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Abstract. We prove a fundamental result concerning the connection between discrete-
time models of financial markets and the celebrated Black–Scholes–Merton continuous-
time model in which “markets are complete.” Specifically, we prove that if (a) the proba-
bility law of a sequence of discrete-time models converges (in the functional sense) to the
probability lawof theBlack–Scholes–Mertonmodel, and (b) the largestpossibleone-period
step in the discrete-time models converges to zero, then every bounded and continuous
contingent claim can be asymptotically synthesized with bounded risk: For any ✏ > 0 , a
consumer in the discrete-time economy far enough out in the sequence can synthesize a
claim that is nomore than ✏ different from the target contingent claim x withprobability at
least 1� ✏ , and which, with probability 1, has norm less or equal to the norm of the target
claim. This shows that, in terms of important economic properties, the Black-Scholes-
Mertonmodel, with its completemarkets, idealizesmanymore discrete-timemodels than
models based on binomial random walks.

1. Introduction
In the celebratedmodel of a securitiesmarket consistingof a riskyasset, the stock, anda

riskless bond, originally studied by Black and Scholes (1973) andMerton (1973), ”markets
are complete,” in the (rough) sense that everywell-behaved contingent claim based on the
history of stock price can be synthesized by continuous trading in the stock and a riskless
bond (Harrison and Pliska, 1981, 1983). Sharpe (1976) and Cox, Ross, and Rubinstein
(1978) show a similar result for discrete-time economies in which the stock price, over
each time interval, can move (only) to one of two possible values. But if, in discrete-time
models, the stock can move to more than two values over each time interval, markets are
“incomplete” and, the arbitrage bounds on the prices of many contingent claims remain
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wide even when we look at a sequence of economies where, along the sequence, trading
opportunities are increasingly frequent.

These arbitrage bounds are based on the principle that an investor must be capable
of synthesizing a claim that lies (weakly) above or below the given contingent claim with
probability one, sometimes called super-hedging. Suppose we ask instead for asymptotic
synthesis: For a given contingent claim, such as a European call, one wishes (in a discrete-
time and possibly incomplete-markets economy) to synthesize a contingent claim that
is close to the original contingent claim with probability close to one. This can be done
(Duffie and Protter, 1991).

However, if one doesn’t control what happens on the set of small probability onwhich
the target contingent claim and the synthesized approximation can be very different,
arbitrage opportunities (or free lunches) can be synthesized. A satisfactory theory of
(asymptotic) approximate synthesis or replication of contingent claims in this setting re-
quires some reasonable bound on the size of the “replication error.” We show, in some
generality, that for a sequence of discrete-timemarkets that asymptotically “resemble” the
Black-Scholes-Merton (BSM) model, bounded and continuous contingent claims can be
asymptotically synthesized with bounded risk: With probability one, the value of the port-
folios that approximately synthesize the contingent claim are bounded above and below
by, respectively, the upper and lower bounds on the value of the contingent claim being
asymptotically synthesized. (This strengthened definition of asymptotic synthesis rules
out the asymptotic synthesis of free lunches, of course.)

The economic significance of this result takes us back to Arrow’s seminal paper (1963)
on the role of securities markets and dynamic trading: In the world of Black, Scholes,
and Merton, two securities and dynamic trading give complete markets. Cox, Ross, and
Rubinstein (CRR) extend this to discrete-time economies, but for a very special and limited
set of discrete-time economies. The results here show that, while more general discrete-
time economies than in CRR may not give fully complete markets, if (asymptotically)
those economies resemble theBSMeconomy, thendynamic tradingmaygive approximately
complete markets.

However, two further issues intrude. First, while each discrete-time economy in a
sequence of such economies may be economically viable, the sequence as a whole may
allow for the creation of asymptotic free luncheswith bounded risk. This issue—knownas
the problem of asymptotic arbitrage—is well known in the literature, so we provide (only)
a brief discussion of this issue and how it connects to our main result.

Second, even bounded risk may be too much for consumers with preferences that
give no allowance for taking on such risks in the pursuit of desirable contingent claims
(although see the concluding remarks). It would be better to show that asymptotic syn-
thesis of contingent claims with vanishing risk is feasible. But, alas, this is not possible
(outside of the CRR binomialmodel), as we demonstrate by example. (In an appendix, we
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discuss how, from a mathematical perspective, asymptotic synthesis of some contingent
claims with vanishing risk is possible, but in a framework that poses difficulties in terms
of economic interpretation.)

Because the economic framework that underpins our analysis is fairly well known,
we proceed with minimal discussion of that framework and the interpretation of our
results, concentrating instead on the proof of the main result. A complete discussion of
the economics of this analysis is provided in Kreps (2019).

2. General formulation and the main result
We work in the space ⌦ = C0[0, 1] , the space of all continuous functions ! from [0, 1]

to R whose value at 0 is 0. We let ! denote a typical element of ⌦ , with !(t) the value of
! at date t . Endow ⌦ with the sup norm topology, and let {Ft; 0  t  1} be the standard
filtration.

Let P be Wiener measure on ⌦ , so that ! under P is a standard Brownian motion.
Expectation with respect to P is denoted by E[·]

The simple Black-Scholes-Merton (BSM) model of one-risky-asset financial market
concerns two assets that trade one against the other over the continuous interval [0, 1] .
The bond is the numeraire, whose price (relative to itself) is therefore identically 1 . The
second security, called the stock, has price S(t,!) = e!(t) at time t in state ! ; that is,
under P , the stock price has the law of geometric Brownian motion.

We know that there is a unique probability measure on ⌦ , denoted P ⇤ , that is equiva-
lent to P and, under which, S(t) is a martingale (Harrison and Kreps, 1979). Expectation
with respect to P ⇤ is denoted by E⇤[·] .

Contingent claims on ! are functions x : ⌦ ! R . For our purposes, we restrict
attention to contingent claims x that are bounded and continuous (in the sup norm); the
space of such claims will be denoted by X .

