3.10 from Theorem 3.6, we deduce
now from Theorem 3.8 the following Corollary 3.11. Its first identity (3.35) shows, in particular, that
the relative entropy H(P β(t) |Q) is real-valued for all t > t0.

Corollary 3.11 (Dissipation of relative entropy under perturbations). Under the Assumptions 1.3, we
have for all t > t0 > 0 the relative entropy identity

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
= EPβ

[
log

(
`β
(
t,X(t)

)
`β
(
t0, X(t0)

))]

= EPβ

[ ∫ t

t0

(
− 1

2

∣∣∇`β(u,X(u)
)∣∣2

`β
(
u,X(u)

)2 +
(

div β −
〈
β , 2∇Ψ

〉
Rn

)(
X(u)

))
du
]
.

(3.35)

Furthermore, for every point t0 > 0 at which the right-sided limiting assertion (3.9) is valid (i.e.,
every t0 ∈ R+ \N), we have also the limiting identities

lim
t↓t0

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
t− t0

= EP

[
− 1

2

∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2 +
(

div β −
〈
β , 2∇Ψ

〉
Rn

)(
X(t0)

)]
,

(3.36)
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as well as

lim
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

= 1
2

(
EP

[ ∣∣∣∣∇`
(
t0, X(t0)

)
`
(
t0, X(t0)

) + 2β
(
X(t0)

)∣∣∣∣2
])1/2

. (3.37)

Proof of Corollary 3.11 from Theorem 3.8: Taking expectations under the probability measure Pβ
and using the martingale property of the process in (3.30) for T > t > t0, leads to the identity (3.35).

In order to derive the limiting identity (3.36) from (3.35), some care is needed to show that (3.36) is
valid for every time t0 > 0 which is not an exceptional point excluded by Theorem 3.1, or equivalently
by Corollary 3.10. More precisely, if t0 > 0 is chosen so that the right-sided limit (3.9) can be derived
from (3.32) in Corollary 3.10 (i.e., if t0 ∈ R+ \ N), we have to show that for the same point t0 the
perturbed equation (3.35) leads to the identity (3.36). Colloquially speaking, we want to show that
the generalized de Bruijn identity (3.9) is stable under perturbations; see in this context also Remark
4.16 below.
We shall verify in Lemma 4.14 of Subsection 4.5 below the following estimates on the ratio between

the probability density function p(t, · ) and its perturbed version pβ(t, · ): For every t0 > 0 and T > t0
there is a constant C > 0 such that∣∣∣∣`β(t, x)

`(t, x) − 1
∣∣∣∣ =

∣∣∣∣pβ(t, x)
p(t, x) − 1

∣∣∣∣ 6 C (t− t0) , (t, x) ∈ [t0, T ]×Rn (3.38)

as well as

EP

[ ∫ t

t0

∣∣∣∣∣∇ log
(
`β
(
u,X(u)

)
`
(
u,X(u)

) )∣∣∣∣∣
2

du
]
6 C (t− t0)2 , t0 6 t 6 T. (3.39)

We turn now to the derivation of (3.36) from (3.35). First, as the perturbation β is smooth and
compactly supported, and the paths of the canonical coordinate process (X(t))t>0 are continuous, we
have clearly

lim
t↓t0

1
t− t0

EPβ

[ ∫ t

t0

(
div β −

〈
β , 2∇Ψ

〉
Rn

)(
X(u)

)
du
]

= EPβ
[(

div β −
〈
β , 2∇Ψ

〉
Rn

)(
X(t0)

)]
(3.40)

for every t0 > 0. Secondly, the random variable X(t0) has the same distribution under P, as it does
under Pβ, so it is immaterial whether we express the expectation on the right-hand side of (3.40)
with respect to the probability measure P or Pβ. Hence this expression equals the corresponding
term on the right-hand side of (3.36), as required.
Regarding the remaining term on the right-hand side of (3.36), it can be seen by applying (3.38)

and (3.39), that the equality

lim
t↓t0

1
t− t0

EPβ

[ ∫ t

t0

(
− 1

2

∣∣∇`β(u,X(u)
)∣∣2

`β
(
u,X(u)

)2
)
du
]

= lim
t↓t0

1
t− t0

EP

[ ∫ t

t0

(
− 1

2

∣∣∇`(u,X(u)
)∣∣2

`
(
u,X(u)

)2
)
du
]

(3.41)
holds as long as t0 > 0 is chosen so that one of the limits exists; for the details we refer to [Tsc19,
Section 3.1]. In other words, the existence and equality of the limits in (3.41) is guaranteed if and
only if t0 ∈ R+ \ N . It develops that both limits in (3.41) exist if t0 > 0 is not contained in the
exceptional set N of zero Lebesgue measure, and their common value is

− 1
2 I
(
P (t0) |Q

)
= −1

2 EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
]
; (3.42)
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in conjunction with (3.40), which is valid for every t0 > 0, this establishes the limiting identity (3.36)
for every t0 ∈ R+ \N . Therefore, the right-sided limiting assertion (3.9) and the similar perturbed
limiting assertion in (3.36) fail on precisely the same set of exceptional points N .

As regards the final assertion (3.37), we note that, by analogy with (3.34), the limiting behavior
of the Wasserstein distance (3.37), for Lebesgue-almost every t0 > 0, is well known [AGS08]; for the
details we refer to Section 5 below. More precisely, it will follow from Theorem 5.2 that the limiting
assertion

lim
t↓t0

W2
(
P (t), P (t0)

)
t− t0

= 1
2

√
I
(
P (t0) |Q

)
(3.43)

is valid for every t0 ∈ R+ \ N . Once again, concerning the relation between the limits in (3.43)
and (3.37) pertaining to the Wasserstein distance, we discern a similar pattern as in the case of the
generalized de Bruijn identity. In fact, Theorem 5.2 will tell us that the perturbed Wasserstein limit
(3.37) also holds for every t0 ∈ R+\N . In other words, the local behavior of the quadratic Wasserstein
distance is stable under perturbations as well; we shall come back to this point in Remark 4.17 below.

Summing up, if t0 ∈ R+ \N , i.e., whenever the limiting identity (3.9) holds, the limiting assertions
(3.36) and (3.37) are valid as well. Hence, except for the set N of zero Lebesgue measure in Remark
3.2, we have shown the validity of (3.36) and (3.37), thus completing the proof of Corollary 3.11.

Proof of Theorem 3.4 from Theorems 3.6, 3.8: Let t0 ∈ R+ \N , i.e., such that the limiting assertion
(3.9), and as a consequence also (3.43), are valid (these are the right-sided limits corresponding to
(3.33), (3.34) in Corollary 3.10 of Theorem 3.4). Then the limiting identities (3.36), (3.37) from
Corollary 3.11 of Theorem 3.8 are valid as well. Recalling the abbreviations a = ∇ log `(t0, X(t0))
and b = β(X(t0)) in (3.13), we summarize now the identities just mentioned as

lim
t↓t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
t− t0

= −1
2 ‖a‖

2
L2(P), (3.44)

lim
t↓t0

W2
(
P (t), P (t0)

)
t− t0

= 1
2 ‖a‖L2(P), (3.45)

lim
t↓t0

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
t− t0

= −1
2
〈
a, a+ 2b

〉
L2(P), (3.46)

lim
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

= 1
2 ‖a+ 2b‖L2(P). (3.47)

Indeed, the equations (3.44), (3.45), and (3.47) correspond precisely to (3.9), (3.43), and (3.37),
respectively. As for (3.46), we note that, according to equation (3.36) of Corollary 3.11, the limit in
(3.46) equals

− 1
2 ‖a‖

2
L2(P) + EP

[(
div β − 2

〈
β,∇Ψ

〉
Rn

)(
X(t0)

)]
. (3.48)

Therefore, in view of the right-hand side of (3.46), we have to show the identity

EP

[(
div β −

〈
β , 2∇Ψ

〉
Rn

)(
X(t0)

)]
= −〈a, b〉L2(P). (3.49)

In order to do this, we write the left-hand side of (3.49) as∫
Rn

(
div β(x)−

〈
β(x) , 2∇Ψ(x)

〉
Rn

)
p(t0, x) dx. (3.50)
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Using — for the first time, and only in order to show the identity (3.49) — integration by parts, and
the fact that the perturbation β is assumed to be smooth and compactly supported, we see that the
expression (3.50) becomes

−
∫
Rn

〈
β(x) , ∇ log p(t0, x) + 2∇Ψ(x)

〉
Rn
p(t0, x) dx, (3.51)

which is the same as −
〈
β(X(t0)),∇ log `(t0, X(t0))

〉
L2(P) = −〈b, a〉L2(P).

The limiting identities (3.44) – (3.47) now clearly imply the assertions of Theorem 3.4.

The following two results, Propositions 3.12 and 3.14, are trajectorial versions of Corollaries 3.10
and 3.11, respectively. They compute the rate of temporal change of relative entropy for the equation
(2.1) and for its perturbed version (3.12), respectively, in the more precise trajectorial manner of
Theorems 3.6, 3.8.

Proposition 3.12 (Trajectorial rate of relative entropy dissipation). Under the Assumptions 1.2, let
t0 > 0 be such that the generalized de Bruijn identity (3.33) does hold. Then the relative entropy
process (3.20) satisfies, with T > t0, the following trajectorial relations:

lim
s↑T−t0

EP

[
log `

(
t0, X(t0)

) ∣∣ G(T − s)
]
− log `

(
T − s,X(T − s)

)
T − t0 − s

(3.52)

= lim
s↓T−t0

EP

[
log `

(
T − s,X(T − s)

) ∣∣ G(t0)
]
− log `

(
t0, X(t0)

)
s− (T − t0) (3.53)

= 1
2

∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2 = 1
2

∣∣∣∣∇p
(
t0, X(t0)

)
p
(
t0, X(t0)

) + 2∇Ψ
(
X(t0)

)∣∣∣∣2, (3.54)

where the limits (3.52) and (3.53) exist in L1(P).

Remark 3.13. The limiting assertions (3.52) – (3.54) of Proposition 3.12 are the conditional trajectorial
versions of the generalized de Bruijn identity (3.33).

Proof of Proposition 3.12 from Theorem 3.6: Let t0 > 0 be such that the generalized de Bruijn iden-
tity (3.33) from Corollary 3.10 of Theorem 3.6 is valid, and select T > t0. The martingale property
of the process in (3.24) allows us to write the numerator in (3.52) as

EP

[
F (t0)− F (T − s)

∣∣ G(T − s)
]
, 0 6 s 6 T − t0, (3.55)

in the notation of (3.23). Similarly, the numerator in (3.53) equals EP
[
F (T − s) − F (t0) | G(t0)

]
,

T − t0 6 s 6 T . By analogy with the derivation of (3.33) from (3.32), where we calculated real-valued
expectations, we rely on the Lebesgue differentiation theorem to obtain the corresponding results
(3.52) – (3.54) for conditional expectations. Using the left-continuity of the backwards filtration
(G(T −s))06s6T , we can invoke the measure-theoretic result in Proposition D.2 of Appendix D, which
establishes the claims (3.52) – (3.54) pertaining to conditional expectations.

Proposition 3.14 (Trajectorial rate of relative entropy dissipation under perturbations). Under the
Assumptions 1.2, let t0 ∈ R+ \N . Then the relative entropy process (3.20) and its perturbed version
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(3.28) satisfy, with T > t0, the following trajectorial relations:

lim
s↑T−t0

EPβ
[

log `β
(
t0, X(t0)

) ∣∣ G(T − s)
]
− log `β

(
T − s,X(T − s)

)
T − t0 − s

= 1
2

∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2 − div β
(
X(t0)

)
+
〈
β
(
X(t0)

)
, 2∇Ψ

(
X(t0)

)〉
Rn
,

(3.56)

as well as

lim
s↑T−t0

EP

[
log `β

(
t0, X(t0)

) ∣∣ G(T − s)
]
− log `β

(
T − s,X(T − s)

)
T − t0 − s

= 1
2

∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2 −
(

div β
(
X(t0)

)
+
〈
β
(
X(t0)

)
, ∇ log p

(
t0, X(t0)

)〉
Rn

)
,

(3.57)

and
lim

s↑T−t0

log `β
(
T − s,X(T − s)

)
− log `

(
T − s,X(T − s)

)
T − t0 − s

= div β
(
X(t0)

)
+
〈
β
(
X(t0)

)
, ∇ log p

(
t0, X(t0)

)〉
Rn
,

(3.58)

where the limits in (3.56) – (3.58) exist in both L1(P) and L1(Pβ).

Remark 3.15. It is perhaps noteworthy that the three limiting expressions in (3.56), (3.57) and (3.58)
are quite different from each other. The first limiting assertion (3.56) of Proposition 3.14 is the
conditional trajectorial version of the perturbed de Bruijn identity (3.36). We also note that in fact
the third limiting assertion (3.58) is valid for all t0 > 0.

Proof of the assertion (3.56) in Proposition 3.14, from Theorem 3.8: Let t0 ∈ R+ \ N , i.e., so that
the right-sided limiting assertion (3.9) is valid, and select T > t0. In (3.41) from Corollary 3.11 of
Theorem 3.8 we have seen that the limits in (3.9) and (3.36) have the same exceptional sets, hence
also the limiting identity (3.36) holds. Now, for such t0, we show the limiting assertion (3.56) in the
same way as the assertion (3.52) in the proof of Proposition 3.12 above. Indeed, this time we invoke
the Pβ-martingale property of the process in (3.30), and write the numerator in the first line of (3.56)
as EPβ

[
F β(t0)− F β(T − s)

∣∣ G(T − s)
]
, 0 6 s 6 T − t0, in the notation of (3.29).

Applying Proposition D.2 of Appendix D in this situation proves the limiting identity (3.56) in
L1(Pβ). As we shall see in Lemma 4.13 of Subsection 4.5 below, the probability measures P and Pβ

are equivalent, and the mutual Radon-Nikodým derivatives dPβ
dP and dP

dPβ are bounded on the σ-algebra
F(T ) = G(0) (recall, in this vein, the claims of (3.38)). Hence, convergence in L1(P) is equivalent to
convergence in L1(Pβ). This establishes the L1(P)-convergence of (3.56), which completes the proof
of the limiting assertion (3.56).
The proofs of the limiting assertions (3.57) and (3.58) are postponed to Subsection 4.6.

3.3. Ramifications

Theorem 3.4 and, in particular, its equation (3.46) above, show — at least on a formal level — that
the functional

P2(Rn) 3 P 7−→ H(P |Q)−H(P (0) |Q) (3.59)
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can be approximated linearly in the neighborhood of P (0) by the functional

P2(Rn) 3 P 7−→ 〈a, c〉L2(P), where c = −a
2 − b (3.60)

as in (3.46) with t0 = 0 and a = ∇ log `(0, X(0)), b = β(X(0)). As it turns out, formula (3.60) is
closely related to the sharpened form of the HWI inequality due to Otto and Villani [OV00] (see also
Cordero-Erausquin [CE02] and [Vil09, p. 650]); we explain presently how.
Consider the starting time t0 = 0 and the curve (P β(t))t>0 as in Theorems 3.4 and 3.8, for a fixed

perturbation β as above, and suppose that this t0 is not an exceptional point in the preceding limiting
assertions. Let us fix P1 ∈P2(Rn) and study the “tangent” (Pt)06t61 to the curve (P β(t))t>0 at the
point P β(0) = P (0) = P0 in the quadratic Wasserstein space P2(Rn), and analyze the behavior of
the relative entropy functional (3.4) along the curve (Pt)06t61. Here (Pt)06t61 is understood to be
a “straight line” in P2(Rn); i.e., using the terminology of McCann [McC97], as the “displacement
interpolation” or “constant speed geodesic” between the elements P0 and P1 in P2(Rn).
Once we have identified this tangent (Pt)06t61, it is geometrically obvious — at least on an intuitive

level — that the slope of the relative entropy functional (3.4) along the straight line (Pt)06t61 should
be equal to the slope along (P β(t))t>0 at the touching point P β(0) = P0. This slope is given by
(3.60), and we shall verify in the following Lemma 3.19 and in Proposition 3.21 that — under suitable
regularity assumptions — it coincides with the slope along (Pt)06t61 as identified by Otto and Villani
in [OV00] and Cordero-Erausquin in [CE02].
To work out the connection between (3.60) and [OV00], [CE02] we shall turn things upside down;

i.e., we first define the tangent (Pt)06t61, and then find the corresponding perturbation β so that the
curve (P β(t))t>0 indeed has (Pt)06t61 as tangent at the point P β(0) = P0. In this manner, we shall
treat β more as an element of “control”, than as a perturbation.
Fix an element P ∈ P2(Rn), and let γ : Rn → Rn be such that T (x) := x + γ(x) transports

P0 = P (0) to P1 = P optimally with respect to the quadratic Wasserstein distance, i.e., T#(P0) = P1
and ‖γ‖L2(P0) = W2(P0, P1); see also (3.62) and (3.63) below. Here and throughout, T#(P0) denotes
the pushforward measure of P0 by the map T and is given by (T#(P0))(B) = P0(T−1(B)) for every
Borel set B ⊆ Rn. Then (3.46), (3.60) suggest that the displacement interpolation (Pt)06t61 between
the two probability measures P0 = P (0) and P1 = P , to be defined in (3.62) below, is tangent to the
curve (P β(t))t>0 as in Theorems 3.4 and 3.8, if γ and β are related via

γ(x) = −1
2 ∇ log `(0, x)− β(x), x ∈ Rn; (3.61)

whereas the random variable c of (3.60) becomes c = γ(X(0)).
We formalize these intuitive geometric insights in the subsequent Lemma 3.19, which provides the

analogue of (3.46) for the displacement interpolation flow (Pt)06t61 of (3.62). To this end, we impose
temporarily the following strong regularity conditions. As it will turn out in the proof of Proposition
3.21, these will not restrict, eventually, the generality of the argument.
Assumptions 3.16 (Regularity assumptions of Lemma 3.19). In addition to the conditions (i) – (vi) of
Assumptions 1.2, we also impose that:

(vii) P0 and P1 are probability measures in P2(Rn) with smooth densities, which are compactly
supported and strictly positive on the interior of their respective supports. Hence there is a
map γ : Rn → Rn of the form γ(x) = ∇(G(x)− |x|2/2) for some convex function G : Rn → R,
uniquely defined on and supported by the support of P0, and smooth in the interior of this set,
such that γ induces the optimal quadratic Wasserstein transport from P0 to P1 via

T γt (x) := x+ t ·γ(x) = (1− t) ·x+ t ·∇G(x) and Pt := (T γt )#(P0) = P0 ◦ (T γt )−1 (3.62)
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for 0 6 t 6 1, and T γ1 = ∇G; to wit, the curve (Pt)06t61 is the displacement interpolation
(constant speed geodesic) between P0 and P1, and we have along it the linear growth of the
quadratic Wasserstein distance

W2(P0, Pt) = t

√∫
Rn
|x−∇G(x)|2 dP0(x) = t ‖γ‖L2(P0), 0 6 t 6 1. (3.63)

The (P0-almost everywhere) unique gradient T := ∇G of a convex function pushing P0 forward
to P1, i.e., T#(P0) = P1, and having the optimality property (3.63) with respect to the quadratic
Wasserstein distance, is called the Brenier map; see [Vil03, Theorem 2.12].