The well-known “complete markets” result for the BSM model says that, for every
x 2 X , x can be written

x = E⇤[x] +
Z 1

0
↵dS,

for a predictable and S -integrable integrand ↵ (Harrison and Pliska, 1981, 1983). The
interpretation is that a consumer–investor, living in the BSM economy, can synthesize the
claim x by a trading strategy ↵ that calls for an initial investment E⇤[x] , where ↵(t,!)
represents the number of shares of stock held at time t in state ! andwhere bond holdings
are adjusted continuously so that any purchases of stock (after time 0) are financed by the
sale of bonds (borrowing) and the proceeds of any sale of stock are used to purchase bonds.
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Here, the stochastic integral
R t
0 ↵(u)dS(u) represents the financial-gains from this strategy

up to time t .
Now suppose that for n = 1, 2, . . . , we have different probability measures Pn de-

fined on ⌦ , with the following structure: For each n , the support of Pn consists of
piecewise linear functions that, in particular, are piecewise linear on all intervals of the
form [k/n, (k + 1)/n] , for k = 0, . . . , n � 1 . The interpretation is that Pn represents a
probability distribution on paths of the log of the stock price in an nth discrete-time econ-
omy, in which trading between the stock and bond is possible only at times t = k/n for
k = 0, . . . , n � 1 . (At time 1, the stock and bond liquidate in state ! at “prices” 1 and
e!(t) .)1

Consumer–investors in the nthdiscrete-timeeconomycan implement (state-dependent)
trading strategies

�
✓(k/n), k = 0, . . . , n� 1

 
, where the interpretation is that ✓(k/n,!) is

the number of shares of stock held by the consumer–investor after she has traded at time
k/n , held until time (k + 1)/n . We require that ✓(k/n) is Fk/n measurable; in the nth
economy, the consumer–investor only knows at time k/n the evolution of the stock price
up to and including that date. And, while ✓ can involve an initial investment of funds
at date 0, it must be self-financing subsequently. This is, in the usual fashion, most easily
formulated as follows: If V✓(k/n,!) is the value of the portfolio formed by the trading
strategy ✓ at time k/n in state ! , then for all k = 1, . . . , n ,

V✓(k/n,!) = V✓(0) +
k�1X

j=1

✓(j,!)⇥

S
�
(j + 1)/n,!

�
� S

�
j/n,!

��
.

Please note that for a given n and trading strategy ✓ , this defines V✓(k/n,!) for all ! 2 ⌦
(and not only for ! in the support of Pn ), although we (and our consumer–investor) are
interested in this only for those ! that are in the support of Pn .

We maintain throughout the assumption that, for each n , Pn specifies a viablemodel
of an economic equilibrium in the usual sense: It is impossible to find in the nth discrete-
time trading strategy a self-financing and progressively measurable trading strategy ✓

with V✓(0) = 0 and V✓(1) � 0 Pn -a.s. and V✓(1) > 0 with Pn -positive probability. This
is true if and only if there exists a probability measure P ⇤n that is equivalent to P , under
which {(e!(k/n), Fk/n); k = 0, . . . , n} is a martingale (Dalang, Morton, Willinger, 1990).

Let Xn :=
�
x 2 X : x(!) = V✓(1,!) for some (progressively measurable) trading

strategy ✓ for the nth discrete-time economy
 
.

1 The piecewise linearity of ! under the various Pn is a convenient way to have C0[0, 1] be a common state
space; in the n th economy, !(t) for t not of the form k/n has no economic meaning or consequence. And
alternative construction would have !(t) piecewise constant over intervals [k/n, (k + 1)/n) , in which case we
would work in the Skorohod space D[0, 1] .
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Definition. The contingent claim x 2 X can be asymptotically synthesized with bounded
risk if there exists a sequence {xn} , where each xn 2 Xn , such that:

a. For every ✏ > 0 , there exists N✏ such that, for all n > N✏ ,

Pn
��
! : |xn(!)� x(!)| > ✏

 �
< ✏, and

b. for some finite real number B , Pn
��
! : |xn(!)| < B

 �
= 1, uniformly in n .

The claim x can be asyptotically synthesized with vanishing risk if condition a can be sharp-
ened to: For every ✏ > 0 , there exists N✏ such that, for all n > N✏ ,

Pn
��
! : |xn(!)� x(!)| > ✏

 �
= 0

(in which case condition b is superfluous).

(Warning: It is tempting to paraphrase a of the definition as, xn ! x in probability. But
this not an accurate paraphrase. Convergence in probability is defined relative to a single
probability measure; in the definition, there is a different measure Pn for each n .)

Theorem 1. Suppose that

a. Pn ) P , and

b. For some sequence
�
�n;n = 1, . . . , } of positive numbers tending to zero,

Pn
��
! : sup

0kn
|!(k/n)� !((k + 1)/n)|  �n

 �
= 1.

Then every (continuous and bounded) x 2 X can be asymptotically synthesized with bounded
risk, where the bound on the risk, the parameter B in the definition, can be taken to be kxk1 . In
fact, if we write x := sup!2C0[0,1] x(!) and x := inf!2C0[0,1] x(!) , then the contingent claim xn

synthesized in the nth discrete-time economy can be synthesized so that xn(!) 2 (x, x) , Pn -a.s.
Moreover, letting ✓n be a trading strategy that synthesizes xn in the nth economy, this can be
done where V✓n(0) = E⇤[x] for each n .

The two assumptions in Theorem 1 have the following explanation. That Pn ) P

is saying that, in a somewhat coarse sense, the discrete-time economies asymptotically
resemble the BSM economy or, put the other way around, the BSM economy is, in terms
of its viewed-from-afar features, an idealization of the nth discrete-time economy for
large n . The second assumption is the key to bounded risk. Because, in the discrete-
time economies, a consumer-investor cannot instantaneously intercede in the face of an
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“unusual” event, it is necessary that the damage done to her portfolio by the time she
can react can be contained. In the BSM model, with continuous-time trading, she can
intervene instantaneously. In a sense, while assumption a says that the nth discrete-time
economy for large n is similar to the BSM economy when viewed on a “macroscopic”
scale, assumption b is the required similarity in terms of “microscopic” features.

Before proving Theorem 1, the next two sections provide a specific example and dis-
cussion of asymptotic arbitrage and its connection to Theorem 1.

3. An example
The prototypical example of a sequence

�
Pn

 
that satisfies the conditions of Theorem

1 is based on the following construction which is the basic model in Kreps (2019). Fix a
real-valued random variable ⇣ with expected value 0, variance 1, and bounded support.
Let

�
⇣k; k = 1, 2, . . .

 
be an i.i.d. sequence of randomvariables, all having the distribution

of ⇣ . For n = 1, 2, . . . , let

Bn(k/n) =
1p
n

kX

j=1

⇣j and Sn(k/n) = eBn(k/n), for k = 0, . . . , n.

As above, we imagine that, for each n , we have an economy in which two financial
assets, a risky stock and a riskless bond are traded one against the other at times t =
0, 1/n, 2/n, . . . , (n� 1)/n .

Embed these models (one for each n) into a single state space ⌦ = C[0, 1] , where
! =

�
!(t)

�
t2[0,1]

denotes a typical path in C[0, 1] . Do this by creating for each n a
probability measure Pn on C[0, 1] , where the support of Pn consists of paths that are
piecewise linear over intervals of the form [k/n, (k + 1)/n] , and the finite-dimensional
distribution of paths under Pn at time 0, 1/n, . . . , 1 match the distributions of the Bn as
defined above.

Donsker’s Theorem applies and tells us that Pn ) P , theWienermeasure on C0[0, 1] .
As for condition b in Theorem 1, because the support of ⇣ is bounded, the condition is
clearly met.

4. Asymptotic arbitrage and the rationale for imposing bounded risk
Theorem 1 says that every bounded and continuous contingent claim x can be asymp-

totically synthesized with bounded risk for an initial investment of E⇤[x] , the price of x

in the “limiting” BSM economy. However, it does not say that x cannot be asymptotically
synthesized for a smaller (or, for that matter, larger) initial investment. This points us in
the direction of of the issue of asymptotic arbitrage (Kabanov and Kramkov,1994; Klein and
Schachermayer, 1997).
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To introduce this issue, we first back up to discuss a remark made in the introduction,
concerning our rationale for imposing condition b, bounded risk, in our fundamental
definition. Suppose we had defined asymptotic synthesis without the bounded-risk part;
that is, x can be asymptotically synthesized if there exists a sequence {xn} , xn 2 Xn ,
where for every ✏ > 0 , there is N✏ such that, if n > N✏ , Pn

�
! : |x(!)� xn(!)| � ✏

 �
< ✏ .

Consider a sequence of {Pn} generated in the fashion of the first example of Section 3, in
which ⇣ = +1 with probability 1/2 and �1 with probability 1/2. In the usual fashion, a
consumer investor in the ntheconomycanemploythewell-knownand infamousdoubling
strategy: She initially buys as many shares of stock as she sells bonds so that, at time 1/n ,
she is either ahead by 1 or down by 1. If she is ahead by 1, she liquidates her portfolio
(sells her stock and buys bonds) and awaits time 1. And if she is behind by 1, she “doubles
down,” buying enough stock, financed with the purchase of bonds, so that if the second
movement in the stock is an uptick, her (leveraged) portfolio has value 1. And so forth.
For any ✏ , there is N✏ sufficiently large so that, following this strategy, she ends with a
portfolio worth precisely 1 with probability greater than 1� ✏ . Although, of course, with
positive probability, she is in a very, very deep hole.

By imposing the bounded-risk part of the definition, we rule this sort of thing out.
However, the ability to create asymptotic arbitrage in this rough fashion is not pre-

cluded by conditions a and b in Theorem 1. An example attributed to K. Pötzelberger and
Th. Schlumprecht (independently) by Hubalek and Schachermayer (1998) illustrates this.
This example is similar to thefirst sort of example from last section, except that the “scaled”
distribution of ⇣k/

p
n is different in even and oddperiods. In even-numbered periods (for

k = 2, 4, 6, . . .), ⇣k/
p

n = 1/
p

n with probability 0.2 and = �1.5/
p

n with probability 0.8,
so for these periods, the expected value of ⇣k/

p
n = �0.3/

p
n . In odd-numbered periods,

⇣k/
p

n = 1.5/
p

n with probability 0.8 and = �1/
p

n with probability 0.2; the expected
value is 0.3/

p
n . Hence, while the expectations of the ⇣k alternate between ±0.3/

p
n ,

⇣k + ⇣k+1 has expectation 0 and variance 2. We assert that

i. the resulting Pn ) P and

ii. (clearly), as n !1 , the “diameter”of the support of !((k+1)/n)�!(k/n) approaches
zero, however,

iii. for an initial investment of 0, a consumer–investor can asymptotically end with a
portfolio of value 1 and with vanishing risk.

She can do this by investing in the stock in oddperiods and holding only bonds in the even
periods. (The first period, from t = 0 to t = 1/n , is an odd period.) Specifically, in the first
period (at time 0), she purchases 1/

p
n shares of stock, financing this purchase by selling

1/
p

n bonds. She ends this period with a portfolio worth either e1.5/
p

n/
p

n � 1/
p

n or
e�1/

p
n/
p

n�1/
p

n , with probabilities 0.8 and 0.2, respectively. At time 1/n , she converts
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this portfolio to bonds, and waits until time 2/n , when she puts all that portion of her
portfolio that was previously stock back into stock (continuing to be short 1/

p
n bonds.

And so forth. Then her wealth after n = 2k periods has the distribution of

k�1Y

j=0

e2j+1/
p

n

p
n

� 1p
n

,

where {⇣j} is the (alternating distribution) sequence for this example. Ignoring momen-
tarily the �1/

p
n , the distribution of the log of her wealth (that is, the log of her wealth

plus 1/
p

n) at time n is

1p
n

k�1X

j=0

⇣2j+1 � ln(1/
p

n) =
r

2
n

n/2�1X

j=0

⇣2j+1 � ln(1/
p

n).

By the strong law of large numbers,

lim
k!1

1
k

k�1X

j=0

⇣2j+1 = lim
n!1

2
n

n/2�1X

j=0

⇣2j+1 = 0.3, a.s.

so the log of her wealth, hence the her wealth, approaches infinity a.s. at an exponential
rate. Of course, for given n , this process stops before k reaches 1 , but as n ! 1 , she
can with probability arbitrarily close to 1 wind up with a portfolio whose value is as large
as she desires, and with vanishing risk.

This is better (for her) than is claimed in iii; but by judiciously stopping the process of
going back and forth between stock and bond when her wealth first hits 1, if it ever does,
and scaling back her holdings of stock when she is within one step of achieving 1 so that
she hits 1 on the nose if there is an uptick, she can produce a strategy that, as n !1 , gets
her to 1 precisely with probability that approaches 1, and still (of course) with vanishing
risk.

Hence, for this sequence of {Pn} , the two conditions of Theorem 1 are met, and every
x 2 X can be asymptotically synthesized with bounded risk for an initial investment of
E⇤[x] . But every x 2 X can also be asymptotically synthesized with bounded risk for
every level of initial investment, both greater than and less than E⇤[x] .