Remark 3.17. For the existence and uniqueness of the optimal transport map γ : Rn → Rn we refer
to [Vil03, Theorem 2.12], and for its smoothness to [Vil03, Theorem 4.14] as well as [Vil03, Remarks
4.15]. These results are known collectively under the rubric of Brenier’s theorem [Bre91].
Remark 3.18. We remark at this point, that we have chosen the subscript notation for Pt in order
to avoid confusion with the probability measure P (t) from our Section 2 here. While P0 = P (0), the
flow (Pt)06t61 from P0 to P1 will have otherwise very little to do with the flow (P (t))t>0 from P (0)
to Q appearing in Theorems 3.1 and 3.4 (except for the tangential relation at P0 = P (0)). Similarly,
the likelihood ratio function

`t(x) = pt(x)
q(x) , (t, x) ∈ [0, 1]×Rn, (3.64)

is different from `(t, · ), as now pt( · ) is the density function of the probability measure Pt.
Let us now return to our general theme, where we consider the potential Ψ and the (possibly only

σ-finite) measure Q on the Borel sets of Rn with density q(x) = e−2Ψ(x) for x ∈ Rn.

Lemma 3.19. Under the Assumptions 3.16, let X0 be a random variable with probability distribution
P0 = P (0), defined on some probability space (S,S, ν). Then we have

lim
t↓0

H(Pt |Q)−H(P0 |Q)
t

=
〈
∇ log `0(X0) , γ(X0)

〉
L2(ν). (3.65)

Remark 3.20. The relative entropy H(P |Q) is well-defined for every P ∈P2(Rn), and takes values in
(−∞,∞]; see Appendix C. As the displacement interpolation (Pt)06t61 is the constant-speed geodesic
joining the probability measures P0 and P1 in P2(Rn), we see that the relative entropy H(Pt |Q) is
well-defined for every t ∈ [0, 1].
We relegate the proof of Lemma 3.19, which follows a similar (but considerably simpler) line of

reasoning as the proof of Theorem 3.4, to Appendix F. Combining Lemma 3.19 with well-known argu-
ments, in particular, with a fundamental result on displacement convexity due to McCann [McC97],
we derive now the HWI inequality of Otto and Villani [OV00] and Cordero-Erausquin [CE02]; see also
[Vil09, p. 650]. This result relates the fundamental quantities of relative entropy (H), Wasserstein
distance (W) and relative Fisher information (I).

Proposition 3.21 (HWI inequality [OV00]). Under the Assumptions 1.2, we set P0 = P (0), fix
P1 ∈P2(Rn) with finite relative entropy H(P1 |Q), and let γ be as in (3.62). We suppose in addition
that the potential Ψ: Rn → [0,∞) satisfies a curvature lower bound

Hess(Ψ) > κ In, (3.66)

for some κ ∈ R. Then we have

H(P0 |Q)−H(P1 |Q) 6 −
〈
∇ log `0(X0) , γ(X0)

〉
L2(ν) −

κ
2 W

2
2 (P0, P1), (3.67)

where the random variable X0, the likelihood ratio function `0, and the probability measure ν, are as
in Lemma 3.19.
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Remark 3.22. Let us stress that Proposition 3.21 does not require Q to be a probability measure in
the formulation of the HWI inequality (3.67).
On the strength of the Cauchy-Schwarz inequality, we have

−
〈
∇ log `0(X0) , γ(X0)

〉
L2(ν) 6 ‖∇ log `0(X0)‖L2(ν) ‖γ(X0)‖L2(ν), (3.68)

with equality if and only if the functions ∇ log `0( · ) and γ( · ) are negatively collinear. Now the
relative Fisher information of P0 with respect to Q equals

I(P0 |Q) = Eν

[
|∇ log `0(X0)|2

]
= ‖∇ log `0(X0)‖2L2(ν), (3.69)

and by Brenier’s theorem [Vil03, Theorem 2.12] we deduce

‖γ(X0)‖L2(ν) = W2(P0, P1) (3.70)

as in (3.63), along with the inequality

−
〈
∇ log `0(X0) , γ(X0)

〉
L2(ν) 6

√
I(P0 |Q) W2(P0, P1). (3.71)

Inserting (3.71) into (3.67) we obtain the usual form of the HWI inequality

H(P0 |Q)−H(P1 |Q) 6W2(P0, P1)
√
I(P0 |Q)− κ

2 W
2
2 (P0, P1). (3.72)

When there is a non-trivial angle between ∇ log `0(X0) and γ(X0) in L2(ν), the inequality (3.67)
gives a sharper bound than (3.72). We refer to the original paper [OV00], as well as to [CE02], [Vil03,
Chapter 5], [Vil09, p. 650] and the recent paper [GLRT20], for a detailed discussion of the HWI
inequality. For a good survey on transport inequalities, see [GL10].
Remark 3.23. Let us suppose now that the strong non-degeneracy condition (3.66) holds with κ > 0,
and that Q is a probability measure in P2(Rn). Then the inequality (3.72) contains as special cases
the Talagrand [Tal96] and logarithmic Sobolev [Fed69, Gro75] inequalities, namely

W 2
2 (P,Q) 6 2

κ H(P |Q), H(P |Q) 6 1
2κ I(P |Q), (3.73)

respectively; just by reading (3.72) first with (P0, P1) = (Q, P ), then with (P0, P1) = (P,Q) and
applying Young’s inequality xy 6 x2/2 + y2/2, which is valid for all x, y ∈ R. On the other hand,
and now in the context of Section 2, the second inequality in (3.73) leads, in conjunction with the
generalized de Bruijn identity (3.33) and (2.5), to

d
dt H

(
P (t) |Q

)
6 −κH

(
P (t) |Q

)
, (3.74)

and thence to the Bakry-Émery [BÉ85] exponential temporal dissipation of the relative entropy

H
(
P (t) |Q

)
6 H

(
P (t0) |Q

)
e−κ(t−t0), t > t0 (3.75)

as well as of the Wasserstein distance W2(P (t),Q) on account of (3.73). For an exposition of the
Bakry-Émery theory, which derives also the exponential temporal dissipation of the relative Fisher
information in the context of Section 2, we refer to [BGL14] and [Gen14].
The inequality (3.72) is yet another manifestation of the interplay between displacement in the

ambient space of probability measures (the quantity W2(P0, P1)) and fluctuations of the relative
entropy (the quantity H(P0 |Q)−H(P1 |Q)) as governed by the square root of the Fisher information√
I(P0 |Q), very much in the spirit of (3.7).

20



Proof of Proposition 3.21. As elaborated in [Vil03, Section 9.4] we may assume without loss of gener-
ality that P0 and P1 satisfy the strong regularity Assumptions 3.16. For the existence and smoothness
of the optimal transport map γ we refer to Remark 3.17.
We consider now the relative entropy with respect to Q along the constant-speed geodesic (Pt)06t61,

namely, the function f(t) := H(Pt |Q), for 0 6 t 6 1. We show that the displacement convexity results
of McCann [McC97] imply

f ′′(t) > κW 2
2 (P0, P1), 0 6 t 6 1. (3.76)

Indeed, under the condition (3.66), the potential Ψ is κ-uniformly convex. Consequently, by items
(i) and (ii) of [Vil03, Theorem 5.15], the internal and potential energies

g(t) :=
∫
Rn
pt(x) log pt(x) dx, h(t) := 2

∫
Rn

Ψ(x) pt(x) dx, 0 6 t 6 1, (3.77)

are displacement convex and κ-uniformly displacement convex, respectively; i.e.,

g′′(t) > 0, h′′(t) > κW 2
2 (P0, P1), 0 6 t 6 1. (3.78)

By analogy with Lemma 2.3 we have f = g + h, and conclude that the relative entropy function f is
κ-uniformly displacement convex, i.e., its second derivative satisfies (3.76).

We appeal now to Lemma 3.19, according to which we have

f ′(0+) = lim
t↓0

f(t)− f(0)
t

=
〈
∇ log `0(X0) , γ(X0)

〉
L2(ν). (3.79)

In conjunction with (3.76) and (3.79), the Taylor formula f(1) = f(0) + f ′(0+) +
∫ 1

0 (1 − t)f ′′(t) dt
now yields (3.67).

4. Details and proofs
In this section we complete the proofs of Corollary 3.11 and Proposition 3.14, and provide the proofs
of our main results, Theorems 3.6 and 3.8. In fact, all we have to do in order to prove these latter
theorems is to apply Itô’s formula so as to calculate the dynamics, i.e., the stochastic differentials,
of the “pure” and “perturbed” relative entropy processes of (3.20) and (3.28) under the measures P
and Pβ, respectively. We may (and shall) do this in both the forward and, most importantly, the
backward, directions of time.

However, such a brute-force approach does not provide any hint as to why we obtain the remarkable
form of the drift term of the time-reversed relative entropy process

log `
(
T − s,X(T − s)

)
= log

(
p
(
T − s,X(T − s)

)
q
(
X(T − s)

) )
, 0 6 s 6 T, (4.1)

as stated in Theorem 3.6, namely

d log `
(
T − s,X(T − s)

)
=
〈
∇`
(
T − s,X(T − s)

)
`
(
T − s,X(T − s)

) , dWP(T − s)
〉
Rn

+ 1
2

∣∣∇`(T − s,X(T − s)
)∣∣2

`
(
T − s,X(T − s)

)2 ds,

(4.2)
for 0 6 s 6 T , with respect to the backwards filtration (G(T − s))06s6T . Therefore, in order to
motivate and illustrate the derivation of the dynamics (4.2), we first impose the additional assumption
Q(Rn) <∞ (which precludes the case Ψ ≡ 0), so as to conform to the setting of [FJ16]. This is done
in Subsection 4.2, which serves purely as motivation; in the remainder of this paper we do not rely
on the assumption Q(Rn) <∞.
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4.1. Some preliminaries

Our first task is to calculate the dynamics of the time-reversed relative entropy process (4.1) under
the probability measure P. In order to do this, we start by calculating the stochastic differential of
the time-reversed canonical coordinate process (X(T − s))06s6T under P, which is a well-known and
classical theme; see e.g. [Föl85, Föl86], [HP86], [Mey94], [Nel01], and [Par86]. For the convenience
of the reader we present the theory of time reversal for diffusion processes in Appendix G. The
idea of time reversal goes back to the ideas of Boltzmann [Bol96, Bol98a, Bol98b] and Schrödinger
[Sch31, Sch32], as well as Kolmogorov [Kol37]. In fact, as we shall recall in Appendix A, the relation
between time reversal of a Brownian motion and the quadratic Wasserstein distance may in nuce be
traced back to an insight of Bachelier in his thesis [Bac00, Bac06] from 1900; at least, when admitting
a good portion of wisdom of hindsight.
Recall that the probability measure P was defined on the path space Ω = C(R+;Rn) so that the

canonical coordinate process (X(t, ω))t>0 = (ω(t))t>0 satisfies the stochastic differential equation
(2.1) with initial probability distribution P (0) for X(0) under P. In other words, the process

W (t) = X(t)−X(0) +
∫ t

0
∇Ψ

(
X(u)

)
du, t > 0 (4.3)

defines a Brownian motion of the forward filtration (F(t))t>0 under the probability measure P, where
the integral in (4.3) is to be understood in a pathwise Riemann-Stieltjes sense. Passing to the reverse
direction of time, the following classical result is well known to hold under the Assumptions 1.2.

Proposition 4.1. Under the Assumptions 1.2, we let T > 0. The process

W
P(T − s) := W (T − s)−W (T )−

∫ s

0
∇ log p

(
T − u,X(T − u)

)
du (4.4)

for 0 6 s 6 T , is a Brownian motion of the backwards filtration (G(T −s))06s6T under the probability
measure P. Moreover, the time-reversed canonical coordinate process (X(T − s))06s6T satisfies the
stochastic differential equation

dX(T − s) =
(
∇ log p

(
T − s,X(T − s)

)
+∇Ψ

(
X(T − s)

))
ds+ dWP(T − s) (4.5)

=
(
∇ log `

(
T − s,X(T − s)

)
−∇Ψ

(
X(T − s)

))
ds+ dWP(T − s), (4.6)

for 0 6 s 6 T , with respect to the backwards filtration (G(T − s))06s6T .

We provide proofs and references for this result in Theorems G.2 and G.5 of Appendix G.
Before proving Theorem 3.6 in Subsection 4.3 — as already announced — we digress now to present

the following didactic, illuminating and important special case.

4.2. The case Q(Rn) <∞
We shall impose, for the purposes of the present subsection only, the additional assumption

Q(Rn) =
∫
Rn

e−2Ψ(x) dx <∞. (4.7)

Under this assumption, the measure Q on the Borel sets of Rn, introduced in Section 2, is finite and
can thus be re-normalized, so as to become a probability measure. In this manner, it induces a prob-
ability measure Q on the path space Ω = C(R+;Rn), under which the canonical coordinate process
(X(t, ω))t>0 = (ω(t))t>0 satisfies the stochastic equation (2.1) with initial probability distribution Q
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for X(0). And because this distribution is invariant, it is also the distribution of X(t) under Q for
every t > 0.

For the present authors, the eye-opener leading to (4.2) was the subsequent remarkable insight due
to Fontbona and Jourdain [FJ16]. This provided us with much of the original motivation to start this
line of research. The result right below holds in much greater generality (essentially one only needs
the Markovian structure of the process (X(t))t>0) but we only state it in the present setting given by
(2.1) under the Assumptions 1.2 and Q(Rn) = 1 in (4.7). For another application of time reversal in
a similar context, see [Léo17].

Theorem 4.2 (Fontbona-Jourdain theorem [FJ16]). Under the Assumptions 1.2 and Q(Rn) = 1, we
fix T ∈ (0,∞). The time-reversed likelihood ratio process of (4.1) is a martingale of the backwards
filtration (G(T − s))06s6T under the probability measure Q.

Corollary 4.3. Under the Assumptions 1.2 and Q(Rn) = 1, we fix T ∈ (0,∞). The time-reversed
process

`
(
T − s,X(T − s)

)
· log `

(
T − s,X(T − s)

)
, 0 6 s 6 T (4.8)

is a submartingale of the backwards filtration (G(T − s))06s6T under the probability measure Q. In
particular, we have

H
(
P (t) |Q

)
6 H

(
P (0) |Q

)
, 0 6 t 6 T. (4.9)

Proof. This is an immediate consequence of Theorem 4.2, Jensen’s inequality for conditional expec-
tations, and the convexity of the function f(x) = x log x, x > 0.

For the convenience of the reader we recall in Appendix E the surprisingly straightforward proof
of Theorem 4.2. Since this result states that the time-reversed likelihood ratio process (4.1) is a Q-
martingale with respect to the backwards filtration (G(T − s))06s6T , we will first state the analogue
of Proposition 4.1 in terms of the probability measure Q on the path space Ω = C(R+;Rn), which is
induced by the invariant probability distribution Q on Rn.

Proposition 4.4. Under the Assumptions 1.2 and Q(Rn) = 1, we fix T ∈ (0,∞). The process

W
Q(T − s) := W (T − s)−W (T ) + 2

∫ s

0
∇Ψ

(
X(T − u)

)
du (4.10)

for 0 6 s 6 T , is a Brownian motion of the backwards filtration (G(T −s))06s6T under the probability
measure Q. Moreover, the time-reversed canonical coordinate process (X(T − s))06s6T satisfies the
stochastic differential equation

dX(T − s) = −∇Ψ
(
X(T − s)

)
ds+ dWQ(T − s), (4.11)

for 0 6 s 6 T , with respect to the backwards filtration (G(T − s))06s6T .

Again, for the proof of this result, we refer to Theorems G.2 and G.5 of Appendix G.
In the following lemma we determine the drift term that allows one to pass from the Q-Brownian

motion
(
W
Q(T − s)

)
06s6T to the P-Brownian motion

(
W
P(T − s)

)
06s6T , and vice versa.

Lemma 4.5. Under the Assumptions 1.2 and Q(Rn) = 1, we fix T ∈ (0,∞). For 0 6 s 6 T , we
have

dWQ(T − s) = ∇ log `
(
T − s,X(T − s)

)
ds+ dWP(T − s). (4.12)

Proof. One just has to compare the equations (4.6) and (4.11).

The next corollary is a direct consequence of Theorem 4.2, Proposition 4.4 and Itô’s formula.
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Corollary 4.6. Under the Assumptions 1.2 and Q(Rn) = 1, we fix T ∈ (0,∞). The time-reversed
likelihood ratio process (4.1) and its logarithm satisfy the stochastic differential equations

d`
(
T − s,X(T − s)

)
=
〈
∇`
(
T − s,X(T − s)

)
, dWQ(T − s)

〉
Rn

(4.13)

and

d log `
(
T − s,X(T − s)

)
=
〈
∇`
(
T − s,X(T − s)

)
`
(
T − s,X(T − s)

) , dWQ(T − s)
〉
Rn

− 1
2

∣∣∇`(T − s,X(T − s)
)∣∣2

`
(
T − s,X(T − s)

)2 ds,

(4.14)
respectively, for 0 6 s 6 T , with respect to the backwards filtration (G(T − s))06s6T .

Proof. To prove (4.13), the decisive insight is provided by Theorem 4.2 due to Fontbona and Jourdain
[FJ16]. This implies that the drift term in (4.13) must vanish, so that it suffices to calculate the
diffusion term in front of dWQ(T − s) in (4.13); using (4.11), this is a straightforward task.
We note that the vanishing of the drift term in (4.13) can also be obtained from applying Itô’s

formula to the process (4.1), using (4.11) as well as the backwards Kolmogorov equation (4.17) for the
likelihood ratio function `(t, x) and observing that all these terms cancel out. But such a procedure
does not provide a hint as to why this miracle happens.
Having said this, we apply Itô’s formula to the process (4.1) and use Theorem 4.2 to obtain (4.13).

Assertion (4.14) follows once again by applying Itô’s formula to the logarithm of the process (4.1),
and using the dynamics (4.13).

We have now all the ingredients in order to compute, under the additional assumption Q(Rn) = 1,
the dynamics of the time-reversed relative entropy process (4.1) under the probability measure P.
Indeed, substituting (4.12) into the stochastic equation (4.14), we see that the process (4.1) satisfies
the crucial stochastic differential equation (4.2), for 0 6 s 6 T , with respect to the backwards
filtration (G(T − s))06s6T .

4.3. The proof of Theorem 3.6

We drop now the assumption Q(Rn) <∞, and write the Fokker-Planck equation (3.1) as

∂tp(t, x) = 1
2∆p(t, x) +

〈
∇p(t, x) ,∇Ψ(x)

〉
Rn

+ p(t, x) ∆Ψ(x), t > 0. (4.15)

The probability density function p(t, x) can be represented in the form

p(t, x) = `(t, x) q(x) = `(t, x) e−2Ψ(x), t > 0, (4.16)

so we find that the likelihood ratio function `(t, x) solves the backwards Kolmogorov equation

∂t`(t, x) = 1
2∆`(t, x)−

〈
∇`(t, x) ,∇Ψ(x)

〉
Rn
, t > 0, (4.17)

a feature consonant with the fact that the dynamics of the likelihood ratio process are most trans-
parent under time reversal. This equation will allow us to develop an alternative way of deriving
the dynamics (4.2) and proving Theorem 3.6, which does not rely on assumption (4.7) and uses
exclusively the probability measure P, as follows.