This is hardly a satisfactory state of affairs from the perspective of the economics of
the situation. Happily, we can easily plug into Klein and Schachermayer (1997) to add a
third condition to the sequence {Pn} that eliminates this sort of thing. We adapt their
more technical definition to the current context:
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Definition. The sequence
�
Pn

 
admits an asymptotic arbitrage2 if, for some B > 0 , there

exists for every ✏ > 0 an n and a trading strategy ✓n for n such that

a. V✓n(0) = 0 ,

b. Pn
��

V✓n(k/n) � �B
 �
= 1 , and

c. Pn
��

V✓n(1) � 1
 �
� 1� ✏.

Theorem 2.

a. If the sequence {Pn} does not admit asymptotic arbitrage, and if x 2 X is asymptotically
synthesizedwith bounded risk by a sequence of trading strategies {✓n} , then limn!1 V✓n(0) =
E⇤[x] .

b. Any sequence {Pn} created in the fashion of Section 3 (based on scaled random walks con-
structed from a random variable ⇣ with expectation zero, variance 1, and bounded support) does
not admit asymptotic arbitrage.

Proof. The proof of part a is straightforward (and is found in Kreps, 2019, Chapter 7).
Kreps (2019) also provides an indirect proof of part b, but here is a sketch of direct proof:

Fix the (unscaled) increment distribution ⇣ . We will show that there are equivalent
martingale measures P ⇤n for the Pn such that the sequences {Pn;n = 1, 2, . . .} and
{P ⇤n;n = 1, 2, . . .} are continguous, hence by Klein and Schachermayer (1997), there can
be no asymptotic arbitrage.

Wedo this by applyingadiscrete versionofGirsanov’sTheorem. For each n = 1, 2, . . . ,
there are unique constants cn and dn such that the “Esscher transform”

Zn(!) := e�cn!(1)�dn

= exp
⇢ nX

k=1


� cn

✓
!

✓
k + 1

n

◆
�
✓

k

n

◆◆
� dn

✓
k + 1

n

◆
�
✓

k

n

◆�� (4.1)

defines the density of a martingale measure P ⇤n for {S(t,!) = e!(t); t 2 [0, 1]} and that
is equivalent to Pn ; that is dP ⇤n/dPn = Zn . It is straightforward to check that the as-
sumptions on the unscaled increment ⇣—namely that E[⇣] = 0 , Var[⇣] = 1 , and ⇣ has
bounded support—imply that cn ! 1/2 and dn ! 1/8 , where Z := e�!(1)/2�1/8 =
exp

�
� (1/2)

R 1
0 d(!(t)) � (1/8)

R 1
0 dt

 
is the Radon-Nikodym derivative dP ⇤/dP of P ⇤

to P (Wiener measure) by Girsanov’s formula.3 Because kZnkL2(P ) and k(Zn)�1kL2(P⇤)

are both uniformly bounded in n , mutual continguity of the sequences {Pn;n = 1, 2, . . .}

2 In Klein and Schachermayer (1997), following Kabanov and Kramkov (1994), this is called an asymptotic
arbitrage of the second kind.

3 The required calculations are provided in Kreps (2019, Chapter 5).
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and {P ⇤n;n = 1, 2, . . .} follows, which implies that the sequence {Pn} does not admit
asymptotic arbitrage (Klein and Schachermayer, 1997).

5. Proof of Theorem 1.
5.1. Preliminaries

Throughout,
R t
0 ↵ dS(u) will mean the stochastic integral of ↵ with respect to the

process S over the interval from0 to t , under the usual conditions (↵ is predictable and S -
integrable). Note in particular that if ↵ is constant on intervals of the form [k/n, (k+1)/n) ,
then

R t
0 ↵dS(u) is just the forward Itô sum

Z t

0
↵dS(u) =

k�1X

j=0

↵

✓
j

n

◆
S

✓
j + 1

n

◆
� S

✓
j

n

◆�
+ ↵

✓
k

n

◆
S
�
t
�
� S

✓
k

n

◆�
, (5.1)

where k is such that k/n  t  (k + 1)/n .
In the standard (Strasbourg) way of doing stochastic integration, simple integrands

are meant to be continuous from the left and having right limits (or càglàd), so ↵ would
be constant on (k/n, (k + 1)/n] . Done this way, the interpretation of ↵(t) in this context
would be that it is the portfolio holding at time t prior to any trading. For integrands
↵ that are a.s. continuous, it does not matter, but our interpretation is that, for a trading
strategy ✓ that is piecewise constant, ✓(t,!) is the portfolio holding after time t trading
is done, and so for such trading strategies, the formula (5.1) for the forward Itô sum is
correct.
Theorem 1 is stated for contingent claims x that are bounded and continuous. It is

without loss of generality – and saves on notation – to assume as well that E⇤[x] = 0 :
Suppose x is a bounded and continuous contingent claim. Then so is x0 := x� E⇤[x] . Of
course E⇤[x0] = 0 . And if we can asymptotically replicate x0 with bounded risk (in the
sense of Theorem 1), then it is clear thatwe can do so for x aswell: In addition towhatever
sequence of trading strategies are employed to asymptotically replicate x0 with bounded
risk, add the purchase of a side portfolio of E⇤[x] bonds, a side portfolio the composition
of which never changes.
It is perhaps worth adding here that, as we assume that E⇤[x] = 0 , our construction of

trading strategies that asymptotically synthesize x to followworks entirely with zero-net
initial endowment strategies. Hence that part of Theorem 1 that states that, for a given
x , we are asymptotically synthesizing x with strategies with an initial net investment of
E⇤[x] follows immediately from the argument just provided.
As a final preliminary, we have the following:
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Lemma 1. Let x be a bounded and continuous function on
�
C0[0, 1], k · k1

�
. Then, for each t ,

there is a bounded and continuous version of x(t) = E⇤[x|Ft] (defined in the proof to follow). This
version of E⇤[x|Ft] is uniquely determined for all continuous trajectories ! 2 C0[0, 1] . And if x

is Lipschitz continuous with Lipschitz constant ⇤ , then (for each t) x(t) is Lipschitz continuous
with the same Lipschitz constant.4

Proof. Let  be a second copy of C0[0, 1] with generic element  . Let P ⇤ ⌦ Q⇤ be the
productmeasure on ⌦⇥ , such that (!, ) 2 ⌦⇥ is two-dimensional Brownianmotion
withdrift �1/2 in each coordinate and such that P ⇤⌦Q⇤

��
(!, ) : !(0) =  (0) = 0

 �
= 1 .

That is,
�
 (t); 0  t  1

 
under Q⇤ is a Brownian motion independent of and identically

distributed as
�
!(t); 0  t  1

 
under P ⇤ . For the balance of this proof, write E⇤ as EP⇤

to distinguish from EQ⇤
.

Define the concatenation at t 2 [0, 1] of two paths ! and  , denoted !�t  ̂ , as follows:

(! �t  )(u) := !(u) 1[0,t)(u) +
�
!(t) +  (u)�  (t)

�
1[t,1](u).

It is clear from the independence properties of Brownian motion that, fixing a path ! up
to time t , the law that governs ! over [t, 1] is the same as the law that governs ! �t  .
Hence EP⇤

[x|Ft](!) = EQ⇤
[x(! �t  )] . That is, if we define x(t,!) pointwise by

x(t,!) := EQ⇤
[x(! �t  )],

then x(t, ·) is a version of EP⇤
[x|Ft]. Fix this specific version of EP⇤

[x|Ft].
Suppose x is continuous and that {!n} is a sequence in C0[0, 1] with limit ! . Then

lim
n

x(t,!n) = lim
n
EQ⇤⇥

x(!n �t  )
⇤

= EQ⇤⇥
lim

n
x(!n �t  )

⇤
= EQ⇤⇥

x(! �t  )
⇤

= x(!, t),

where the key step is taking the limit instead the integral, a simple application of bounded
convergence and the continuity of x .
To show that this version is the unique continuous version: Suppose x0(t,!) is another

continuous version of EP⇤
[x|Ft] . For each ! and ` = 1, 2, . . . , because P ⇤ has full support

on C0[0, 1] , theremust bewithin the 1/` neighborhood of ! a path !` such that x0(t,!`) =
x(t,!`). But then x0(t,!) = lim`!1 x0(t,!`) = lim`!1 x(t,!`) = x(t,!) , where the two
outside equalities follow from the continuity of x(t, ·) and the supposed continuity of
x0(t,!) .

4 It is also true that this version xt(!) is continuous in t for each ! , but we do not need this. We are very
grateful to Rama Cont, who showed us how to prove this.
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To complete the proof of the lemma, we must show that if x is Liptschitz continuous
with Lipschitz constant ⇤ , then so is x(t) . Write

|x(t,!)� x(t,!0)| =
��EQ⇤⇥

x(! �t  )
⇤
� EQ⇤⇥

x(!0 �t  )|
⇤��

 EQ⇤⇥��x(! �t  )� x(!0 �t  )
��⇤

 EQ⇤⇥
⇤
���(!(u)1[0,t)(u) +

�
!(t) +  (u)�  (t)

�
1[t,1]

�

�
�
(!0(u)1[0,t)(u) + (!0(t) +  (u)�  (t))1[t,1](u)

���
1
⇤

(by the presumed Lipschitz continuity of x)

= EQ⇤⇥
⇤
��(!(u)� !0(u))1[0,t)(u)

��
1
⇤

(because, path by path, the continuation portion  cancels out)
= ⇤

��(! � !0)1[0,t)

��
1

(the integrand is constant with respect to Q⇤)
 ⇤k! � !0k1.

Although it is probably obvious, observe that x(1,!) = x(!) .

5.2. A sketch of the proof of Theorem 1
Because the reader may get lost in the details of the proof, here is an overview:
We begin by assuming that the claim x to be asymptotically synthesized is not only

continuous and bounded, but also Lipschitz continuous as a function on
�
C0[0, 1], k ·k1

�
.

And—in many steps—we prove the following more technical and precise result:

Proposition1. Suppose that x is boundedandLipschitz continuous. Denote by x(t) theLipschitz-
continuous version of E⇤[x|Ft] provided by Lemma 1. (Whenever we write E⇤[x|Ft] , we mean
this version.)
Then for every ✏ > 0 , there exists N such that for all n > N , there is a predictable integrand

↵n that is constant on the intervals
⇥
k/n, (k + 1)/n

�
and a stopping time ⌧n , taking values in�

k/n; k = 1, . . . , n
 
[
�
1
 
, such that

Pn
��
! : ⌧n(!) = 1

 �
> 1� ✏, and (5.2a)

Pn

✓⇢
! :

����

Z ⌧n^1

0
↵ndS(u)� x(⌧n ^ 1)

���� < ✏

�◆
= 1, (5.2b)

where ⌧n ^ 1 means min{⌧n, 1} .

We know from the theory of the BSMmodel that, for the fixed x , there is a predictable
integrand ↵ such that

R 1
0 ↵dS = x holds true P -almost surely. Moreover, if we write
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x(t,!) = E⇤[x|Ft] for the specific version of E⇤[x|Ft] provided in Step 2, then x(t) is a
version of

⇥ R t
0 ↵(u)dS(u)

⇤
(!) .

Our first step in proving the proposition is then to find an integer M and a predictable
continuous-time process

�
↵M (t); 0  t  1

�
that is constant on each interval

⇥
j/M, (j +

1)/M
�
and such that

Z 1

0
↵MdS ⇡ x =

Z 1

0
↵dS = x(1), under the probability P

where the symbol ⇡ has to be made precise. Note in this regard that, because ↵M is
constant on intervals

⇥
j/M, (j + 1)/M

�
, the value of

⇥ R 1
0 ↵

MdS
⇤
(!) can be defined path

by path for all ! 2 C[0, 1] as the Itô sum,

 Z 1

0
↵MdS

�
(!) :=

M�1X

j=0

↵M

✓
j

M
,!

◆
⇥

S

✓
j + 1
M

,!

◆
� S

✓
j

M
,!

◆�
,

where S(j/M,!) = e!(j/M). And, we can replace
R 1
0 ↵dS with x = x(1) . Using Doob’s

Maximal Inequality, we can extend this to show that

Z t

0
↵MdS(u) ⇡ x(t) =

Z t

0
↵dS(u) = x(t), uniformly in t , under the probability P.

We then pass to a finer mesh
�
k/n; k = 0, . . . , n

 
which splits each of the intervals

from j/M to (j + 1)/M into ` pieces; that is, n = `M . If ` is large enough (` > L , for L

to be determined), then the estimates in the first part of the proof show that

Z k/n

0
↵MdS(u) ⇡ x(k/n), uniformly in k = 1, . . . , n ,

under the probability Pn .
Finally, we stop the process ↵M at the first time k/n where either the integral or the

stock price is not behaving in a suitably desirable fashion. Because the support of ⇣ is
bounded, for large enough L , stopping allows us to control the damage that can occur
over the just-before-stopping interval, (k�1/n, k/n] , which gives us (5.2) . Andwe show
that, for sufficiently large n , the probability (under Pn ) that we must intercede in this
fashion goes to zero, which is (5.1) .
This will finish the proof of Proposition 1. It should be evident (butwe’ll give some de-

tails) that this proves Theorem 1 for Lipschitz-continuous and bounded contingent claims
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x . To complete the proof of the theorem, we show that if Theorem 1 holds for Lipschitz-
continuousandboundedcontingent claims x , it holds for continuousandboundedclaims.