Proof of Theorem 3.6. We have to show that the stochastic process (M(T − s))06s6T in (3.24)
is a P-martingale of the backwards filtration (G(T − s))06s6T , is bounded in L2(P), and admits the
integral representation (3.25).
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Step 1. Applying Itô’s formula to the time-reversed likelihood ratio process (4.1), and using (4.6) as
well as the backwards Kolmogorov equation (4.17) for the likelihood ratio function `(t, x), we obtain
the stochastic differential equation

d`
(
T − s,X(T − s)

)
`
(
T − s,X(T − s)

) =
〈
∇`
(
T − s,X(T − s)

)
`
(
T − s,X(T − s)

) , dWP(T −s)
〉
Rn

+
∣∣∇`(T − s,X(T − s)

)∣∣2
`
(
T − s,X(T − s)

)2 ds (4.18)

as well as its logarithmic version

d log `
(
T −s,X(T −s)

)
=
〈
∇ log `

(
T −s,X(T −s)

)
, dWP(T −s)

〉
Rn

+ 1
2
∣∣∇ log `

(
T −s,X(T −s)

)∣∣2ds,
(4.19)

for 0 6 s 6 T , with respect to the backwards filtration (G(T − s))06s6T . This equation right above is
nothing other than the desired stochastic differential equation (4.2) from the beginning of Section 4.

Step 2. We show first, that the process (M(T − s))06s6T of (3.24), with integral representation
(3.25), is a continuous local P-martingale of the backwards filtration (G(T − s))06s6T .
By condition (iv) of Assumptions 1.2 the function (0,∞) 3 t 7→ ∇ log `(t, x) is continuous for every

x ∈ Rn. Together with the continuity of the paths of the canonical coordinate process (X(t))t>0, this
implies that ∫ T−ε

0

∣∣∇`(T − u,X(T − u)
)∣∣2

`
(
T − u,X(T − u)

)2 du <∞, P-almost surely, (4.20)

for every 0 < ε 6 T . On account of (4.20), the sequence of stopping times (with respect to the
backwards filtration)

τn := inf
{
t > 0:

∫ t

0

∣∣∇`(T − u,X(T − u)
)∣∣2

`
(
T − u,X(T − u)

)2 du > n

}
∧ T, n ∈ N0 (4.21)

is non-decreasing and converges P-almost surely to T . Hence, according to (4.2) and the definition in
(3.24), the stopped process (M τn(T−s))06s6T is a uniformly integrable P-martingale of the backwards
filtration, for every n ∈ N0.

Step 3. To show that, in fact, the process (M(T − s))06s6T is a true P-martingale, we have to rely
on the finite free energy condition (1.10) which, in the light of Lemma 2.3, asserts that the relative
entropy H(P (0) |Q) is finite.

Taking expectations with respect to the probability measure P in (4.2) at time s = τn, and noting
from Step 2 that the stopped process (M τn(T − s))06s6T is a true P-martingale with respect to the
backwards filtration (G(T − s))06s6T , we get

EP

[ ∫ τn

0

1
2

∣∣∇`(T − u,X(T − u)
)∣∣2

`
(
T − u,X(T − u)

)2 du
]

= H
(
P (T − τn) |Q

)
−H

(
P (T ) |Q

)
(4.22)

6 H
(
P (0) |Q

)
−H

(
P (T ) |Q

)
, (4.23)

for every n ∈ N0. The inequality in (4.23) is justified by the decrease of the relative entropy function
t 7→ H(P (t) |Q), which we have from (4.9). However, in Corollary 4.3 we had assumed that Q is
a probability measure, which is in general not the case under the Assumptions 1.2. Nevertheless,
the σ-finite measure Q and the stochastic differential equation (2.1) induce a σ-finite measure Q on
the path space Ω = C(R+;Rn), which is invariant in the sense that at all times t > 0 its marginal
distributions are equal to Q. For this path measure Q, conditional expectations with respect to
the canonical forward and backwards filtrations are well-defined, see [Léo14]. As a consequence, the
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martingale assertion of Theorem 4.2 makes sense also in this σ-finite setting; for the details we refer
to [Tsc19, Chapter 1]. Since Jensen’s inequality is also valid for conditional expectations with respect
to the σ-finite path measure Q with marginals Q, Corollary 4.3 remains true under the Assumptions
1.2 without the additional requirement Q(Rn) = 1.
Now, as we have shown the inequality (4.23), we pass to the limit as n → ∞. Since the non-

decreasing sequence of stopping times (τn)n>0 from (4.21) converges P-almost surely to T , we deduce
from (4.23) and the monotone convergence theorem that

EP

[ ∫ T

0

1
2

∣∣∇`(T − u,X(T − u)
)∣∣2

`
(
T − u,X(T − u)

)2 du
]
6 H

(
P (0) |Q

)
−H

(
P (T ) |Q

)
<∞, (4.24)

because the initial relative entropy H(P (0) |Q) is finite by assumption and H(P (T ) |Q) cannot take
the value −∞; see Lemma 2.3 and Appendix C. From (4.24) we finally deduce that the stochastic
integral in (4.2) defines an L2(P)-bounded martingale for 0 6 s 6 T .

Summing up, we conclude that the process (M(T − s))06s6T is a L2(P)-bounded martingale of the
backwards filtration, satisfying (3.25). This completes the proof of Theorem 3.6.

4.4. The proof of Theorem 3.8

The first step in the proof of Theorem 3.8 is to compute the stochastic differentials of the time-reversed
perturbed likelihood ratio process

`β
(
T − s,X(T − s)

)
=
pβ
(
T − s,X(T − s)

)
q
(
X(T − s)

) , 0 6 s 6 T − t0, (4.25)

and its logarithm.
By analogy with Proposition 4.1, the following result is well known to hold under suitable regularity

conditions, such as Assumptions 1.2. Recall that (W β(t))t>t0 denotes the Pβ-Brownian motion (in
the forward direction of time) defined in (3.12).
Proposition 4.7. Under the Assumptions 1.2, we let t0 > 0 and T > t0. The process

W
Pβ (T − s) := W β(T − s)−W β(T )−

∫ s

0
∇ log pβ

(
T − u,X(T − u)

)
du (4.26)

for 0 6 s 6 T − t0, is a Brownian motion of the backwards filtration (G(T − s))06s6T−t0 under
the probability measure Pβ. Furthermore, the semimartingale decomposition of the time-reversed
canonical coordinate process (X(T − s))06s6T−t0 is given by

dX(T − s) =
(
∇ log pβ

(
T − s,X(T − s)

)
+
(
∇Ψ + β

)(
X(T − s)

))
ds+ dWPβ (T − s) (4.27)

=
(
∇ log `β

(
T − s,X(T − s)

)
−
(
∇Ψ− β

)(
X(T − s)

))
ds+ dWPβ (T − s), (4.28)

for 0 6 s 6 T − t0, with respect to the backwards filtration (G(T − s))06s6T−t0.

We note next, how the Brownian motions
(
W
Pβ (T − s)

)
06s6T−t0 and

(
W
P(T − s)

)
06s6T−t0 , in

reverse-time, are related.
Lemma 4.8. Under the Assumptions 1.2, we let t0 > 0 and T > t0. For 0 6 s 6 T − t0, we have

d
(
W
P −WPβ)(T − s) =

(
β
(
X(T − s)

)
+∇ log

(
pβ
(
T − s,X(T − s)

)
p
(
T − s,X(T − s)

) ))ds (4.29)

=
(
β
(
X(T − s)

)
+∇ log

(
`β
(
T − s,X(T − s)

)
`
(
T − s,X(T − s)

) ))ds. (4.30)
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Proof. It suffices to compare the equation (4.5) with (4.27).

Remark 4.9. Later we shall apply Lemma 4.8 to the situation when s is close to T − t0. In this case
the logarithmic gradients in (4.29) and (4.30) will become small in view of pβ(t0, · ) = p(t0, · ), so
that these logarithmic gradients will disappear in the limit s ↑ T − t0; see also Lemma 4.14 below.
By contrast, the term β(X(T − s)) will not disappear in the limit s ↑ T − t0. Rather, it will tend
to the random variable β(X(t0)), which plays an important role in distinguishing between (3.56) and
(3.57) in Proposition 3.14.

Next, by analogy with Subsection 4.3, for t > t0, we write the perturbed Fokker-Planck equation
(3.10) as

∂tp
β(t, x) = 1

2∆pβ(t, x) +
〈
∇pβ(t, x) ,∇Ψ(x) + β(x)

〉
Rn

+ pβ(t, x)
(
∆Ψ(x) + div β(x)

)
. (4.31)

Using the relation
pβ(t, x) = `β(t, x) q(x) = `β(t, x) e−2Ψ(x), t > t0, (4.32)

determined computation shows that the perturbed likelihood ratio function `β(t, x) satisfies

∂t`
β(t, x) = 1

2∆`β(t, x) +
〈
∇`β(t, x) , β(x)−∇Ψ(x)

〉
Rn

+ `β(t, x)
(

div β(x)−
〈
β(x) , 2∇Ψ(x)

〉
Rn

)
, t > t0;

(4.33)

this is the analogue of the backwards Kolmogorov equation (4.17) in this “perturbed” context, and
reduces to (4.17) when β ≡ 0.

With these preparations, we obtain the following stochastic differentials for our objects of interest.

Lemma 4.10. Under the Assumptions 1.2, we let t0 > 0 and T > t0. The time-reversed perturbed
likelihood ratio process (4.25) and its logarithm satisfy the stochastic differential equations

d`β
(
T − s,X(T − s)

)
`β
(
T − s,X(T − s)

) =
(〈
β , 2∇Ψ

〉
Rn
− div β

)(
X(T − s)

)
ds

+
∣∣∇`β(T − s,X(T − s)

)∣∣2
`β
(
T − s,X(T − s)

)2 ds +
〈
∇`β

(
T − s,X(T − s)

)
`β
(
T − s,X(T − s)

) , dWPβ (T − s)
〉
Rn

(4.34)

and

d log `β
(
T − s,X(T − s)

)
=
(〈
β , 2∇Ψ

〉
Rn
− div β

)(
X(T − s)

)
ds

+ 1
2

∣∣∇`β(T − s,X(T − s)
)∣∣2

`β
(
T − s,X(T − s)

)2 ds +
〈
∇`β

(
T − s,X(T − s)

)
`β
(
T − s,X(T − s)

) , dWPβ (T − s)
〉
Rn

,

(4.35)

respectively, for 0 6 s 6 T − t0, with respect to the backwards filtration (G(T − s))06s6T−t0.

Proof. The equations (4.34), (4.35) follow from Itô’s formula together with (4.28), (4.33).

We have assembled now all the ingredients needed for the proof of Theorem 3.8.

Proof of Theorem 3.8. Formally, the stochastic differential in (4.35) of the time-reversed per-
turbed likelihood ratio process (4.25) amounts to the conclusions (3.29) – (3.31) of Theorem 3.8.
But we still have to substantiate the claim, that the stochastic process (Mβ(T − s))06s6T−t0 de-
fined in (3.30) with representation (3.31), indeed yields a Pβ-martingale of the backwards filtration
(G(T − s))06s6T−t0 , which is bounded in L2(Pβ).
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Step 1. By analogy with Step 2 in the proof of Theorem 3.6, we show first, that the stochastic process
(Mβ(T−s))06s6T−t0 of (3.30), with integral representation (3.31), is a continuous local Pβ-martingale
of the backwards filtration (G(T − s))06s6T−t0 .
By condition (v) of Assumptions 1.2 the function (t0,∞) 3 t 7→ ∇ log `β(t, x) is continuous for every

x ∈ Rn. Together with the continuity of the paths of the canonical coordinate process (X(t))t>0, this
implies that ∫ T−t0−ε

0

∣∣∇`β(T − u,X(T − u)
)∣∣2

`β
(
T − u,X(T − u)

)2 du <∞, Pβ-almost surely, (4.36)

for every 0 < ε 6 T − t0. On account of (4.36), the sequence of stopping times (with respect to the
backwards filtration)

τβn := inf
{
t > 0:

∫ t

0

∣∣∇`β(T − u,X(T − u)
)∣∣2

`β
(
T − u,X(T − u)

)2 du > n

}
∧ (T − t0), n ∈ N0 (4.37)

is non-decreasing and converges Pβ-almost surely to T − t0. Hence, according to (4.35) and the
definition in (3.30), the stopped process

(
(Mβ)τ

β
n (T − s)

)
06s6T−t0 is a uniformly integrable Pβ-

martingale of the backwards filtration, for every n ∈ N0.

Step 2. We show that, in fact, the process (Mβ(T − s))06s6T−t0 is a true Pβ-martingale.

Taking expectations with respect to the probability measure Pβ in (4.35) at time s = τβn , and using
that by Step 1 the stopped process

(
(Mβ)τ

β
n (T − s)

)
06s6T−t0 is a true Pβ-martingale with respect to

the backwards filtration (G(T − s))06s6T−t0 , we obtain

H
(
P β(T − τβn ) |Q

)
−H

(
P β(T ) |Q

)
= EPβ

[ ∫ τβn

0

1
2

∣∣∇`β(T − u,X(T − u)
)∣∣2

`β
(
T − u,X(T − u)

)2 du
]

(4.38)

+ EPβ

[ ∫ τβn

0

(〈
β , 2∇Ψ

〉
Rn
− div β

)(
X(T − u)

)
du
]
, (4.39)

for every n ∈ N0. According to condition (v) of Assumptions 1.2, the perturbation β : Rn → Rn is
the gradient of a potential B : Rn → R of class C∞c (Rn;R). Therefore, for every n ∈ N0, the absolute
value of the expectation in (4.39) can be bounded by

C1 := EPβ

[ ∫ T−t0

0

∣∣∣〈β , 2∇Ψ
〉
Rn
− div β

∣∣∣(X(T − u)
)
du
]
<∞. (4.40)

We denote by Qβ the σ-finite measure on the Borel sets of Rn, whose density with respect to Lebesgue
measure is

qβ(x) := e−2(Ψ+B)(x), x ∈ Rn. (4.41)

Now, by analogy with (4.9) and the discussion of the σ-finite case in Step 3 from the proof of Theorem
3.6, we have

H
(
P β(t) |Qβ) 6 H

(
P β(t0) |Qβ), t0 6 t 6 T. (4.42)

Note that for this decrease of the relative entropy function t 7→ H(P β(t) |Qβ) to be valid, it is
necessary to “take into account the perturbation for the flow as well as for the reference measure”.
However, in view of the left-hand side of (4.38), we are interested in the behavior of the function
t 7→ H(P β(t) |Q). In order to compare these two, we define the constant

C2 := 2 · max
x∈Rn

|B(x)| <∞. (4.43)
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It is then straightforward to derive the estimate

H
(
P β(t) |Q

)
− C2 6 H

(
P β(t) |Qβ) 6 H

(
P β(t) |Q

)
+ C2, t0 6 t 6 T. (4.44)

Combining (4.42), (4.44) and using that P β(t0) = P (t0), we get

H
(
P β(t) |Q

)
6 H

(
P (t0) |Q

)
+ 2C2, t0 6 t 6 T. (4.45)

Consequently, the left-hand side of (4.38) can be dominated by

C3 := H
(
P (t0) |Q

)
+ 2C2 −H

(
P β(T ) |Q

)
<∞. (4.46)

This constant cannot be equal to +∞ because H(P (t0) |Q) is finite by the same argument as in the
proof of Theorem 3.6, and the relative entropy H(P β(T ) |Q) cannot take the value −∞; see Lemma
3.3 and Appendix C. Altogether, we obtain from (4.38), (4.39) and the above considerations that

EPβ

[ ∫ τβn

0

1
2

∣∣∇`β(T − u,X(T − u)
)∣∣2

`β
(
T − u,X(T − u)

)2 du
]
6 C1 + C3, (4.47)

for every n ∈ N0. Since the non-decreasing sequence of stopping times (τβn )n>0 from (4.37) converges
Pβ-almost surely to T − t0 as n→∞, we deduce from (4.47) and the monotone convergence theorem
that

EPβ
[
F β(t0)

]
= EPβ

[ ∫ T−t0

0

1
2

∣∣∇`β(T − u,X(T − u)
)∣∣2

`β
(
T − u,X(T − u)

)2 du
]
6 C1 + C3 <∞. (4.48)

From (4.48) we finally obtain that the stochastic integral in (4.35) defines an L2(Pβ)-bounded mar-
tingale for 0 6 s 6 T − t0.
Summing up, we conclude that the process (Mβ(T − s))06s6T−t0 is a L2(Pβ)-bounded martingale

of the backwards filtration (G(T − s))06s6T−t0 , admitting the representation (3.31). This completes
the proof of Theorem 3.8.

4.5. Some useful lemmas

In this subsection we collect some useful results needed in order to justify the claims (3.38), (3.39)
made in the course of the proof of Corollary 3.11, and to complete the proof of Proposition 3.14 in
Subsection 4.6.

First, let us recall the probability density function (t, x) 7→ p(t, x) from (4.16), its perturbed version
(t, x) 7→ pβ(t, x) from (4.32), and the respective likelihood ratios `(t, x), `β(t, x) from (2.2), (3.26),
respectively. We introduce also the “perturbed-to-unperturbed” ratio

Y β(t, x) := `β(t, x)
`(t, x) = pβ(t, x)

p(t, x) , (t, x) ∈ [t0,∞)×Rn. (4.49)

We recall the backwards Kolmogorov-type equations (4.17), (4.33). These lead to the partial
differential equation

∂tY
β(t, x) = 1

2∆Y β(t, x) +
〈
∇Y β(t, x) , β(x) +∇ log p(t, x) +∇Ψ(x)

〉
Rn

+ Y β(t, x)
(

div β(x) +
〈
β(x) , ∇ log p(t, x)

〉
Rn

)
, t > t0,

(4.50)

with Y β(t0, · ) = 1, for the ratio in (4.49). In conjunction with (4.5), this equation leads to the
following backward dynamics.
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Lemma 4.11. Under the Assumptions 1.2, we let t0 > 0 and T > t0. The time-reversed ratio process(
Y β(T − s,X(T − s))

)
06s6T−t0 and its logarithm satisfy the stochastic differential equations

dY β
(
T − s,X(T − s)

)
Y β
(
T − s,X(T − s)

) =
〈
∇Y β

(
T − s,X(T − s)

)
Y β
(
T − s,X(T − s)

) , dWP(T − s)− β
(
X(T − s)

)
ds
〉
Rn

−
(

div β
(
X(T − s)

)
+
〈
β
(
X(T − s)

)
,∇ log p

(
T − s,X(T − s)

)〉
Rn

)
ds

(4.51)

and

d log Y β(T − s,X(T − s)
)

=
〈
∇Y β

(
T − s,X(T − s)

)
Y β
(
T − s,X(T − s)

) , dWP(T − s)− β
(
X(T − s)

)
ds
〉
Rn

−
(

div β
(
X(T − s)

)
+
〈
β
(
X(T − s)

)
,∇ log p

(
T − s,X(T − s)

)〉
Rn

)
ds

− 1
2

∣∣∇Y β
(
T − s,X(T − s)

)∣∣2
Y β
(
T − s,X(T − s)

)2 ds,

(4.52)

respectively, for 0 6 s 6 T − t0, with respect to the backwards filtration (G(T − s))06s6T−t0.

Remark 4.12. We can obtain the dynamics of (4.52), thus also of (4.51), directly from (4.35), (4.2),
just by subtracting and using Lemma 4.8.

We also need a preliminary control on Y β( · , · ), which is the subject of the following Lemma 4.13.
This will be refined in Lemma 4.14 below.

Lemma 4.13. Under the Assumptions 1.2, we let t0 > 0 and T > t0. There is a real constant C > 1
such that

1
C

6 Y β(t, x) 6 C , (t, x) ∈ [t0, T ]×Rn. (4.53)

Proof. In the forward direction of time, the canonical coordinate process (X(t))t06t6T on the path
space Ω = C([t0, T ];Rn) satisfies the stochastic equations (2.1) and (3.12) with initial distribu-
tion P (t0) under the probability measures P and Pβ, respectively. Hence, the P-Brownian motion
(W (t))t06t6T from (2.1) can be represented as

W (t)−W (t0) = W β(t)−W β(t0)−
∫ t

t0
β
(
X(u)

)
du, t0 6 t 6 T, (4.54)

where (W β(t))t06t6T is the Pβ-Brownian motion appearing in (3.12). By the Girsanov theorem, this
amounts, for t0 6 t 6 T , to the likelihood ratio computation

Z(t) := dPβ

dP

∣∣∣∣
F(t)

= exp
(
−
∫ t

t0

〈
β
(
X(u)

)
, dW (u)

〉
Rn
− 1

2

∫ t

t0

∣∣β(X(u)
)∣∣2 du). (4.55)

Now, for each (t, x) ∈ [t0, T ] × Rn, the ratio Y β(t, x) = pβ(t, x)/p(t, x) equals the conditional
expectation of the random variable (4.55) with respect to the probability measure P, where we
condition on X(t) = x; to wit,

Y β(t, x) = EP
[
Z(t) |X(t) = x

]
, (t, x) ∈ [t0, T ]×Rn. (4.56)
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Therefore, in order to obtain the estimate (4.53), it suffices to show that the log-density process
(logZ(t))t06t6T is uniformly bounded. Since the perturbation β is smooth and has compact support,
the Lebesgue integral inside the exponential of (4.55) is uniformly bounded, as required.
In order to handle the stochastic integral with respect to the P-Brownian motion (W (u))t06u6t

inside the exponential (4.55), we invoke the assumption that the vector field β equals the gradient of
a potential B : Rn → R, which is of class C∞(Rn;R) and has compact support. According to Itô’s
formula and (2.1), we can express the stochastic integral appearing in (4.55) as∫ t

t0

〈
β
(
X(u)

)
, dW (u)

〉
Rn

= B
(
X(t))−B

(
X(t0)

)
+
∫ t

t0

(〈
β , ∇Ψ

〉
Rn
− 1

2 div β
)(
X(u)

)
du (4.57)

for t0 6 t 6 T . At this stage it becomes obvious that the expression of (4.57) is uniformly bounded.
This completes the proof of Lemma 4.13.

The following Lemma 4.14 provides the crucial estimates (3.38) and (3.39), needed in the proof of
Corollary 3.11 from Theorem 3.8, and of Proposition 3.14.

Lemma 4.14. Under the Assumptions 1.2, we let t0 > 0 and T > t0. There is a constant C > 0
such that ∣∣Y β(T − s, x)− 1

∣∣ 6 C (T − t0 − s), (4.58)
as well as

EP

[ ∫ T−t0

s

∣∣∣∇ log Y β(T − u,X(T − u)
)∣∣∣2 du ∣∣∣∣ X(T − s) = x

]
6 C (T − t0 − s)2, (4.59)

hold for all 0 6 s 6 T − t0 and x ∈ Rn. Furthermore, for every t0 > 0 and x ∈ Rn we have the
pointwise limiting assertion

lim
s↑T−t0

log Y β(T − s, x)
T − t0 − s

= div β(x) +
〈
β(x) , ∇ log p(t0, x)

〉
Rn
, (4.60)

where the fraction on the left-hand side of (4.60) is uniformly bounded on [0, T − t0]×Rn.
Remark 4.15. The pointwise limiting assertion (4.60) is the deterministic analogue of the trajectorial
relation (3.58) from Proposition 3.14. In Subsection 4.6 below we will prove that the limiting assertion
(3.58) holds in L1 under both P and Pβ, and is valid for all t0 > 0.

Proof. As log Y β = log `β − log `, we obtain from (4.24), (4.48) and (4.53) that the martingale part
of the process in (4.52) is bounded in L2(P), i.e.,

EP

[ ∫ T−t0

0

∣∣∇Y β
(
T − u,X(T − u)

)∣∣2
Y β
(
T − u,X(T − u)

)2 du
]
<∞. (4.61)

Once again using (4.53), we compare ∇Y β/Y β with ∇Y β to see that (4.61) also implies

EP

[ ∫ T−t0

0

∣∣∣∇Y β(T − u,X(T − u)
)∣∣∣2 du] <∞. (4.62)

According to (4.51), the time-reversed ratio process
(
Y β(T − s,X(T − s))

)
06s6T−t0 satisfies the

stochastic differential equation

dY β(T − s,X(T − s)
)

=
〈
∇Y β(T − s,X(T − s)

)
, dWP(T − s)− β

(
X(T − s)

)
ds
〉
Rn

− Y β(T − s,X(T − s)
)(

div β
(
X(t− s)

)
+
〈
β
(
X(T − s)

)
,∇ log p

(
T − s,X(T − s)

)〉
Rn

)
ds

(4.63)
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for 0 6 s 6 T − t0, with respect to the backwards filtration (G(T − s))06s6T−t0 .
In view of (4.62), the martingale part in (4.63) is bounded in L2(P). As regards the drift terms of

this equation, we observe that it vanishes when X(T − s) takes values outside the compact support
of the smooth vector field β. Consequently, the drift terms are bounded, i.e., the constant

C1 := sup
t06t6T
y∈Rn

∣∣∣∣∣− Y β(t, y)
(

div β(y) +
〈
β(y) ,∇ log p(t, y) + ∇Y

β(t, y)
Y β(t, y)

〉
Rn

)∣∣∣∣∣ (4.64)

is finite, and the processes

Y β(T − s,X(T − s)
)

+ C1 s and Y β(T − s,X(T − s)
)
− C1 s (4.65)

for 0 6 s 6 T − t0, are a sub- and a supermartingale, respectively. We conclude that∣∣∣Y β(T − s, x)− EP
[
Y β(t0, X(t0)

) ∣∣ X(T − s) = x
] ∣∣∣ 6 C1 (T − t0 − s) (4.66)

holds for all 0 6 s 6 T − t0 and x ∈ Rn. Since Y β(t0, · ) = 1, this establishes the first estimate∣∣Y β(T − s, x)− 1
∣∣ 6 C1 (T − t0 − s). (4.67)

Now we turn our attention to the second estimate (4.59). We fix 0 6 s 6 T − t0 and x ∈ Rn. By
means of the stochastic differentials in (4.52) and (4.63), we find that the expression

1
2 EP

[ ∫ T−t0

s

∣∣∣∇ log Y β(T − u,X(T − u)
)∣∣∣2 du ∣∣∣∣ X(T − s) = x

]
(4.68)

is equal to

log Y β(T − s, x)− Y β(T − s, x) + 1 + EP

[ ∫ T−t0

s
G
(
T − u,X(T − u)

)
du

∣∣∣∣ X(T − s) = x

]
, (4.69)

where we have set

G(t, y) :=
(
Y β(t, y)− 1

)(
div β(y) +

〈
β(y) ,∇ log p(t, y) + ∇Y

β(t, y)
Y β(t, y)

〉
Rn

)
(4.70)

for t0 6 t 6 T and y ∈ Rn. Introducing the finite constant

C2 := sup
t06t6T
y∈Rn

∣∣∣∣∣ div β(y) +
〈
β(y) ,∇ log p(t, y) + ∇Y

β(t, y)
Y β(t, y)

〉
Rn

∣∣∣∣∣ (4.71)

and using the just proved estimate (4.67), we see that the absolute value of the conditional expectation
appearing in (4.69) can be bounded by C1C2 (T − t0 − s)2. In order to handle the remaining terms
of (4.69), we apply the elementary inequality log p 6 p− 1, which is valid for all p > 0, and obtain

log Y β(T − s, x)− Y β(T − s, x) + 1 6 0. (4.72)

This implies that the expression of (4.68) is bounded by C1C2 (T − t0 − s)2, which establishes the
second estimate (4.59). We also note that the elementary inequality (4.72) in conjunction with the
estimate (4.67) shows that

log Y β(T − s, x) 6 C1 (T − t0 − s) (4.73)

32



for all 0 6 s 6 T − t0 and x ∈ Rn; this implies that the fraction on the left-hand side of (4.60) is
uniformly bounded on [0, T − t0]×Rn.
Regarding the limiting assertion (4.60), we fix t0 > 0, x ∈ Rn and 0 6 s 6 T − t0, and take

conditional expectations with respect to X(T − s) = x in the integral version of the stochastic
differential (4.52). On account of (4.61), the stochastic integral with respect to the P-Brownian
motion (WP(T − s))06s6T in (4.52) vanishes. Dividing by T − t0 − s and passing to the limit as
s ↑ T − t0, we can use the estimate (4.59) to observe that the expression in the third line of (4.52)
vanishes in the limit. After applying the Cauchy–Schwarz inequality, we see that the normalized
integral involving the perturbation β appearing in the first line of (4.52) can be bounded by

1
T − t0 − s

∫ T−t0

s

∣∣∣∇ log Y β(T − u,X(T − u)
)∣∣∣ · ∣∣β(X(T − u)

)∣∣ du. (4.74)

By conditions (iv), (v) of Assumptions 1.2, the function (t, x) 7→ ∇ log Y β(t, x) is continuous on
(0,∞)×Rn, thus the expression in (4.74) is uniformly bounded on the rectangle [0, T − t0]× suppβ.
As log Y β(t0, · ) = 0, it converges P-almost surely to zero, hence also

lim
s↑T−t0

EP

[
1

T − t0 − s

∫ T−t0

s

∣∣∣∇ log Y β(T − u,X(T − u)
)∣∣∣ · ∣∣β(X(T − u)

)∣∣ du ∣∣∣∣ X(T − s) = x

]
= 0.

(4.75)
Finally, using continuity and uniform boundedness once again, the conditional expectations of the
normalized integrals over the second line of (4.52) converge to the right-hand side of (4.60), as
claimed.

Remark 4.16 (Stability of the entropy limits under perturbations). The above Lemma 4.14 justifies the
estimates (3.38) and (3.39), which we have used in the proof of Corollary 3.11. They were the crucial
ingredients in the effort to show that the exceptional set for the limiting assertion (3.9) does not
change when passing from the unperturbed to the perturbed equation (3.14). It is now time to come
back to this technical issue.
As a general observation, we stress that no worries about limits of difference quotients arise as

long as we remain in the realm of an integral formulation of our results, as opposed to passing to a
differential formulation. It is precisely the spirit of our basic trajectorial Theorems 3.6 and 3.8, that
they are naturally formulated in integral terms.
We also note that the problem of exceptional points does not arise if we impose regularity assump-

tions strong enough, so that the limiting assertions (3.33) and (3.36) are valid for all t0 > 0, or even
for all t0 > 0, instead of for Lebesgue-almost every t0 > 0. For example, this follows if we impose, in
addition to Assumptions 1.2, the a priori assumption that the relative Fisher information function
t 7→ I(P (t) |Q) is continuous on (0,∞), or continuous on [0,∞), respectively.

Having made these general observations, let us now be more technical and have a precise look at
the exceptional sets in the framework of the regularity codified by Assumptions 1.2. In the proof
of Corollary 3.10 we have deduced from the Lebesgue differentiation theorem that the generalized
de Bruijn identity (3.5), (3.33) is valid outside a set of Lebesgue measure zero. In particular, let us
recall from Remark 3.2 that N denotes the set of exceptional points t0 > 0 for which the right-sided
limiting assertion (3.9), i.e.,

lim
t↓t0

H
(
P (t) |Q

)
−H

(
P (t0) |Q

)
t− t0

= −1
2 ‖a‖

2
L2(P), (4.76)

fails. We have shown in the equations (3.40) and (3.41) from the proof of Corollary 3.11 that the
limiting assertion (3.14), (3.36), i.e.,

lim
t↓t0

H
(
P β(t) |Q

)
−H

(
P β(t0) |Q

)
t− t0

= −1
2
〈
a, a+ 2b

〉
L2(P), (4.77)
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is valid if and only if t0 ∈ R+ \ N . In other words, the limits in (4.76) and (4.77) have the same
exceptional set N of zero Lebesgue measure. Put another way, the entropy limit (4.76) is stable
under perturbations, in the sense that the corresponding perturbed entropy limit (4.77) continues to
be valid for the same points t0 ∈ R+ \N .
Furthermore, in the proofs of Propositions 3.12 and 3.14 we have seen that the limiting assertions

therein are valid, respectively, for those points t0 > 0 for which the generalized de Bruijn identity
(3.33) does hold, and for t0 ∈ R+ \N .

Remark 4.17 (Stability of the Wasserstein limits under perturbations). Let us now pass to the limits of
the difference quotients pertaining to the Wasserstein distance. We fix some t0 ∈ R+ \ N so that
the limiting assertion (4.76), and as a consequence also (4.77), are valid. Then the unperturbed
Wasserstein limit

lim
t↓t0

W2
(
P (t), P (t0)

)
t− t0

= 1
2 ‖a‖L2(P) (4.78)

of (3.43) is valid as well. This is remarkable, because a priori there is no significant relation between
relative entropy and Wasserstein distance, except for the fact that in the limit the relative Fisher
information appears on the right-hand sides of both (4.76) and (4.78). Even more, the unperturbed
Wasserstein limit (3.15), (3.37), i.e.,

lim
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

= 1
2 ‖a+ 2b‖L2(P), (4.79)

also holds for this point t0 ∈ R+ \ N . In other words, the Wasserstein limits are stable under
perturbations in the same manner as the entropy limits are.
Summing up, not only do the limiting assertions (4.76) and (4.77) hold for every t0 ∈ R+ \N , but

so do also the limiting assertions (4.78) and (4.79) pertaining to the Wasserstein distance. We will
prove these results in Theorems 5.1 and 5.2 of Section 5.

4.6. Completing the proof of Proposition 3.14

On account of the preparations in Subsection 4.5 above, we are now able to complete the proof of
Proposition 3.14 by establishing the remaining limiting assertions (3.58) and (3.57) therein.

Proof of the assertion (3.58) in Proposition 3.14: Let t0 > 0 and select T > t0. Using the notation
of (4.49) above, we have to calculate the limit

lim
s↑T−t0

log Y β
(
T − s,X(T − s)

)
T − t0 − s

. (4.80)

Fix 0 6 s 6 T − t0. According to the integral version of the stochastic differential (4.52), the fraction
in (4.80) is equal to the sum of the following four normalized integral terms (4.81) – (4.83) and (4.85),
whose behavior as s ↑ T − t0 we will study separately below. By conditions (iv), (v) of Assumptions
1.2, the function (t, x) 7→ ∇ log Y β(t, x) is continuous on (0,∞)×Rn, thus the first expression

1
T − t0 − s

∫ T−t0

s

(
div β

(
X(T − u)

)
+
〈
β
(
X(T − u)

)
,∇ log p

(
T − u,X(T − u)

)〉
Rn

)
du (4.81)

is uniformly bounded on [0, T − t0]× suppβ. Using continuity and uniform boundedness, we conclude
that (4.81) converges P-almost surely as well as in L1(P) to the right-hand side of (3.58), as required.
Thus it remains to show that the three remaining terms converge to zero. Using continuity and
uniform boundedness once again, we deduce from log Y β(t0, · ) = 0 that the second integral term

1
T − t0 − s

∫ T−t0

s

〈
∇Y β

(
T − u,X(T − u)

)
Y β
(
T − u,X(T − u)

) , β
(
X(T − u)

)〉
Rn

du (4.82)
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converges to zero P-almost surely and in L1(P). Since log Y β(t0, · ) = 0 and because the integrand is
continuous, we see that the third expression

1
T − t0 − s

∫ T−t0

s

1
2

∣∣∇Y β
(
T − u,X(T − u)

)∣∣2
Y β
(
T − u,X(T − u)

)2 du (4.83)

converges P-almost surely to zero. Furthermore, owing to Lemma 4.14, there is a constant C > 0
such that

EP

[
1

T − t0 − s

∫ T−t0

s

∣∣∇Y β
(
T − u,X(T − u)

)∣∣2
Y β
(
T − u,X(T − u)

)2 du
]
6 C (T − t0 − s) (4.84)

holds for all 0 6 s 6 T − t0, which implies that (4.83) converges to zero also in L1(P). The fourth
and last term is the stochastic integral

− 1
T − t0 − s

∫ T−t0

s

〈
∇Y β

(
T − u,X(T − u)

)
Y β
(
T − u,X(T − u)

) , dWP(T − u)
〉
Rn

. (4.85)

The expression (4.83) converges to zero P-almost surely, and according to (4.84) we have

EP

[
1

(T − t0 − s)2

∫ T−t0

s

∣∣∇Y β
(
T − u,X(T − u)

)∣∣2
Y β
(
T − u,X(T − u)

)2 du
]
6 C. (4.86)

By means of the Itô isometry, we deduce that

lim
s↑T−t0

EP

[(
1

T − t0 − s

∫ T−t0

s

〈
∇Y β

(
T − u,X(T − u)

)
Y β
(
T − u,X(T − u)

) , dWP(T − u)
〉
Rn

)2 ]
= 0. (4.87)

In other words, the normalized stochastic integral of (4.85) converges to zero in L2(P).
Summing up, we have shown that the limiting assertion (3.58) holds in L1(P) and is valid for all

t0 > 0. As we have seen in Lemma 4.13, the probability measures P and Pβ are equivalent, the
Radon-Nikodým derivatives dPβ

dP and dP
dPβ are bounded on the σ-algebra F(T ) = G(0), and therefore

convergence in L1(P) is equivalent to convergence in L1(Pβ). This completes the proof of the limiting
assertion (3.58).

Proof of the assertion (3.57) in Proposition 3.14: This is proved in very much the same way, as as-
sertions (3.56), (3.58). The only novelty here, is the use of (4.29) to pass to the P-Brownian motion(
W
P(T−s)

)
06s6T−t0 from the Pβ-Brownian motion

(
W
Pβ (T−s)

)
06s6T−t0 , and the reliance on (4.48)

to ensure that the resulting stochastic integral is a (square-integrable) P-martingale. We leave the
details to the care of the diligent reader, or refer to [Tsc19, Section 3.2].