5.3. Proof of Proposition 1
Throughout, ⇤ denotes the Lipschitz constant for the contingent claim x .

Step 1. For ✏ > 0 , there is an integer M and a predictable integrand ↵M =
�
↵M (t); 0  t  1

�

that is uniformly bounded and constant on all intervals of the form
⇥
j/M, (j+1)/M

�
and, for each

t 2
�
j/M ; j = 0, . . . ,M

 
, Lipschitz in the variable ! 2 C0[0, 1] , with the following property:

P

✓⇢
! : sup

0t1

����

Z t

0
↵MdS(u)� x(t)

���� < ✏

�◆
> 1� ✏/2, (5.3)

where x(t) is the continuous version of E⇤[x|Ft] given by Lemma 1.

Proof of Step 1. It is convenient to work under the equivalent martingale measure P ⇤

of P . We therefore have that dS(t) = S(t)dW ⇤(t) , where W ⇤(t) = W (t) + t/2 is a P ⇤

Brownian motion. Noting that S(t) has quadratic variation dhSi(t) = S(t)2dt , we obtain
the following version of Itô’s isometry. Denote by R⇤ the measure on [0, 1]⇥C0[0, 1] with
density

dR⇤

d
�
�⌦ P ⇤

� (t,!) = S(t,!)2,

where �⌦P ⇤ denotes the product of Lebesguemeasure � on [0, 1] and P ⇤ . We then have
the Itô isometry

���(t,!)
��

L2([0,1]⇥C0[0,1],R⇤)
=
����

Z 1

0
�dS(t)

����
L2(P⇤)

, (5.4)

for every predictable process � for which the left-hand side is finite.
Let P denote thepredictable sigma-algebraon [0, 1]⇥C[0, 1] , generatedby thefiltration�

Ft; 0  t  1
 
. That is, P is the sigma-algebra generated by the stochastic intervals

(⌧, 1] , where ⌧ runs through the stopping times pertaining to the filtration
�
Ft

 
. Note

that, in the present case of the filtration of a Brownian motion, the predictable sigma-
algebra coincides with the optional sigma-algebra which, by definition, is generated by
the stochastic intervals of the form [⌧, 1] , where ⌧ runs through the stopping times with
respect to the filtration {Ft} . This is so because, in this case, every stopping time ⌧ is
predictable; i.e., ⌧ = lim`!1 ⌧` , where {⌧`; ` = 1, 2, . . .} is a sequence of strictly increasing
stopping times. Let GM denote the sigma-algebra generated by stochastic intervals of the
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form [⌧M , 1] for stopping times ⌧M taking values in {j/M ; j = 0, . . . ,M} ; we have thatS
M GM generates P .
Define by ↵M the conditional expectation of ↵ with respect to GM ; that is

↵M = ER⇤
[↵|M ]. (5.5)

In fact, a little care is neededhere as R⇤ is not normalized to havemass 1. Hence (5.5)must
be interpreted as the conditional expectationwith respect to the re-normalized probability
measure

R⇤

R⇤
�
[0, 1]⇥ C0[0, 1]

�
.

In any case, as ↵ 2 L2(R⇤) , the sequence
�
↵M ;M = 1, 2, . . .

�
converges to ↵ in the

norm of L2(R⇤) . Indeed, the sigma-algebras
�
GM ;M = 1, 2, . . .

�
generate the sigma-

algebra P and k↵kL2(R⇤) is finite as x =
R 1
0 ↵dS(t) is bounded. Hence, by Itô’s isometry

(5.5), the sequence of random variables xM =
R 1
0 ↵

MdS(t) converges in the norm of
L2(P ⇤) to x =

R 1
0 ↵dS(t).

We still have to pass from ↵M to an FM -adapted process ↵M = ↵M (t,!) that is uni-
formly bounded and Lipschitz continuous in ! . To do so, it suffices to approximate each
of the finitely many FM (j/M)-measurable random variables ↵M (j/M) 2 L2(P ⇤) by an
FM (j/M)-measurableandboundedLipschitz function ↵M (j/M) on

�
C0[0, 1], k · k1

�
with

respect to the normof L2(P ⇤) . The process that results by keeping these values during the
respective intervals
�
j/M, (j + 1)/M

⇤
, denotedby ↵M , does what we want. Indeed, we can make the error x�

xM arbitrarily small with respect to the norm of L2(P ⇤) . Finally, we apply the L2 -version
of Doob’s maximal inequality5 to not only make

�� R 1
0 (↵� ↵M )dS

��
L2(P⇤)

small, but also
��sup0t1

R t
0 (↵ � ↵M )dS(u)

��
L2(P⇤)

. Using the fact that P and P⇤ are equivalent, we
obtain inequality (6.3) .

Step 2. Because the integrand ↵M is Lipschitz in ! 2 C0[0, 1] and changes value only finitely
many times, we know that the function xM defined pathwise by

xM (t)(!) : =
 Z t

0
↵MdS(u)

��
!
�

= ↵M

✓
j

m
,!

◆
·

S
�
t,!

�
� S

✓
j

m
,!

◆�

+
jX

i=0

↵M

✓
i

m
,!

◆
·

S

✓
i + 1
m

,!

◆
� S

✓
i

m
,!

◆� ,

5 Doob (1990, Theorem 3.4); see also Acciaio et al. (2013).
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where j is such that j/M  t < (j +1)/M , is also Lipschitz on bounded subsets of C[0, 1] under
the sup norm, uniformly in t 2 [0, 1] .