4.7. The dynamics in the forward direction of time

For the sake of completeness, we calculate now the stochastic differentials of the relative entropy
process (3.20) and its perturbed counterpart of (3.28) also in the forward direction of time, under
the measures P and Pβ, respectively. It will turn out that we are able to derive Theorems 3.1 and
3.4 also by applying Itô’s formula in the forward direction of time. But the relations between these
theorems and the stochastic differentials will become less transparent than in reverse time. In fact,
additional terms will show up in the forward direction of time, which on the contrary did not appear
in the backward direction. One may still take expectations, but to obtain Theorems 3.1 and 3.4 one
has to argue why the expectations of these additional terms vanish. This is straightforward in the
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unperturbed situation of Lemma 4.18, but in the perturbed context of Lemma 4.19 one also has to
rely on integration by parts.
We first compute the differentials of the likelihood ratio process `(t,X(t)), t > 0 of (2.2) and of

its logarithm as in (3.20), in the forward direction of time. We start by recalling the backwards
Kolmogorov equation (4.17). With its help, we can compute the forward dynamics of the likelihood
ratio process (2.2) in the following manner.

Lemma 4.18. Under the Assumptions 1.2, the likelihood ratio process (2.2) and its logarithm satisfy
the stochastic differential equations

d`
(
t,X(t)

)
= ∆`

(
t,X(t)

)
dt+

〈
∇`
(
t,X(t)

)
, dW (t)− 2∇Ψ

(
X(t)

)
dt
〉
Rn

(4.88)

= 2 ∂t`
(
t,X(t)

)
dt+

〈
∇`
(
t,X(t)

)
, dW (t)

〉
Rn

(4.89)

and

d log `
(
t,X(t)

)
=
(

∆`
(
t,X(t)

)
`
(
t,X(t)

) − 〈∇`(t,X(t)
)

`
(
t,X(t)

) , 2∇Ψ
(
X(t)

)〉
Rn

)
dt (4.90)

− 1
2

∣∣∇`(t,X(t)
)∣∣2

`
(
t,X(t)

)2 dt +
〈
∇`
(
t,X(t)

)
`
(
t,X(t)

) , dW (t)
〉
Rn

(4.91)

=
(

2 ∂t log `
(
t,X(t)

)
− 1

2
∣∣∇ log `

(
t,X(t)

)∣∣2 ) dt+
〈
∇ log `

(
t,X(t)

)
, dW (t)

〉
Rn
,

(4.92)

respectively, for t > 0, with respect to the forward filtration (F(t))t>0.

Proof. Applying Itô’s formula and using the equations (2.1), (4.17) shows (4.88), (4.89). One more
application of Itô’s formula leads to the stochastic equations (4.90) – (4.92).

In order to deduce Theorem 3.1 from Lemma 4.18 — at least formally — we take expectations in
(4.90) – (4.92) and use (4.17) to observe that

EP

[
∆`
(
t,X(t)

)
`
(
t,X(t)

) − 〈∇`(t,X(t)
)

`
(
t,X(t)

) , 2∇Ψ
(
X(t)

)〉
Rn

]
= EP

[
2 ∂t`

(
t,X(t)

)
`
(
t,X(t)

) ]
= 0. (4.93)

Next, we calculate the differentials of the perturbed likelihood ratio process `β(t,X(t)), t > t0,
as in (3.27), and of its logarithm as in (3.28), again in the forward direction. With the help of the
“perturbed” backwards Kolmogorov equation (4.33), we obtain the forward dynamics of the perturbed
likelihood ratio process (3.27), as follows.

Lemma 4.19. Under the Assumptions 1.2, let t0 > 0. The perturbed likelihood ratio process (3.27)
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and its logarithm satisfy the stochastic differential equations

d`β
(
t,X(t)

)
`β
(
t,X(t)

) =
(

∆`β
(
t,X(t)

)
`β
(
t,X(t)

) − 〈∇`β(t,X(t)
)

`β
(
t,X(t)

) , 2∇Ψ
(
X(t)

)〉
Rn

)
dt (4.94)

+
(

div β −
〈
β , 2∇Ψ

〉
Rn

)(
X(t)

)
dt +

〈
∇`β

(
t,X(t)

)
`β
(
t,X(t)

) , dW β(t)
〉
Rn

(4.95)

=
(

2 ∂t log `β
(
t,X(t)

)
−
〈
∇ log `β

(
t,X(t)

)
, β
(
X(t)

)〉
Rn

)
dt (4.96)

+
(〈
β , 2∇Ψ

〉
Rn
− div β

)(
X(t)

)
dt +

〈
∇ log `β

(
t,X(t)

)
, dW β(t)

〉
Rn

(4.97)

and

d log `β
(
t,X(t)

)
=
(

∆`β
(
t,X(t)

)
`β
(
t,X(t)

) − 〈∇`β(t,X(t)
)

`β
(
t,X(t)

) , 2∇Ψ
(
X(t)

)〉
Rn

)
dt (4.98)

+
((

div β −
〈
β , 2∇Ψ

〉
Rn

)(
X(t)

)
− 1

2

∣∣∇`β(t,X(t)
)∣∣2

`β
(
t,X(t)

)2
)

dt +
〈
∇`β

(
t,X(t)

)
`β
(
t,X(t)

) , dW β(t)
〉
Rn

(4.99)

=
(

2 ∂t log `β
(
t,X(t)

)
−
〈
∇ log `β

(
t,X(t)

)
, β
(
X(t)

)〉
Rn

)
dt (4.100)

+
((〈

β , 2∇Ψ
〉
Rn
− div β

)(
X(t)

)
− 1

2
∣∣∇ log `β

(
t,X(t)

)∣∣2 ) dt +
〈
∇ log `β

(
t,X(t)

)
, dW β(t)

〉
Rn
,

(4.101)

respectively, for t > t0, with respect to the forward filtration (F(t))t>t0.

Proof. Using (3.12), (4.33) and Itô’s formula, we obtain the stochastic equations (4.94) – (4.101).

The perturbed situation is not as nice as the unperturbed one, since according to (4.33) we have

∆`β(t, x)−
〈
∇`β(t, x) , 2∇Ψ(x)

〉
Rn
6= 2 ∂t`β(t, x) (4.102)

in general. However, integrating by parts shows that

EPβ

[
∆`β

(
t,X(t)

)
`β
(
t,X(t)

) − 〈∇`β(t,X(t)
)

`β
(
t,X(t)

) , 2∇Ψ
(
X(t)

)〉
Rn

]
= 0. (4.103)

Hence taking expectations in (4.98), (4.99) allows to derive Theorem 3.4 from Lemma 4.19, at least
on a formal level. But as opposed to the backward direction of time, the identity (4.103) does not
hold any more when we take expectations conditionally on X(t).

5. The Wasserstein transport
For the convenience of the reader we review in Subsections 5.1 and 5.2 some well-known results on
quadratic Wasserstein transport [AGS08, AG13], in order to establish the limits (3.34) and (3.37) and
complete the proofs of Corollaries 3.10 and 3.11. For a detailed discussion of metric measure spaces
and in particular Wasserstein spaces, see also the work [Stu06a, Stu06b] by Sturm.
As we make precise statements regarding the points t0 > 0 at which the the limiting assertions

(3.34) and (3.37) are valid (recall Remark 4.17 at this point), we provide detailed proofs of the relevant
Theorems 5.1, 5.2 in Subsection 5.3.
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5.1. Basic notation and terminology

We recall below the definitions of the quadratic Wasserstein space P2(Rn), and of the quadratic
Wasserstein distance W2. We follow the setting of [AGS08], from where we borrow most of the
notation and terminology used in this section. Thus, for unexplained notions and definitions, the
reader may consult this beautiful book.

We denote by P(Rn) the collection of probability measures on the Borel sets B(Rn) of Rn. The
quadratic Wasserstein space P2(Rn) is the subset of P(Rn) consisting of the probability measures
on B(Rn) with finite second moment, i.e.,

P2(Rn) :=
{
P ∈P(Rn) :

∫
Rn
|x|2 dP (x) <∞

}
. (5.1)

If p : Rn → [0,∞) is a probability density function on Rn, we can identify it with the probability
measure P ∈P(Rn) having density p with respect to Lebesgue measure on Rn. In particular, if p is
a probability density with finite second moment, i.e.,∫

Rn
|x|2 p(x) dx <∞, (5.2)

then we can identify p with an element of P2(Rn).
We denote by Γ(P1, P2) the collection of Kantorovich transport plans, that is, probability measures

γ in P(Rn × Rn) with given marginals P1, P2 ∈ P(Rn). More precisely, if πi : Rn × Rn → Rn are
the canonical projections, then πi#γ = Pi, for i ∈ {1, 2}. The quadratic Wasserstein distance between
two probability measures P1, P2 ∈P2(Rn) is defined by

W 2
2 (P1, P2) := inf

{∫
Rn×Rn

|x− y|2 dγ(x, y) : γ ∈ Γ(P1, P2)
}
. (5.3)

The quadratic Wasserstein space P2(Rn), endowed with the quadratic Wasserstein distance W2 just
introduced, is a Polish space [AGS08, Proposition 7.1.5].

5.2. The metric derivative of curves in the Wasserstein space

In the present section we consider the solution (p(t))t>0 of the Fokker-Planck equation (3.1) with
initial condition (3.2) as a curve in the quadratic Wasserstein space P2(Rn). This is justified by
Lemma 2.1, on the basis of which the Assumptions 1.2 guarantee that p(t) ∈ P2(Rn) for all t > 0.
For fixed T ∈ (0,∞), we define now the time-dependent velocity field

[0, T ]×Rn 3 (t, x) 7−→ v(t, x) := −
(1

2
∇p(t, x)
p(t, x) +∇Ψ(x)

)
= −1

2
∇`(t, x)
`(t, x) ∈ R

n (5.4)

that consists of two parts: the drift −∇Ψ( · ) of the underlying motion; and the speed −1
2
∇p(t, · )
p(t, · )

of the transport induced by the diffusive motion with transition mechanism p(t, · ), in the manner
of (A.8). Then the Fokker-Planck equation (3.1), satisfied by the curve (p(t))06t6T of probability
density functions in P2(Rn), can be cast as a continuity, or linear transport, equation, namely,

∂tp(t, x) + div
(
v(t, x) p(t, x)

)
= 0, (t, x) ∈ (0, T ]×Rn. (5.5)

According to (2.5), (4.24) and by definition of the velocity field v(t) ≡ v(t, · ), we have

1
2

∫ T

0
I
(
P (t) |Q

)
dt = 2

∫ T

0

(∫
Rn
|v(t, x)|2 p(t, x) dx

)
dt <∞. (5.6)
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The quadratic Wasserstein distance of (5.3), and the continuity equation (5.5), are tied together
intimately. Indeed, for any two probability measures P0, P1 in P2(Rn) that admit density functions
ρ0( · ) and ρ1( · ), respectively, we have the “minimum kinetic energy” representation

W 2
2 (P0, P1) = inf

∫ 1

0

(∫
Rn
|v(t, x)|2 ρ(t, x) dx

)
dt (5.7)

of [BB00]. Here, the infimum is taken over all pairs of vector fields (ρ, v), scalar and vector, respec-
tively, that satisfy the equation (5.5) as well as the initial and terminal conditions ρ(0, · ) = ρ0( · ),
ρ(1, · ) = ρ1( · ). The representation (5.7) provides a strong justification for the relevance of the
Wasserstein distance in our context, which is indeed governed by an equation (Fokker-Planck) of
transport type.

As (p(t))06t6T is a curve in the Wasserstein space P2(Rn) satisfying the continuity equation
(5.5) and the integrability condition (5.6), we can invoke Theorem 8.3.1 in [AGS08]. This result
relates absolutely continuous curves in P2(Rn) to the continuity equation. In particular, its second
implication states that the curve (p(t))06t6T is absolutely continuous [AGS08, Definition 1.1.1]. As
a consequence, for Lebesgue-almost every t0 ∈ [0, T ], its metric derivative [AGS08, Theorem 1.1.2]

|p′|(t0) := lim
t→t0

W2
(
p(t), p(t0)

)
|t− t0|

(5.8)

exists. Furthermore, [AGS08, Theorem 8.3.1] provides for Lebesgue-almost every t0 ∈ [0, T ] the
estimate

|p′|(t0) 6 ‖v(t0)‖L2(P (t0)). (5.9)

On the other hand, according to condition (vi) in Assumptions 1.3, the time-dependent gradient
vector field v : [0, T ]×Rn → Rn of (5.4) is an element of the tangent space [AGS08, Definition 8.4.1]
of P2(Rn) at the point P (t) ∈P2(Rn), i.e.,

v(t, · ) ∈ TanP (t)P2(Rn) :=
{
∇ϕ : ϕ ∈ C∞c (Rn;R)

}L2(P (t))
. (5.10)

Since (p(t))06t6T is an absolutely continuous curve in the quadratic Wasserstein space P2(Rn) sat-
isfying the continuity equation (5.5) for the time-dependent velocity field v(t), which is tangent to
the curve, we can apply Proposition 8.4.5 of [AGS08]. This result characterizes tangent vectors to
absolutely continuous curves, and entails for Lebesgue-almost every t0 ∈ [0, T ] the inequality

|p′|(t0) > ‖v(t0)‖L2(P (t0)). (5.11)

Combining (5.9) and (5.11), we obtain for Lebesgue-almost every t0 ∈ [0, T ] the equality

|p′|(t0) = ‖v(t0)‖L2(P (t0)). (5.12)

This relates the strength of the time-dependent velocity field v(t, · ) in (5.5), to the rate of change,
or metric derivative as in (5.8), of the Wasserstein distance along the curve (p(t))06t6T — justifying
in this manner the introduction and relevance of the Wasserstein distance in this context.

5.3. The local behavior of the Wasserstein distance

In the previous section we derived along the lines of [AGS08] the explicit representation (5.12) of the
metric derivative of the quadratic Wasserstein distance along the Fokker-Planck probability density
flow. This limit exists for Lebesgue-almost every t0 > 0. The following result provides accurate
information regarding the points t0 > 0 at which the metric derivative (5.12) exists (cf. Remark
4.17); we record its instructive proof.
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Theorem 5.1 (Local behavior of the quadratic Wasserstein distance). Under the Assumptions 1.3, let
t0 > 0 be such that the generalized de Bruijn identity (3.5), (3.33) is valid. Then we have

lim
t→t0

W2
(
P (t), P (t0)

)
|t− t0|

=
(
EP

[ ∣∣v(t0, X(t0)
)∣∣2 ])1/2

= 1
2

√
I
(
P (t0) |Q

)
. (5.13)

Instead of Theorem 5.1, we will prove the more general Theorem 5.2 below, which amounts to the
perturbed version of Theorem 5.1. The latter then simply follows by setting β ≡ 0 in the statement
of Theorem 5.2.
In order to formulate Theorem 5.2, we consider the solution (pβ(t))t>t0 of the perturbed Fokker-

Planck equation (3.10) with initial condition (3.11). Again, according to Lemma 3.3, this solution
can be viewed as a curve in the quadratic Wasserstein space P2(Rn). Just as before, we define the
time-dependent perturbed velocity field

[t0, T ]×Rn 3 (t, x) 7−→ vβ(t, x) := −
(1

2
∇pβ(t, x)
pβ(t, x) +∇Ψ(x) + β(x)

)
∈ Rn. (5.14)

Then the perturbed Fokker-Planck equation (3.10), satisfied by the perturbed curve (pβ(t))t06t6T ,
can once again be written as a continuity equation, to wit

∂tp
β(t, x) + div

(
vβ(t, x) pβ(t, x)

)
= 0, (t, x) ∈ (t0, T ]×Rn. (5.15)

At this point, let us recall that we have required the perturbation β : Rn → Rn to be a gradient vector
field, i.e., of the form β = ∇B for some smooth potential B : Rn → R with compact support. Since
p(t0, · ) = pβ(t0, · ), at time t0 the vector fields of (5.4) and (5.14) are related via

vβ(t0, x) = v(t0, x)−∇B(x), x ∈ Rn. (5.16)

Using the regularity assumption that the potential B is of class C∞c (Rn;R), we conclude from (5.10)
and (5.16) that the perturbed vector field vβ(t0, · ) is an element of the tangent space of P2(Rn) at
the point P β(t0) = P (t0) ∈P2(Rn), i.e.,

vβ(t0, · ) ∈ TanPβ(t0)P2(Rn) =
{
∇ϕβ : ϕβ ∈ C∞c (Rn;R)

}L2(Pβ(t0))
. (5.17)

After these preparations we can formulate the perturbed version of Theorem 5.1 as follows.

Theorem 5.2 (Local behavior of the quadratic Wasserstein distance under perturbations). Under the
Assumptions 1.3, for every t0 ∈ R+ \N we have

lim
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

=
(
EP

[ ∣∣vβ(t0, X(t0)
)∣∣2 ])1/2

= 1
2 ‖a+ 2b‖L2(P), (5.18)

where a = ∇ log `(t0, X(t0)) and b = β(X(t0)).

Remark 5.3. With this notation, the rightmost side of (5.13) is 1
2‖a‖L2(P). Since X(t0) has the same

probability distribution under P, as it does under Pβ, the expectation EP appearing in (5.18) can be
replaced by EPβ . Let us also recall from Remark 3.2 the exceptional set N consisting of those points
t0 > 0 for which the limiting assertion (3.9) fails.

Proof of Theorem 5.2. The second equality in (5.18) is apparent from the definition of the time-
dependent perturbed velocity field

(
vβ(t, · )

)
t>t0

from (5.14) above. The delicate point is to show
that the limiting assertion (5.18) is valid for every t0 ∈ R+ \N .
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In order to see this, let us fix some t0 ∈ R+ \N so that the limiting identity (3.9) is valid. In the
following steps we prove that then also the limiting assertion (5.18) does hold.