Proof of Step 2. Consider a bounded set B in C[0, 1] , so that there is a constant C � 0
such that S(t)(!) = e!(t)  C for every ! 2 B . We know that there is a uniform Lipschitz
constant L for the functions

�
↵M ((j � 1)/M); j = 1, . . . ,M

 
on

�
C0[0, 1], k · k1

�
as well

as a uniform bound on
�
k↵M ((j � 1)/M)k1; j = 1, . . . ,M

 
, which we may assume is the

same C > 0 . We must show that there is a constant C > 0 such that

��xM (t)(!)� xM (t)(!0)
��  C

��! � !0
��, (5.6)

for all !,!0 2 B and t 2 [0, 1] . Clearly, it will suffice to show that there is a constant,
denoted by K , such that

����

Z t

(j�1)/M
↵MdS(u)(!)�

Z t

(j�1)/M
↵MdS(u)(!0)

����  K
��! � !0

��, (5.7)

for every j = 1, . . . ,M , t 2
⇥
(j � 1)/M, j/M

⇤
, and for all !,!0, j = 1, . . .M , and t 2

[(j � 1)/M, j/M ] . For then (5.7) will imply (5.6) , where we take C = KM.

And to show (5.7) , note that, for d =
��! � !0

��
1 , we have the estimates

����↵
M

✓
j � 1
M

◆�
!
�
� ↵M

✓
j � 1
M

◆�
!0
�����  Ld,

����S
�
t
��
!
�
� S

�
t
��
!0
�����  2Cd, and

����S
✓

j � 1
M

◆�
!
�
� S

✓
j � 1
M

◆�
!0
�����  2Cd.

Putting these together, we have

����

Z t

(j�1)/M
↵MdS(u)(!)�

Z t

(j�1)/M
↵MdS(u)(!0)

����

=
����↵

M

✓
j � 1
M

◆�
!
�
⇥

S
�
t
��
!
�
� S

✓
j � 1
M

◆
(!)

�

� ↵M

✓
j � 1
M

◆�
!
�
⇥

S
�
t
��
!
�
� S

✓
j � 1
M

◆
(!)

�����  2C(L+ C)d,
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where we have used the inequality |ab� a0b0|  2C(L+ C)d , provided that |a� a0|  Ld ,
|b� b0|  Cd , and max

�
|a|, |a0|, |b|, |b0|

 
 2C.

This finishes the proof of Step 2.
Step 3. Because Pn ) P , the family of distributions {Pn;n = 1, . . .} [ {P} is tight, and
so for given ✏ > 0 there is a bound B such that the event

DB := {! : |!(t)| < B for all t 2 [0, 1]
 

has Pn(DB) � 1� ✏/2 for all n and P (DB) � 1� ✏/2 .

Step 4. We know from (5.3) that the Borel set

DM,✏ :=
⇢
! : sup

0t1

��x(t)(!)� xM (t)(!)
�� < ✏

�

has P
�
DM,✏) > 1 � ✏/2 . Recall the uniform Lipschitz continuity of the functions x(t)

established inLemma1and theuniformLiptschitz continuityof the function xM (t) shown
to hold true on bounded subsets of C[0, 1] shown in Step 3. We therefore obtain that the
set DM,✏ \DB is open in

�
C0[0, 1], k · k1

�
. Because P (DM,✏ \DB) > 1 � ✏ , by applying

the Portmanteau Theorem for functional weak convergence (Billingsley, 1999, Theorem
2.1), we conclude that, for large enough n ,

Pn
�
DM,✏ \DB

�
> 1� ✏. (5.8)

Therefore, for large enough L and all n = `M for ` > L , (5.8) is true.

Step 5. Define stopping times ⌧n
1 , ⌧n

2 , and ⌧n for each ! 2 C[0, 1] by

⌧n
1 (!) := inf

⇢
t = k/n :

��x(k/n)(!)� xM (k/n)(!)
�� � ✏

�
,

⌧n
2 (!) := inf

⇢
t = k/n : ln

�
S(t,!)

�
62
⇥
�B,B

⇤�
, and

⌧n(!) = min
�
⌧n
1 (!), ⌧n

2 (!)
 
,

where, by convention, ⌧n
1 (!) = 1 if

��x(k/n)(!)� xM (k/n)(!)
�� < ✏ for k = 0, . . . , n , and

⌧n
2 (!) = 1 if ln

�
S(k/n,!)

�
2
⇥
� B,B

⇤
for k = 0, . . . , n . These stopping times are all

well defined for all ! 2 C[0, 1] .
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In particular, an investor using the portfolio strategy ↵M in the nth discrete-time
economy can stop according to these stopping rules: Clearly, she will know the current
stock price, so implementing ⌧2 is trivial. As for implementing ⌧1 , xM (k/n)(!) is just
the value of her portfolio at time k/n , for the path ! she has observed (where we fill in
between times k/n and (k+1)/n with linear interpolation), while x(k/n)(!) is calculated
from the path ! up to time k/n as in Lemma 1.

Step 6. Note that for any path ! 2 DB \DM,✏ , |!(t)| < B for all t , hence for all t of the
form k/n . And for ! 2 DB \DM,✏ ,

��x(t)(!) � xM (t)(!)
�� < ✏ for all t , hence for all t of

the form k/n . This implies that for all ! 2 DB \DM,✏ , ⌧n
1 = ⌧n

2 = ⌧n = 1 . Hence, for
large enough L (which gives large enough n),

Pn
��
! : ⌧n(!) = 1

 �
� Pn

�
DB \DM,✏) > 1� ✏.

That is, we have (5.2a) .

Step 7. It remains to show that (5.2b) holds. Please recall that, by assumption, there is a
sequence {�n} of positive numbers such that �n ! 0 and

Pn
��
! : |!(k/n)� !((k � 1)/n)| > �n

 �
= 0.

If either ⌧n
1 (!) = 1 or if ⌧n

2 (!) < ⌧n
1 (!) < 1 , then at time ⌧n ^ 1 , we know that

��x(⌧n ^ 1)(!)� xM (⌧n ^ 1)(!)
�� < ✏ . Hence for all such ! , (5.2b) holds.

This leaves the case of paths ! such that ⌧n
1 (!)  ⌧n

2 (!) and ⌧n
1 (!)  1 . For such

an ! , let ⌧n
1 (!) = k/n , and consider the state of affairs at time (k � 1)/n . Since neither

stopping time ⌧n
1 nor ⌧n

2 has triggered, we know that

S((k � 1)/n)  eB and
��x((k � 1)/n)� xM ((k � 1)/n)

�� < ✏.