Step 1. The vector field vβ(t0, · ) induces a family of linearized transport maps (Υβ
t )t>t0 defined by

Υβ
t (x) := x+ (t− t0) · vβ(t0, x), x ∈ Rn (5.19)

in the manner of (3.62), and we denote by P βΥ(t) the image measure of P β(t0) = P (t0) under the
transport map Υβ

t : Rn → Rn; i.e.,

P βΥ(t) := (Υβ
t )#P

β(t0), t > t0. (5.20)

To motivate the subsequent arguments, let us first pretend that, for all t > t0 sufficiently close to t0,
the map Υβ

t is the optimal quadratic Wasserstein transport from P β(t0) to P βΥ(t); i.e.,

W 2
2
(
P βΥ(t), P β(t0)

)
= EPβ

[ ∣∣Υβ
t

(
X(t0)

)
−X(t0)

∣∣2 ] = EP

[ ∣∣Υβ
t

(
X(t0)

)
−X(t0)

∣∣2 ], (5.21)

where we have used in the last equality the fact that X(t0) has the same distribution under Pβ as it
does under P. Then, on account of (5.19), we could conclude that

lim
t↓t0

W2
(
P βΥ(t), P β(t0)

)
t− t0

=
(
EP

[ ∣∣vβ(t0, X(t0)
)∣∣2 ])1/2

= 1
2 ‖a+ 2b‖L2(P). (5.22)

Furthermore, let us suppose that we can show the limiting identity

lim
t↓t0

W2
(
P β(t), P βΥ(t)

)
t− t0

= 0. (5.23)

Using (5.22) and (5.23), we would now derive the desired equality (5.18). Indeed, invoking the triangle
inequality for the quadratic Wasserstein distance we obtain

lim
t↓t0

W2
(
P βΥ(t), P β(t0)

)
t− t0

6 lim
t↓t0

W2
(
P βΥ(t), P β(t)

)
t− t0

+ lim inf
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

, (5.24)

and one more application of it yields

lim sup
t↓t0

W2
(
P β(t), P β(t0)

)
t− t0

6 lim
t↓t0

W2
(
P β(t), P βΥ(t)

)
t− t0

+ lim
t↓t0

W2
(
P βΥ(t), P β(t0)

)
t− t0

. (5.25)

Step 2. The bad news at this point, is that there is little reason why, for t > t0 sufficiently close to
t0, the map Υβ

t defined in (5.19) of Step 1 should be optimal with respect to quadratic Wasserstein
transportation costs; i.e., by Brenier’s theorem [Bre91], equal to the gradient of a convex function.
The good news is that we can reduce the general case to the situation of optimal transports Υβ

t as
in Step 1 by localizing the vector field vβ(t0, · ) as well as the transport maps (Υβ

t )t>t0 to compact
subsets of Rn (Steps 2 – 4); and that, after these localizations have been carried out, an analogue of
the identity (5.23) also holds, allowing us to complete the argument (Steps 5 – 7).
To this end, we first recall that the perturbation β : Rn → Rn is a gradient vector field, i.e., of the

form β = ∇B for some smooth, compactly supported potential B : Rn → R. Thus the vector field
vβ(t0, · ) from (5.14), (5.16) can be represented as a gradient, namely

vβ(t0, x) = −∇
(

1
2 log `(t0, x) +B(x)

)
, x ∈ Rn. (5.26)
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Even more, according to (5.17), it is an element of the tangent space

TanPβ(t0)P2(Rn) =
{
∇ϕβ : ϕβ ∈ C∞c (Rn;R)

}L2(Pβ(t0))
(5.27)

of the quadratic Wasserstein space P2(Rn) at the point P β(t0) ∈P2(Rn). Therefore we can choose
a sequence of potential functions

(
ϕβm(t0, · )

)
m>1 ⊆ C

∞
c (Rn;R) such that

lim
m→∞

EP

[ ∣∣∣vβ((t0, X(t0)
)
−∇ϕβm

(
t0, X(t0)

)∣∣∣2 ] = 0. (5.28)

Next, for each m ∈ N, we define the localized gradient vector fields

vβm(t0, x) := ∇ϕβm(t0, x), x ∈ Rn. (5.29)

By construction, these have compact support and approximate the gradient vector field vβ(t0, · ) in
L2(P (t0)), as in (5.28).
Finally, for every m ∈ N, the localized gradient vector field vβm(t0, · ) induces a family of localized

linear transports (Υβ,m
t )t>t0 defined by analogy with (5.19) via

Υβ,m
t (x) := x+ (t− t0) · vβm(t0, x), x ∈ Rn. (5.30)

We denote by P β,mΥ (t) the image measure of P β(t0) = P (t0) under this localized linear transport map
Υβ,m
t : Rn → Rn; i.e.,

P β,mΥ (t) := (Υβ,m
t )#P

β(t0), t > t0. (5.31)

Step 3. We claim that, for every m ∈ N, there exists some εm > 0 such that for all t > t0 with
|t − t0| < εm, the localized linear transport map Υβ,m

t : Rn → Rn constructed in Step 2 defines
an optimal quadratic Wasserstein transport from P β(t0) to P β,mΥ (t). Hence, by Brenier’s theorem
([Bre91], [Vil03, Theorem 2.12]), we have to show that Υβ,m

t is the gradient of a convex function, for
all t > t0 sufficiently near t0.

Indeed, from the definitions in (5.29), (5.30) we see that the functions Υβ,m
t are gradients for all

m ∈ N and t > t0. More precisely, we have

Υβ,m
t (x) = ∇

(
1
2 |x|

2 + (t− t0) · ϕβm(t0, x)
)
, x ∈ Rn. (5.32)

Therefore, it remains to show that the function 1
2 | · |

2 + (t− t0) · ϕβm(t0, · ) is convex for every m ∈ N
and t > t0 sufficiently close to t0. The Hessian matrix of this function is given by

In + (t− t0) ·Hess
(
ϕβm(t0, x)

)
, x ∈ Rn. (5.33)

In order to deduce the desired convexity, we have to verify that the Hessian matrix of (5.33) is positive
semidefinite for all t > t0 sufficiently near t0, uniformly in x ∈ Rn. To see this, let us fix m ∈ N.
Now the identity matrix In is positive definite and the Hessian matrix of the function ϕβm(t0, · ) is
symmetric. Furthermore, we recall that the smooth function ϕβm(t0, · ) has compact support, which
is crucial in order to justify the present argument. Checking the defining condition guaranteeing
positive semidefiniteness of the matrix in (5.33) for unit vectors and using compactness as well as
continuity, we obtain the existence of some εm > 0 such that, for all t > t0 with |t − t0| < εm, the
Hessian matrix of (5.33) is positive semidefinite (in fact, positive definite).

Step 4. From Step 3 we know that, for every m ∈ N, there exists some εm > 0 such that for all
t > t0 with |t − t0| < εm, the localized map Υβ,m

t is the optimal transport from P β(t0) to P β,mΥ (t)
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with respect to quadratic Wasserstein costs. Therefore, we can apply the considerations of Step 1 to
the optimal map Υβ,m

t in (5.30), and deduce that

lim
t↓t0

W2
(
P β,mΥ (t), P β(t0)

)
t− t0

=
(
EP

[ ∣∣vβm(t0, X(t0)
)∣∣2 ])1/2

(5.34)

holds for every m ∈ N. Invoking (5.28) and (5.29), we obtain from this

lim
m→∞

lim
t↓t0

W2
(
P β,mΥ (t), P β(t0)

)
t− t0

=
(
EP

[ ∣∣vβ(t0, X(t0)
)∣∣2 ])1/2

= 1
2 ‖a+ 2b‖L2(P). (5.35)

From the inequalities (5.24) and (5.25) of Step 1 (with P β,mΥ (t) instead of P βΥ(t)) it follows that, in
order to conclude (5.18), it remains to establish the analogue

lim
m→∞

lim
t↓t0

W2
(
P β(t), P β,mΥ (t)

)
t− t0

= 0 (5.36)

of the identity (5.23).

Step 5. The time-dependent velocity field
(
vβ(t, · )

)
t>t0

induces a curved flow (Φβ
t )t>t0 , which is

characterized by
d
dt Φβ

t = vβ(t,Φβ
t ) for all t > t0 , Φβ

t0 = IdRn . (5.37)

Then, for every t > t0, the map Φβ
t : Rn → Rn transports the measure P β(t0) = P (t0) to P β(t), i.e.,

(Φβ
t )#P

β(t0) = P β(t).
The localized linear transports Υβ,m

t : Rn → Rn defined in (5.30) of Step 2 transport P β(t0) to
P β,mΥ (t), see (5.31). As P β(t0) and P β,mΥ (t) have full support and are absolutely continuous with
respect to Lebesgue measure, the inverse map (Υβ,m

t )−1 : Rn → Rn is well-defined and satisfies(
(Υβ,m

t )−1)
#P

β,m
Υ (t) = P β(t0), t > t0. (5.38)

Recall from Step 4 that our remaining task is to prove (5.36). To this end, we have to construct
maps Xβ,mt : Rn → Rn that transport P β,mΥ (t) to P β(t), i.e., (Xβ,mt )#P

β,m
Υ (t) = P β(t), and satisfy

lim
m→∞

lim
t↓t0

1
t− t0

(
E
P
β,m
Υ

[ ∣∣∣Xβ,mt (
X(t)

)
−X(t)

∣∣∣2 ])1/2

= 0 , (5.39)

where Pβ,mΥ denotes a probability measure on the path space under which the random variable X(t)
has distribution P β,mΥ (t) as in (5.31). We define now the candidate maps

Xβ,mt := Φβ
t ◦

(
Υβ,m
t

)−1
, t > t0 (5.40)

for this job, recall that (Υβ,m
t )−1 transports P β,mΥ (t) to P β(t0) while Φβ

t transports P β(t0) to P β(t),
and conclude that Xβ,mt of (5.40) transports P β,mΥ (t) to P β(t); thus, we have

E
P
β,m
Υ

[ ∣∣∣Xβ,mt (
X(t)

)
−X(t)

∣∣∣2 ] = EP

[ ∣∣∣Φβ
t

(
X(t0)

)
−Υβ,m

t

(
X(t0)

)∣∣∣2 ]. (5.41)

Combining (5.39) and (5.41), we see that we have to establish

lim
m→∞

lim
t↓t0

1
(t− t0)2 EP

[ ∣∣∣Φβ
t

(
X(t0)

)
−Υβ,m

t

(
X(t0)

)∣∣∣2 ] = 0. (5.42)
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Using (5.30) and the elementary inequality |x + y|2 6 2(|x|2 + |y|2), for x, y ∈ Rn, we derive the
estimate

1
2
∣∣Φβ

t (x)−Υβ,m
t (x)

∣∣2 6 (t− t0)2 · |vβ(t0, x)− vβm(t0, x)|2 (5.43)

+
∣∣∣(Φβ

t (x)− x
)
− (t− t0) · vβ(t0, x)

∣∣∣2. (5.44)

Therefore, in order to establish (5.42), it suffices to show the limiting assertions (5.45) and (5.46)
below; these correspond to (5.43) and (5.44), respectively.

The first limiting identity

lim
m→∞

EP

[ ∣∣∣vβ((t0, X(t0)
)
− vβm

(
t0, X(t0)

)∣∣∣2 ] = 0 (5.45)

we already have from (5.28), (5.29) of Step 2.

Step 6. Our final task is to justify that

lim
t↓t0

EP

[ ∣∣∣ 1
t−t0

(
Φβ
t

(
X(t0)

)
−X(t0)

)
− vβ

(
t0, X(t0)

)∣∣∣2 ] = 0. (5.46)

To this end, we first note that by (5.37) we have the identity

Φβ
t (x) = x+

∫ t

t0
vβ
(
u,Φβ

u(x)
)
du, x ∈ Rn, (5.47)

for all t > t0. On account of it we see that the expectation in (5.46) is equal to

EP

[ ∣∣∣∣ 1
t− t0

∫ t

t0
vβ
(
u,Φβ

u

(
X(t0)

))
du− vβ

(
t0, X(t0)

)∣∣∣∣2
]
. (5.48)

As Φβ
t transports P β(t0) to P β(t), and because the random variable X(t0) has the same distribution

under Pβ as it does under P, i.e., P β(t0) = P (t0), this expectation can also be expressed with respect
to the probability measure Pβ, and it thus suffices to show the limiting assertion

lim
t↓t0

EPβ

[ ∣∣∣∣ 1
t− t0

∫ t

t0
vβ
(
u,X(u)

)
du− vβ

(
t0, X(t0)

)∣∣∣∣2
]

= 0. (5.49)

For this purpose, we first observe that by the continuity of the paths of the canonical coordinate
process (X(t))t>0, the family of random variables( ∣∣∣∣ 1

t− t0

∫ t

t0
vβ
(
u,X(u)

)
du− vβ

(
t0, X(t0)

)∣∣∣∣2
)
t>t0

(5.50)

converges Pβ-almost surely to zero, as t ↓ t0. In order to show that their expectations also converge
to zero, i.e., that (5.49) does hold, we have to verify that the family of (5.50) is uniformly integrable
with respect to Pβ. As the random variable |vβ(t0, X(t0))|2 belongs to L1(Pβ), and we have∣∣∣∣ 1

t− t0

∫ t

t0
vβ
(
u,X(u)

)
du
∣∣∣∣2 6

1
t− t0

∫ t

t0

∣∣vβ(u,X(u)
)∣∣2 du, t > t0 (5.51)

by Jensen’s inequality, it is sufficient to prove the uniform integrability of the family(
1

t− t0

∫ t

t0

∣∣vβ(u,X(u)
)∣∣2 du)

t>t0

. (5.52)
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Invoking the definition of the time-dependent velocity field
(
vβ(t, · )

)
t>t0

in (5.14) and the fact that
the perturbation β is smooth and compactly supported, the uniform integrability of the family in
(5.52) above, is equivalent to the uniform integrability of the family(

1
t− t0

∫ t

t0

∣∣∇`β(u,X(u)
)∣∣2

`β
(
u,X(u)

)2 du
)
t>t0

. (5.53)

Now by continuity, the family of (5.53) converges Pβ-almost surely to |∇ log `(t0, X(t0))|2. Thus, to
establish this uniform integrability, it suffices to show that the family of random variables in (5.53)
converges in L1(Pβ). Hence, in view of Scheffé’s lemma (Lemma D.1), it remains to check that the
corresponding expectations also converge. But at this point we use for the first time our choice of
t0 ∈ R+ \N and recall (3.41), (3.42) from the proof of Corollary 3.11, which gives us

lim
t↓t0

EPβ

[
1

t− t0

∫ t

t0

∣∣∇`β(u,X(u)
)∣∣2

`β
(
u,X(u)

)2 du
]

= EP

[ ∣∣∇`(t0, X(t0)
)∣∣2

`
(
t0, X(t0)

)2
]
, (5.54)

as required. This completes the proof of the claim made in the beginning of Step 6.
Summing up, in light of (5.43), (5.44) from Step 5, the limiting assertions (5.45) and (5.46) imply

the limiting behavior (5.42). According to the results of Steps 4 and 5, the latter also entails the
validity of the limiting identity (5.36), which completes the proof of Theorem 5.2.

Equipped with Theorem 5.2, we can now easily deduce Theorem 5.1.

Proof of Theorem 5.1. The second equality in (5.13) follows from the representation of the relative
Fisher information in (3.8) and the definition of the time-dependent velocity field

(
v(t, · )

)
t>t0

in (5.4).
The first equality in (5.13) is a direct consequence of Theorem 5.2. One just has to set β ≡ 0 in
(5.18). However, the careful reader might note that the limit in (5.18) is only from the right, while
the limit in (5.13) is two-sided. But the only reason for considering right-sided limits in Theorem
5.2, was the presence of the perturbation β at time t > t0. If there is no such perturbation, one can
replace all limits from the right by two-sided ones. This completes the proof of Theorem 5.1.
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Appendices

A. Bachelier’s work relating Brownian motion to the heat equation

In this section, which is only of historical interest, we point out that Bachelier already had some
thoughts on “horizontal transport of probability measures” in his dissertation “Théorie de la spécula-
tion” [Bac00, Bac06], which he defended in 1900.
In this work he was the first to consider a mathematical model of Brownian motion. Bachelier

argued using infinitesimals by visualizing Brownian motion (W (t))t>0 as an infinitesimal version of a
random walk. Suppose that the grid in space is given by

. . . , xn−2, xn−1, xn, xn+1, xn+2, . . . (A.1)

having the same (infinitesimal) distance ∆x = xn − xn−1, for all n, and such that at time t these
points have (infinitesimal) probabilities

. . . , ptn−2, p
t
n−1, p

t
n, p

t
n+1, p

t
n+2, . . . (A.2)

under the random walk under consideration. What are the probabilities

. . . , pt+∆t
n−2 , p

t+∆t
n−1 , p

t+∆t
n , pt+∆t

n+1 , p
t+∆t
n+2 , . . . (A.3)

of these points at time t+ ∆t?
The random walk moves half of the mass ptn, sitting on xn at time t, to the point xn+1. En revanche,

it moves half of the mass ptn+1, sitting on xn+1 at time t, to the point xn. The net difference between
ptn/2 and ptn+1/2, which Bachelier has no scruples to identify with

− 1
2 (pt)′(xn) ∆x = −1

2 (pt)′(xn+1) ∆x, (A.4)

is therefore transported from the interval (−∞, xn] to [xn+1,∞). In Bachelier’s own words, this is
very nicely captured by the following passage of his thesis:

“Each price x during an element of time radiates towards its neighboring price an amount of
probability proportional to the difference of their probabilities. I say proportional because it is necessary
to account for the relation of ∆x to ∆t. The above law can, by analogy with certain physical theories,
be called the law of radiation or diffusion of probability.”

Passing formally to the continuous limit and denoting by

P (t, x) =
∫ x

−∞
p(t, z) dz (A.5)

the distribution function associated to the Gaussian density function p(t, x), Bachelier deduces in an
intuitively convincing way the relation

∂P

∂t
= 1

2
∂p

∂x
, (A.6)

where we have normalized the relation between ∆x and ∆t to obtain the constant 1/2. By differen-
tiating (A.6) with respect to x one obtains the usual heat equation

∂p

∂t
= 1

2
∂2p

∂x2 (A.7)

for the density function p(t, x). Of course, the heat equation was known to Bachelier, and he notes
regarding (A.7): “C’est une équation de Fourier.”

46



But let us still remain with the form (A.6) of the heat equation and analyze its message in terms
of “horizontal transport of probability measures”. To accomplish the movement of mass −1

2 p
′(t, x) dx

from (−∞, x] to [x,∞) one is naturally led to define the flow induced by the velocity field

v(t, x) := −1
2
p′(t, x)
p(t, x) , (A.8)

which has the natural interpretation as the “speed” of the transport induced by p(t, x). We thus
encounter in nuce the ubiquitous “score function” ∇p(t, x)/p(t, x) appearing throughout all the above
considerations. We also note that an “infinitesimal transport” on R is automatically an optimal
transport. Intuitively this corresponds to the geometric insight in the one-dimensional case that the
transport lines of infinitesimal length cannot cross each other.
Let us go one step beyond Bachelier’s thoughts and consider the relation of the above infinitesimal

Wasserstein transport to time reversal (which Bachelier had not yet considered in his solitary ex-
ploration of Brownian motion). Visualizing again the grid (A.1) and the corresponding probabilities
(A.2) and (A.3), a moment’s reflection reveals that the transport from pt+∆t to pt, i.e., in reverse
direction, is accomplished by going from xn to xn+1 with probability 1

2 + p′(t,x)
p(t,x) dx and from xn+1 to

xn with probability 1
2 −

p′(t,x)
p(t,x) dx, with the identifications x = xn = xn+1, and dx = ∆x. In other

words, the above Brownian motion (W (t))t>0 considered in reverse direction (W (T − s))06s6T is not
a Brownian motion, as the transition probabilities are not (1/2, 1/2) any more. Rather, one has
to correct these probabilities by a term which — once again — involves our familiar score function
∇p(t, x)/p(t, x) (compare (4.4) above). At this stage, it should come as no surprise, that the passage
to reverse time is closely related to the Wasserstein transport induced by p(t, x).

Let us play this infinitesimal reasoning one more time, in order to visualize the Fontbona-Jourdain
result (Theorem 4.2). Arguing in the reverse direction of time, we may ask the following question:
how do we have to choose the transition probabilities to go from x at time t + ∆t to either x + dx
or x − dx at time t, so that the density process p(t, x) becomes a martingale in reverse time under
these transition probabilities? As the difference between the probabilities p(t, x+dx) and p(t, x−dx)
equals 2 p′(t, x) dx (up to terms of smaller order than dx) we conclude that the transition probabilities
have to be changed from (1/2, 1/2) to(1

2 −
p′(t, x)
p(t, x) dx , 1

2 + p′(t, x)
p(t, x) dx

)
(A.9)

in order to counterbalance this difference of probabilities (again up to terms of smaller order than
dx). In other words, we have found again precisely the same transition probabilities which we had
encountered in the context of the reversed Brownian process (W (T − s))06s6T . This provides some
intuition for the Fontbona-Jourdain assertion that (p(T − s,W (T − s))06s6T is a martingale in the
reverse direction of time.
We finish the section by returning to Bachelier’s thesis. The rapporteur of Bachelier’s dissertation

was no lesser a figure than Henri Poincaré. Apparently he was aware of the enormous potential of
the section “Rayonnement de la probabilité” in Bachelier’s thesis, when he added to his very positive
report the handwritten phrase: “On peut regretter que M. Bachelier n’ait pas développé davantage
cette partie de sa thèse.” That is: One might regret that Mr. Bachelier did not develop further this
part of his thesis.

B. The proofs of Lemmas 2.1 and 3.3

Proof of Lemma 2.1. Let the real constants c,R > 0 be as in condition (iii) of Assumptions 1.2, and
denote

mR := max
|x|6R

∣∣n− 〈x , 2∇Ψ(x)
〉
Rn

∣∣ <∞ , τk := inf
{
t > 0: |X(t)| > k

}
(B.1)
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for integers k > R. Itô’s formula gives

d|X(t)|2 =
(
n−

〈
X(t) , 2∇Ψ

(
X(t)

)〉
Rn

)
dt+

〈
2X(t) , dW (t)

〉
Rn

(B.2)

for t > 0. We define ϕk(t) := EP
[
|X(t ∧ τk)|2

]
and ϕ(t) := EP

[
|X(t)|2

]
. Taking expectations in

(B.2) yields

ϕk(t) = ϕ(0) + EP
[ ∫ t∧τk

0

(
n−

〈
X(u) , 2∇Ψ

(
X(u)

)〉
Rn

)
1{|X(u)|6R} du

]
(B.3)

+ EP
[ ∫ t∧τk

0

(
n−

〈
X(u) , 2∇Ψ

(
X(u)

)〉
Rn

)
1{|X(u)|>R} du

]
(B.4)

6 ϕ(0) +mREP[t ∧ τk] + EP
[ ∫ t∧τk

0

(
n+ 2 c |X(u)|2

)
du
]

(B.5)

6 ϕ(0) + (mR + n) t+ 2 c
∫ t

0
ϕk(u) du. (B.6)

The Gronwall inequality gives now

ϕk(t) 6 g(t) := ϕ(0) + (mR + n) t+ 2 c
∫ t

0

(
ϕ(0) + (mR + n)u

)
e2c(t−u) du. (B.7)

According to the second-moment condition in (1.10), the quantity g(t) is finite for all t > 0, and
independent of k; letting k ↑ ∞ in (B.7), we get

ϕ(t) = EP
[
|X(t)|2

]
6 g(t) <∞, t > 0. (B.8)

In other words, we have that P (t) ∈P2(Rn) for all t > 0.

Proof of Lemma 3.3. The proof of Lemma 3.3 follows by analogy with the proof of Lemma 2.1 above.
Indeed, one just has to add the perturbation β to the gradient ∇Ψ in the expressions (B.1) – (B.4),
writeW β(t) instead ofW (t) in (B.2), and replace all the P-expectations by expectations with respect
to the probability measure Pβ. Then the constant mR in (B.1) is still finite and, because of its
compact support, the perturbation β in the expression (B.4) vanishes, provided R is chosen large
enough. Hence, by the same token as above, we conclude that P β(t) ∈P2(Rn) for all t > t0.

C. Relative entropy with respect to a σ-finite measure Q

For two probability measures P and Q on B(Rn), the relative entropy of P with respect to Q is
defined as

H(P |Q) :=
∫
Rn

log
(dP
dQ

)
dP ∈ [0,∞] (C.1)

if P is absolutely continuous with respect to Q, and as H(P |Q) :=∞ if this is not the case.
Let us consider the σ-finite measure Q on B(Rn) with density Rn 3 x 7→ q(x) = e−2Ψ(x), in-

troduced in Section 2. Following the approach of [Léo14, Section 2], we shall demonstrate that the
same definition of relative entropy H(P |Q) applies to the reference measure Q, provided that the
probability measure P is an element of P2(Rn) — with the only difference that the quantity (C.1)
now takes values in (−∞,∞].
To this end, we let P be a probability measure in the quadratic Wasserstein space P2(Rn). The

non-negativity of the potential Ψ implies that for the function Rn 3 x 7→ f(x) := e−|x|2 we have
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EQ[f ] ∈ (0,∞). Following [Léo14, Section 2], we let Q be the probability measure on B(Rn) having
probability density function f/EQ[f ] with respect to the measure Q, so that

dP
dQ = f

EQ[f ]
dP
dQ . (C.2)

Taking first logarithms and then expectations with respect to P on both sides of this equation yields
the formula

H(P |Q) = H(P | Q)−
∫
Rn
|x|2 dP (x)− log

(∫
Rn

e−|x|2−2Ψ(x) dx
)
, (C.3)

which is justified by (C.1) and the fact that P ∈ P2(Rn) as well as EQ[f ] ∈ (0,∞). In particular,
we see that the right-hand side of (C.3) takes values in the interval (−∞,∞]. Summing up, we can
define well the relative entropy H(P |Q) as in (C.1) provided that P ∈ P2(Rn), even when the
σ-finite measure Q has infinite total mass.
Remark C.1. Wherever in this paper the relative entropy H(P |Q) is considered for some σ-finite
measure Q on B(Rn) with density Rn 3 x 7→ q(x) = e−2Ψ(x), the probability measure P will always
be assumed to belong to P2(Rn). This is in accordance with Lemmas 2.1 and 3.3, as well as Lemma
3.19. In the latter, the constant-speed geodesic (Pt)06t61 joining two probability measures P0 and P1
in P2(Rn) is considered. Therefore, in all situations relevant to us, the relative entropy H(P |Q) is
well-defined and takes values in the interval (−∞,∞].

D. A measure-theoretic result

In the proofs of Propositions 3.12 and 3.14 we have used a result about conditional expectations, which
we will formulate and prove below. We place ourselves on a probability space (Ω,F ,P) endowed with
a left-continuous filtration (F(t))t>0. We first state the following result, which is known as Scheffé’s
lemma [Wil91, 5.10].

Lemma D.1 (Scheffé’s lemma). For a sequence of integrable random variables (Xn)n∈N which con-
verges almost surely to another integrable random variable X, convergence of the L1(P)-norms (i.e.,
limn→∞E[|Xn|] = E[|X|]) is equivalent to convergence in L1(P) (i.e., limn→∞E[|Xn −X|] = 0).

Proposition D.2. Let (B(t))06t6T and (C(t))06t6T be adapted continuous processes, which are non-
negative and uniformly bounded, respectively. Define the process (A(t))06t6T as their primitive, i.e.,

A(t) =
∫ t

0

(
B(u) + C(u)

)
du, 0 6 t 6 T (D.1)

and assume that E
[ ∫ T

0 B(u) du
]
is finite. By the Lebesgue differentiation theorem, for Lebesgue-almost

every t0 ∈ [0, T ], we have

lim
t→t0

E

[
A(t)−A(t0)

t− t0

]
= lim

t→t0
E

[
1

t− t0

∫ t

t0

(
B(u) + C(u)

)
du
]

= E
[
B(t0) + C(t0)

]
. (D.2)

Now fix a “Lebesgue point” t0 ∈ [0, T ] for which (D.2) does hold. Then we have the analogous limiting
assertion for the conditional expectations, i.e.,

lim
t↑t0

E
[
A(t0)−A(t) | F(t)

]
t0 − t

= lim
t↓t0

E
[
A(t)−A(t0) | F(t0)

]
t− t0

= B(t0) + C(t0), (D.3)

where the limits exist in L1(P).
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Proof. Using the uniform boundedness of the process (C(t))06t6T , it is easy to see that the existence
of the limit in (D.2) only depends on the process (B(t))06t6T . Therefore we can assume without loss
of generality that C(t) ≡ 0 for all 0 6 t 6 T .

Fix a Lebesgue point t0 ∈ [0, T ] for which (D.2) does hold. As the process (B(t))06t6T is continuous,
the fundamental theorem of calculus ensures that the limit

lim
t→t0

A(t)−A(t0)
t− t0

= lim
t→t0

1
t− t0

∫ t

t0
B(u) du = B(t0) (D.4)

exists almost surely. Since the random variables appearing in (D.4) are integrable, and we already
have the convergence of the L1(P)-norms from (D.2), Lemma D.1 allows us to conclude that the
convergence of (D.4) holds also in L1(P), i.e.,

lim
t→t0

∥∥∥∥A(t)−A(t0)
t− t0

−B(t0)
∥∥∥∥
L1(P)

= 0. (D.5)

From (D.5) we can deduce now the L1(P)-convergence of (D.3) as follows. Regarding the second limit
in (D.3), for t > t0, we find∥∥∥∥∥E

[
A(t)−A(t0) | F(t0)

]
t− t0

−B(t0)
∥∥∥∥∥
L1(P)

=
∥∥∥∥∥E
[
A(t)−A(t0)

t− t0
−B(t0)

∣∣∣ F(t0)
] ∥∥∥∥∥

L1(P)

(D.6)

6
∥∥∥∥A(t)−A(t0)

t− t0
−B(t0)

∥∥∥∥
L1(P)

; (D.7)

and according to (D.5), the expression in (D.7) converges to zero as t ↓ t0. Similarly, to handle the
first limit in (D.3), we use for t < t0 the estimate∥∥∥∥∥E

[
A(t0)−A(t) | F(t)

]
t0 − t

−B(t0)
∥∥∥∥∥
L1(P)

6
∥∥∥∥A(t0)−A(t)

t0 − t
−B(t0)

∥∥∥∥
L1(P)

(D.8)

+
∥∥E[B(t0) | F(t)

]
−B(t0)

∥∥
L1(P). (D.9)

As t ↑ t0, the expression on the right-hand side of (D.8) converges to zero as before. The same is
true also for the term in (D.9), on account of [Chu01, Theorem 9.4.8] and the left-continuity of the
filtration (F(t))t>0. This completes the proof of Proposition D.2.

E. The proof of the Fontbona-Jourdain theorem

Proof of Theorem 4.2 [FJ16]. For 0 6 s 6 T , we define the random variable N(T − s) as the condi-
tional expectation of the random variable

`
(
0, X(0)

)
=
p
(
0, X(0)

)
q
(
X(0)

) ∈ L1(Q) (E.1)

with respect to the backwards filtration (G(T − s))06s6T , i.e.,

N(T − s) := EQ

[
`
(
0, X(0)

) ∣∣ G(T − s)
]
, 0 6 s 6 T. (E.2)

Obviously the process (N(T − s))06s6T is a martingale of the backwards filtration (G(T − s))06s6T
under the probability measure Q. Now we make the following elementary, but crucial, observation: as
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the stochastic process (X(t))06t6T , which solves the stochastic differential equation (2.1), is a Markov
process, the time-reversed process (X(T − s))06s6T is a Markov process, too, under the probability
measure P as well as under Q. Hence

N(T − s) = EQ

[
`
(
0, X(0)

) ∣∣ X(T − s)
]
, 0 6 s 6 T. (E.3)

We have to show that this last conditional expectation equals `(T − s,X(T − s)). To this end, we
fix s ∈ [0, T ] as well as a Borel set A ⊆ Rn, and denote by π(T − s;x,A) the transition probability
of the event {X(T − s) ∈ A}, conditionally on X(0) = x. Note that this transition probability does
not depend on whether we consider the process (X(t))06t6T under P or under Q. Then we find

EQ

[
p
(
0, X(0)

)
q
(
X(0)

) 1A
(
X(T − s)

)]
=
∫
Rn

p(0, x)
q(x) π(T − s;x,A) q(x) dx = P (T − s)[A]. (E.4)

Note also that

EQ

[
p
(
T − s,X(T − s)

)
q
(
X(T − s)

) 1A
(
X(T − s)

)]
= P (T − s)[A]. (E.5)

Because the Borel set A ⊆ Rn is arbitrary, we deduce from (E.4) and (E.5) that

EQ

[
p
(
0, X(0)

)
q
(
X(0)

) ∣∣∣∣ X(T − s)
]

=
p
(
T − s,X(T − s)

)
q
(
X(T − s)

) = `
(
T − s,X(T − s)

)
. (E.6)

This completes the proof of Theorem 4.2.

F. The proof of Lemma 3.19

Proof of Lemma 3.19. In order to show (3.65), we recall the notation of (3.62) and consider the
time-dependent velocity field

[0, 1]×Rn 3 (t, ξ) 7−→ vt(ξ) := γ
((
T γt
)−1(ξ)

)
∈ Rn, (F.1)

which is well-defined Pt-almost everywhere, for every t ∈ [0, 1]. Then (vt)06t61 is the velocity field
associated with (T γt )06t61, i.e.,

T γt (x) = x+
∫ t

0
vθ
(
T γθ (x)

)
dθ, (F.2)

on account of (3.62). Let pt( · ) be the probability density function of the probability measure Pt in
(3.62). Then, according to [Vil03, Theorem 5.34], the function pt( · ) satisfies the continuity equation

∂tpt(x) + div
(
vt(x) pt(x)

)
= 0, (t, x) ∈ (0, 1)×Rn, (F.3)

which can be written equivalently as

− ∂tpt(x) = div
(
vt(x)

)
pt(x) +

〈
vt(x) ,∇pt(x)

〉
Rn
, (t, x) ∈ (0, 1)×Rn. (F.4)

Recall that X0 is a random variable with probability distribution P0 on the probability space (S,S, ν).
Then the integral equation

Xt = X0 +
∫ t

0
vθ(Xθ) dθ, 0 6 t 6 1 (F.5)

defines random variables Xt with probability distributions Pt = (T γt )#(P0) for t ∈ [0, 1], as in (3.62).
We have now

dpt(Xt) = ∂tpt(Xt) dt+
〈
∇pt(Xt) , dXt

〉
Rn

= −pt(Xt) div
(
vt(Xt)

)
dt (F.6)
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on account of (F.4), (F.5), thus also

d log pt(Xt) = −div
(
vt(Xt)

)
dt, 0 6 t 6 1. (F.7)

Recall now the function q(x) = e−2Ψ(x), for which

d log q(Xt) = −
〈
2∇Ψ(Xt) , dXt

〉
Rn

= −
〈
2∇Ψ(Xt) , vt(Xt)

〉
Rn

dt. (F.8)

For the likelihood ratio function `t( · ) of (3.64) we get from (F.7) and (F.8) that

d log `t(Xt) =
〈
2∇Ψ(Xt) , vt(Xt)

〉
Rn

dt − div
(
vt(Xt)

)
dt, 0 6 t 6 1. (F.9)

Taking expectations in the integral version of (F.9), we obtain that the difference

H(Pt |Q)−H(P0 |Q) = Eν
[
log `t(Xt)

]
− Eν

[
log `0(X0)

]
(F.10)

is equal to

Eν

[ ∫ t

0

(〈
2∇Ψ(Xθ) , vθ(Xθ)

〉
Rn
− div

(
vθ(Xθ)

))
dθ
]

(F.11)

for t ∈ [0, 1]. Consequently,

lim
t↓0

H(Pt |Q)−H(P0 |Q)
t

= Eν

[〈
2∇Ψ(X0) , v0(X0)

〉
Rn
− div

(
v0(X0)

)]
. (F.12)

Integrating by parts, we see that

Eν
[
div

(
v0(X0)

)]
=
∫
Rn

div
(
v0(x)

)
p0(x) dx = −

∫
Rn

〈
v0(x) ,∇p0(x)

〉
Rn

dx (F.13)

= −
〈
∇ log p0(X0) , v0(X0)

〉
L2(ν). (F.14)

Recalling (F.12), and combining it with the relation ∇ log `t(x) = ∇ log pt(x) + 2∇Ψ(x), as well as
with (F.13) and (F.14), we get

lim
t↓0

H(Pt |Q)−H(P0 |Q)
t

=
〈
∇ log `0(X0) , v0(X0)

〉
L2(ν). (F.15)

Since v0 = γ, this leads to (3.65).

G. Time reversal of diffusions

We review in the present section the theory of time reversal for diffusion processes developed by
Föllmer [Föl85, Föl86], Haussmann and Pardoux [HP86], and Pardoux [Par86]. This section can be
read independently of the rest of the paper; it does not present novel results.

G.1. Introduction

It is very well known that the Markov property is invariant under time reversal. In other words,
a Markov process remains a Markov process under time reversal (e.g., [RW00a, Exercise E60.41, p.
162]). On the other hand, it is also well known that the strong Markov property is not necessarily
preserved under time reversal (e.g., [RW00a, p. 330]), and neither is the semimartingale property
(e.g., [Wal82]). The reason for such failure is the same in both cases: after reversing time, “we may
know too much”. Thus, the following questions arise rather naturally:
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Given a diffusion process (in particular, a strong Markov semimartingale with continuous paths)
X = (X(t))06t6T with certain specific drift and dispersion characteristics, under what conditions
might the time-reversed process

X̂(s) := X(T − s), 0 6 s 6 T, (G.1)

also be a diffusion? if it happens to be, what are the characteristics of the time-reversed diffusion?
Such questions go back at least to Boltzmann [Bol96, Bol98a, Bol98b], Schrödinger [Sch31, Sch32]

and Kolmogorov [Kol37]; they were dealt with systematically by Nelson [Nel01] (see also Carlen
[Car84]) in the context of Nelson’s dynamical theories for Brownian motion and diffusion. There is
now a rather complete theory that answers these questions and provides, as a kind of “bonus”, some
rather unexpected results as well. It was developed in the context of theories of filtering, interpolation
and extrapolation, where such issues arise naturally — most notably Haussmann and Pardoux [HP86],
and Pardoux [Par86]. Very interesting related results in a non-Markovian context, but with dispersion
structure given by the identity matrix, have been obtained by Föllmer [Föl85, Föl86]. Let us refer
also to the papers [Nag64, NM79] dealing with time reversal of Markov processes, and to the book
[Nag93] on diffusion theory. In what follows, this theory is presented in the spirit of the expository
paper by Meyer [Mey94].

G.2. The setting

We place ourselves on a filtered probability space (Ω,F ,P), F = (F(t))06t6T rich enough to support
an Rd-valued Brownian motion W = (W1, . . . ,Wd)′ adapted to F, as well as an independent F(0)-
measurable random vector ξ = (ξ1, . . . , ξn)′ : Ω→ Rn. In fact, we shall assume that F is the filtration
generated by these two objects, in the sense that we shall take

F(t) = σ
(
ξ,W (θ) : 0 6 θ 6 t

)
, 0 6 t 6 T,

modulo P-augmentation. Next, we assume that the system of stochastic equations

Xi(t) = ξi +
∫ t

0
bi
(
θ,X(θ)

)
dθ +

d∑
ν=1

∫ t

0
siν
(
θ,X(θ)

)
dWν(θ), 0 6 t 6 T, (G.2)

for i = 1, . . . , n admits a pathwise unique, strong solution. It is then well known that the resulting
continuous process X = (X1, . . . , Xn)′ is F-adapted (the strong solvability of the equation (G.2)),
which implies that we have also

F(t) = σ
(
X(θ),W (θ) : 0 6 θ 6 t

)
= σ

(
X(0),W (t)−W (θ) : 0 6 θ 6 t

)
(G.3)

modulo P-augmentation, for 0 6 t 6 T ; as well as that X has the strong Markov property, and is
thus a diffusion process with drifts bi( · , · ) and dispersions siν( · , · ), i = 1, . . . , n, ν = 1, . . . , d. We
shall denote the (i, j)th entry of the covariance matrix a(t, x) := s(t, x) s′(t, x) by

aij(t, x) :=
d∑

ν=1
siν(t, x) sjν(t, x), 1 6 i, j 6 n.

These characteristics are given mappings from [0, T ] × Rn into R with sufficient smoothness; in
particular, such that the probability density function p(t, · ) : Rn → (0,∞) in

P
[
X(t) ∈ A

]
=
∫
A
p(t, x) dx, A ∈ B(Rn),

is smooth. Sufficient conditions on the drift bi( · , · ) and dispersion siν( · , · ) characteristics that
lead to such smoothness, are provided by the Hörmander hypoellipticity conditions; see for instance
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[Bel95], [Nua06] for this result, as well as [Rog85] for a very simple argument in the one-dimensional
case (n = d = 1), and to the case of Langevin type equation (2.1) for arbitrary n ∈ N. We refer to
[Fri75], [RW00b] or [KS98] for the basics of the theory of stochastic equations of the form (G.2).
The probability density function p(t, · ) : Rn → (0,∞) solves the forward Kolmogorov [Kol31]

equation [Fri75, p. 149]

∂tp(t, x) = 1
2

n∑
i,j=1

D2
ij

(
aij(t, x) p(t, x)

)
−

n∑
i=1

Di
(
bi(t, x) p(t, x)

)
, (t, x) ∈ (0, T ]×Rn. (G.4)

If the drift and dispersion characteristics do not depend on time, and an invariant probability measure
exists for the diffusion process of (G.2), the density function p( · ) of this measure solves the stationary
version of this forward Kolmogorov equation, to wit

1
2

n∑
i,j=1

D2
ij

(
aij(x) p(x)

)
=

n∑
i=1

Di
(
bi(x) p(x)

)
, x ∈ Rn. (G.5)

G.3. Time reversal and the backwards filtration

Consider now the family of σ-algebras (F̂(t))06t6T given by

F̂(t) := σ
(
X(θ),W (θ)−W (t) : t 6 θ 6 T

)
, 0 6 t 6 T. (G.6)

It is not hard to see that the σ-algebra in (G.6) is expressed equivalently as

F̂(t) = σ
(
X(t),W (θ)−W (t) : t 6 θ 6 T

)
= σ

(
X(t),W (θ)−W (T ) : t 6 θ 6 T

)
= σ

(
X(T ),W (θ)−W (t) : t 6 θ 6 T

)
= σ

(
X(T )

)
∨H(t). (G.7)

Here, the σ-algebra generated by the Brownian increments after time t, namely,

H(t) := σ
(
W (θ)−W (t) : t 6 θ 6 T

)
, 0 6 t 6 T, (G.8)

is independent of the random vector X(t). The time-reversed processes X̂ as in (G.1), as well as

W̃ (s) := W (T − s)−W (T ), 0 6 s 6 T, (G.9)

are both adapted to the backwards filtration F̂ :=
(
F̂(T − s)

)
06s6T , where

F̂(T − s) = σ
(
X(T − u),W (T − u)−W (T − s) : 0 6 u 6 s

)
= σ

(
X̂(u), W̃ (u)− W̃ (s) : 0 6 u 6 s

) (G.10)

from (G.6). Note that, by complete analogy with (G.3), we have also

F̂(T − s) = σ
(
X(T ),W (T − u)−W (T − s) : 0 6 u 6 s

)
= σ

(
X̂(0)

)
∨H(T − s) (G.11)

on account of (G.7), where

H(T − s) = σ
(
W (T − u)−W (T − s) : 0 6 u 6 s

)
= σ

(
W̃ (u)− W̃ (s) : 0 6 u 6 s

)
. (G.12)

In words: the σ-algebra F̂(T − s) is generated by the terminal value X(T ) of the forward process
(i.e., by the original value X̂(0) of the backward process) and by the increments of the time-reversed
process W̃ on [0, s]; see the expressions right above. Furthermore, the σ-algebra F̂(T − s) measures
all the random variables X̂(u), u ∈ [0, s].
Remark G.1. In fact, the time-reversed process W̃ is a Brownian motion of the backwards filtration
H := (H(T−s))06s6T ⊆ F̂ as in (G.12), generated by the increments ofW after time T−s, 0 6 s 6 T .
This is because it is a martingale of this filtration, has continuous paths, and its quadratic variation is
that of Brownian motion (Lévy’s theorem [KS98, Theorem 5.1]). In the next subsection we shall see
that the process W̃ is only a semimartingale of the larger backwards filtration F̂ =

(
F̂(T − s)

)
06s6T ,

and identify its semimartingale decomposition.
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G.4. Some remarkable Brownian motions

Following the exposition and ideas in [Mey94], we start with a couple of observations. First, for every
t ∈ [0, T ] and every integrable, F̂(t)-measurable random variable K, we have

E
[
K |F(t)

]
= E

[
K |X(t)

]
, almost surely. (G.13)

Secondly, we fix a function G ∈ C∞0 (Rn) and a time-point t ∈ (0, T ], and define

g(θ, x) := E
[
G
(
X(t)

)
|X(θ) = x

]
, (θ, x) ∈ [0, t]×Rn.

Invoking the Markov property of X, we deduce that the process

g
(
θ,X(θ)

)
= E

[
G
(
X(t)

)
|X(θ)

]
= E

[
G
(
X(t)

)
| F(θ)

]
, 0 6 θ 6 t

is an F-martingale, and obtain

G
(
X(t)

)
− g

(
θ,X(θ)

)
= g

(
t,X(t)

)
− g

(
θ,X(θ)

)
=

n∑
i=1

d∑
ν=1

∫ t

θ
Dig

(
v,X(v)

)
siν
(
v,X(v)

)
dWν(v).

For every index ν = 1, . . . , d this gives, after integrating by parts,

E
[(
Wν(t)−Wν(θ)

)
·G
(
X(t)

)]
= E

[(
Wν(t)−Wν(θ)

)
·
(
g
(
t,X(t)

)
− g

(
θ,X(θ)

))]

= E

[ n∑
i=1

∫ t

θ
Dig

(
v,X(v)

)
siν
(
v,X(v)

)
dv
]

=
n∑
i=1

∫ t

θ

∫
Rn

(
Dig · siν

)
(v, x) p(v, x) dx dv

= −
n∑
i=1

∫ t

θ

∫
Rn
g(v, x)Di

(
p(v, x) siν(v, x)

)
dx dv = −

∫ t

θ

∫
Rn
g(v, x) div

(
p(v, x) sν(v, x)

)
dx dv

= −
∫ t

θ
E

[
g
(
v,X(v)

)
· div(p sν)

p

(
v,X(v)

)]
dv = −E

[
G
(
X(t)

)
·
∫ t

θ

div(p sν)
p

(
v,X(v)

)
dv
]
.

Here sν(v, · ) is the νth column vector of the dispersion matrix. Comparing the first and last expres-
sions in the above string of equalities, we see that with 0 6 θ 6 t we have

E

[
G
(
X(t)

)
·
(
Wν(t)−Wν(θ) +

∫ t

θ

div(p sν)
p

(
v,X(v)

)
dv
)]

= 0 (G.14)

for every G ∈ C∞0 (Rn), and thus by extension for every bounded, measurable G : Rn → R.

Theorem G.2. The vector process B = (B1, . . . , Bd)′ defined as

Bν(s) := W̃ν(s)−
∫ s

0

div(p sν)
p

(
T − u, X̂(u)

)
du (G.15)

=Wν(T − s)−Wν(T )−
∫ T

T−s

div(p sν)
p

(
v,X(v)

)
dv, 0 6 s 6 T, (G.16)

for ν = 1, . . . , d, is a Brownian motion of the backwards filtration F̂ =
(
F̂(T − s)

)
06s6T .

Remark G.3. The Brownian motion process B is thus independent of F̂(T ), and therefore also of the
F̂(T )-measurable random variable X(T ). A bit more generally,{

B(T − θ)−B(T − t) : 0 6 θ 6 t
}

is independent of F̂(t) ⊇ σ
(
X(v) : t 6 v 6 T

)
.

Note also from (G.16) that

Bν(T − θ)−Bν(T − t) = Wν(θ)−Wν(t)−
∫ t

θ

div(p sν)
p

(
v,X(v)

)
dv, 0 6 θ 6 t.
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Reversing time once again, we obtain the following corollary of Theorem G.2.

Corollary G.4. The F-adapted vector process V = (V1, . . . , Vd)′ with components

Vν(t) := Bν(T − t)−Bν(T ) = Wν(t) +
∫ t

0

div(p sν)
p

(
v,X(v)

)
dv, 0 6 t 6 T, (G.17)

for ν = 1, . . . , d, is yet another Brownian motion (with respect to its own filtration FV ⊆ F). This
process is independent of the random variable X(T ); and a bit more generally, for every t ∈ (0, T ],
the σ-algebra

FV (t) := σ
(
V (θ) : 0 6 θ 6 t

)
(G.18)

generated by present-and-past values of V , is independent of σ(X(v) : t 6 v 6 T ), the σ-algebra
generated by present-and-future values of X.

Proof of Theorem G.2. It suffices to show that each component process Bν is a martingale of the
backwards filtration F̂; because then, in view of the continuity of paths and the easily checked
property 〈Bν , B`〉(s) = s δν`, we can deduce that each Bν is a Brownian motion in the backwards
filtration F̂ (and of course also in its own filtration), and that Bν , B` are independent for ` 6= ν, by
appealing to Lévy’s theorem once again.
Now we have to show E

[(
Bν(T − θ) − Bν(T − t)

)
· K
]

= 0 for 0 6 θ 6 t 6 T and every bounded,
F̂(t)-measurable K; equivalently,

E

[
E
[
K |F(t)

]
·
(
Wν(t)−Wν(θ) +

∫ t

θ

div(p sν)
p

(
v,X(v)

)
dv
)]

= 0,

as the expression inside the curved braces is F(t)-measurable. But recalling (G.13) we have that
E[K |F(t)] = E[K |X(t)] = G(X(t)) for some bounded, measurable G : Rn → R, and the desired
result follows from (G.14).

G.5. The diffusion property under time reversal

Let us return now to the question, whether the time-reversed process X̂ of (G.1), (G.2) is a diffusion.
We start by expressing Xi of (G.2) in terms of a backwards Itô integral (see Subsection G.6) as

Xi(t)− ξi −
∫ t

0
bi
(
θ,X(θ)

)
dθ =

d∑
ν=1

∫ t

0
siν
(
θ,X(θ)

)
dWν(θ)

=
d∑

ν=1

(∫ t

0
siν
(
θ,X(θ)

)
• dWν(θ)−

〈
siν( · , X),Wν

〉
(t)
)
.

From (G.2), we have by Itô’s formula that the process

siν( · , X)− siν(0, ξ)−
n∑
j=1

d∑
κ=1

∫ ·
0
Djsiν

(
θ,X(θ)

)
· sjκ

(
θ,X(θ)

)
dWκ(θ)

is of finite first variation, therefore
〈
siν( · , X),Wν

〉
(t) =

n∑
j=1

∫ t

0
sjν
(
θ,X(θ)

)
Djsiν

(
θ,X(θ)

)
dθ. We

conclude

Xi(t) = ξi −
∫ t

0

( n∑
j=1

d∑
ν=1

sjν Djsiν − bi
)(
θ,X(θ)

)
dθ +

d∑
ν=1

∫ t

0
siν
(
θ,X(θ)

)
• dWν(θ).
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Evaluating also at t = T , then subtracting, we obtain

Xi(t) = Xi(T ) +
∫ T

t

( n∑
j=1

d∑
ν=1

sjν Djsiν − bi
)(
θ,X(θ)

)
dθ −

d∑
ν=1

∫ T

t
siν
(
θ,X(θ)

)
• dWν(θ),

as well as

X̂i(s) = X̂i(0) +
∫ s

0

( n∑
j=1

d∑
ν=1

sjν Djsiν − bi
)(
T − u, X̂(u)

)
du+

d∑
ν=1

∫ s

0
siν
(
T − u, X̂(u)

)
dW̃ν(u)

by reversing time. It is important here to note that the backward Itô integral for W becomes a
forward Itô integral for the process W̃ , the time reversal of W in the manner of (G.9).

But now let us recall (G.15), on the strength of which the above expression takes the form

X̂i(s) = X̂i(0) +
d∑

ν=1

∫ s

0
siν
(
T − u, X̂(u)

)
dBν(u)

+
∫ s

0

( n∑
j=1

d∑
ν=1

sjν Djsiν +
d∑

ν=1
siν

div(p sν)
p

− bi
)(
T − u, X̂(u)

)
du, 0 6 s 6 T.

But in conjunction with Theorem G.2, this means that the time-reversed process X̂ of (G.1), (G.2)
is a semimartingale of the backwards filtration F̂ =

(
F̂(T − s)

)
06s6T , with decomposition

X̂i(s) = X̂i(0) +
∫ s

0
b̂i
(
T − u, X̂(u)

)
du+

d∑
ν=1

∫ s

0
siν
(
T − u, X̂(u)

)
dBν(u) (G.19)

for 0 6 s 6 T , where, for each i = 1, . . . , n, the function b̂i( · , · ) is specified by

b̂i(t, x) + bi(t, x) =
n∑
j=1

d∑
ν=1

sjν(t, x)Djsiν(t, x) +
d∑

ν=1
siν(t, x)

div
(
p(t, x) sν(t, x)

)
p(t, x)

=
n∑
j=1

d∑
ν=1

sjν(t, x)Djsiν(t, x) +
d∑

ν=1

siν(t, x)
p(t, x)

( n∑
j=1

Dj
(
p(t, x) sjν(t, x)

))

=
n∑
j=1

(
Djaij(t, x) + aij(t, x) ·Dj log p(t, x)

)
.

Theorem G.5. Under the assumptions of this section, the time-reversed process X̂ of (G.1), (G.2)
is a diffusion in the backwards filtration F̂ =

(
F̂(T − s)

)
06s6T , with characteristics as in (G.19),

namely, dispersions siν(T − s, x) and drifts b̂i(T − s, x) given by the generalized Nelson equation

b̂i(t, x) + bi(t, x) =
n∑
j=1

(
Djaij(t, x) + aij(t, x) ·Dj log p(t, x)

)
, i = 1, . . . , n. (G.20)

Equivalently, and with div
(
a(t, x)

)
:=
(∑n

j=1Djaij(t, x)
)
16i6n, we write

b̂(t, x) + b(t, x) = div
(
a(t, x)

)
+ a(t, x) · ∇ log p(t, x). (G.21)

Remark G.6. This result can be extended to the case where the sums of the distributional derivatives∑n
j=1Dj

(
aij(t, x) p(t, x)

)
, i = 1, . . . , n, are only assumed to be locally integrable functions of x ∈ Rn;

see [MNS89, RVW01].
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Remark G.7 (Some filtration comparisons). For an invertible dispersion matrix s( · , · ), it follows from
(G.19) that the Brownian motion B is adapted to the filtration generated by X̂; that is,

FB(s) ⊆ F X̂(s) := σ
(
X̂(u) : 0 6 u 6 s

)
= σ

(
X(T − u) : 0 6 u 6 s

)
, 0 6 s 6 T. (G.22)

Now recall (G.15); in its light, the filtration comparison in (G.22) implies FW̃ (s) ⊆ F X̂(s), thus
H(T − s) ⊆ FW̃ (s) ⊆ F X̂(s) from (G.12), for 0 6 s 6 T , and from (G.11) also

F̂(T − s) ⊆ F X̂(s), 0 6 s 6 T. (G.23)

But we have also the reverse inclusion F X̂(s) ⊆ F̂(T − s) on account of (G.10) and (G.22); therefore,
F X̂(s) = F̂(T − s) holds for all 0 6 s 6 T when s( · , · ) is invertible. These considerations inform
our choice of backwards filtration G(T − s) ≡ F X̂(s), 0 6 s 6 T , in (3.22).

G.6. The backwards Itô integral

For two continuous semimartingales X = X(0)+M+B and Y = Y (0)+N+C, with B,C continuous
adapted processes of finite variation andM,N continuous local martingales, let us recall the definition
of the Fisk-Stratonovich integral in [KS98, Definition 3.3.13, p. 156], as well as its properties in [KS98,
Problem 3.3.14] and [KS98, Problem 3.3.15].
By analogy with this definition, we introduce the backwards Itô integral∫ ·

0
Y (t) • dX(t) :=

∫ ·
0
Y (t) dM(t) +

∫ ·
0
Y (t) dB(t) + 〈M,N〉, (G.24)

where the first (respectively, the second) integral on the right-hand side is to be interpreted in the
Itô (respectively, the Lebesgue-Stieltjes) sense.
If Π = {t0, t1, . . . , tm} is a partition of the interval [0, T ] with 0 = t0 < t1 < . . . < tm = T , then the

sums
m−1∑
j=0

Y (tj+1)
(
X(tj+1)−X(tj)

)
(G.25)

converge in probability to
∫ T

0 Y (t) • dX(t) as the mesh ‖Π‖ of the partition tends to zero. Note that
the increments of X here “stick backwards into the past”, as opposed to “sticking forward into the
future” as in the Itô integral.

For the backwards Itô integral we have the change of variable formula

f(X) = f
(
X(0)

)
+

n∑
i=1

∫ ·
0
Dif

(
X(t)

)
• dXi(t)−

1
2

n∑
i,j=1

∫ ·
0
D2
ijf
(
X(t)

)
d〈Mi,Mj〉(t), (G.26)

where now X = (X1, . . . , Xn)′ is a vector of continuous semimartingales X1, . . . , Xn of the form
Xi = Xi(0) +Mi +Bi as above, for i = 1, . . . , n. Note the change of sign, from (+) to (−) in the last,
stochastic correction term.
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