We must show that

��x(k/n)� xM (k/n)
�� < 2✏,

which we do by showing that, for large enough L ,

��x(k/n)� x((k � 1)/n)
��  ✏/2 and

��xM (k/n)� xM ((k � 1)/n)
��  ✏/2.
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The first of these follows easily from the Lipschitz continuity of x . Fixing the path of
! up to time (k� 1)/n , consider two possible continuations, ! and !0 . That is, ! and !0

are partial paths up to time k/n that coincide up to time (k � 1)/n . Then

sup
�
|!(i/n)� !0(i/n)

��; i = 0, . . . , k
 

=
��!(k/n)� !0(k/n)

��,

and, since ! and !0 coincide up to time (k � 1)/n ,
��!(k/n) � !0(k/n)

�� can be no larger
than 2�n , Pn -a.s. By choosing L to be large enough, this can be made as small as needed
so that, taking into account the Lipschitz constant for x , we get the desired bound on
��x(k/n)� x((k � 1)/n)

��.
And, finally, to bound

��xM (k/n)� xM ((k � 1)/n)
�� , write

xM

✓
k

n

◆
� xM

✓
k � 1

n

◆
= ↵M

✓
k � 1

n

◆
⇥

S

✓
k

n

◆
� S

✓
k � 1

n

◆�

= ↵M

✓
k � 1

n

◆
⇥ S

✓
k � 1

n

◆
⇥

S(k/n)� S((k � 1)/n)

S((k � 1)/n)

�

= ↵M

✓
k � 1

n

◆
⇥ S

✓
k � 1

n

◆
⇥


e!(k/n)

e!((k�1)/n)
� 1

�

= ↵M

✓
k � 1

n

◆
⇥ S

✓
k � 1

n

◆
⇥

e!(k/n)�!((k�1)/n) � 1

�
.

We are looking at paths ! such that ⌧n
1  ⌧n

2 , so we know that S((k � 1)/n)  eB . And
we know that ↵M is uniformly bounded. And the final term in the product can bemade a
small as necessary tomake theproduct less than ✏/2 , because |!(k/n)�!((k�1)/n)| < �n ,
Pn -a.s. This completes Step 7.

Step 8. We therefore have the result for all n that are of the form `M , for any ` > L . To finish
the proof of Proposition 1, we must show that, enlarging L still further as necessary, the result is
true for all n > (L + 1)M .
This is accomplished as follows. We have fixed M and L . For every n > (L + 1)M ,

and for j = 0, . . . ,M , let kj,n be the least integer such that kj,n/n � j/m . Of course,
kj,n � j/m < 1/n . Modify the construction given above: writing ↵M

j (!) for the value
of ↵M previously applied on the interval [j/M, (j + 1)/M) (which is based on the path
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of stock prices up to time j/M ), delay slightly the shift from ↵M
j�1 to ↵M

j by (instead)
holding ↵M

j (!) shares of stock over the interval [kj,n/n, kj+1,n/n) . The stopping rule ⌧n

is defined just as before.
This (slight) shift in when the portfolio’s composition changes is properly adapted to

the information received. And, as n ! 1 for fixed M , the change it causes in the value
of the portfolio uniformly tends to zero: The stopping rule puts a bound on the price of
the stock and the number of shares of stock held is uniformly bounded, so the “error”
introduced by this slight delay vanishes as the amount by which the stock price can move
over any single interval of length 1/n vanishes (in n , again relying on the bound in stock
prices before stopping). And, since M is fixed, there is a fixed number of such “errors”
that are introduced. Enlarging L as necessary (holding M fixed), the sum of these M

errors become (uniformly) arbitrarily small, completing the proof of Proposition 1.

5.4. Completing the proof of Theorem 1

We have proved Proposition 1 for Lipschitz continuous x . This almost immediately
gives Theorem 1 for such x : Given ✏ , find N sufficiently large so that for all n > N , there
exist ↵n and ⌧n that satisfy (5.1) and (5.2) . Re-interpret ↵n and ⌧n as a trading strategy
↵̂n for the nth discrete-time economy where

↵̂n(t,!) =
⇢
↵n(t,!), if t < ⌧n(!), and

0, if t � ⌧n(!).

Inwords, “stopping” according to ⌧n is interpreted as converting the value of the portfolio
held at that time entirely into bonds anddoingno further tradinguntil time 1. On the event
�
! : ⌧n(!) = 1

 
, whichhasprobabilitygreater than 1�✏ , the integral

⇥ R 1
0 ↵̂

ndS(u)
⇤
(!) =

⇥ R 1
0 ↵

ndS(u)
⇤
(!) = x(1,!) will be within ✏ of x(1,!) = x(!) . And on the event

�
! :

⌧n(!) < 1
 
,
⇥ R 1

0 ↵̂
ndS(u)

⇤
(!) =

⇥R ⌧n

0 ↵̂ndS(u)
⇤
(!) , which is within ✏ of x(⌧n) , which of

course has expected value less or equal to kxk1 .
This almost gives us Theorem 1, except that, for fixed ✏ > 0 , the probability-one bound

on the synthesized claims are that their values lie in the interval (x � ✏, x + ✏) . We want
the synthesized claims to have values that lie in the interval (x, x) .6

6 Theorem 1 as given here is reported in Kreps (2019) as Proposition 4.1b. Readers who compare these two
will see that in Kreps (2019), Proposition 4.1b is stated with slightly wider probability-one bounds on the xn .
The statement of Theorem 1 given here is “cleaner” than its counterpart in Kreps (2019), although, the careful
reader will note, this has no discernible effect on the uses to which this result can be put.
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Recall that we assumed, without loss of generality, E⇤[x] = 0 . Except for the trivial
casewhere x ⌘ 0 , this implies that x < 0 and x > 0 . For the fixed ✏ , let ↵ be close enough
to 1 so that (1 � ↵)x < ✏/2 and (↵ � 1)x < ✏/2 . Let � = min{(↵ � 1)x, (1 � ↵)x} . Of
course, � < ✏/2 .
Consider the claim x0 = ↵x : (a) if x is Lipschitz continuous, then so is x0 ; (b) E⇤[x] = 0

implies E⇤[x0] = 0 ; and (c) x0 = ↵x and x0 = ↵x . Employ Proposition 1 for the claim x0

and for � in place of ✏ . This guarantees that there exists N sufficiently large so that, for all
n > N , a claim xn can be synthesized in the nth discrete time economy such that, with
Pn -probability 1 � � or greater, |xn(!) � x0(!)| < � , and x0 � � < xn(!) < x0 + � with
Pn -probability 1,. Since |x0(!) � x(!)| = |↵x(!) � x(!)| = |(1 � ↵)x(!)| < ✏/2 by the
choice of ↵ , we know that |xn(!)� x(!)|  |xn(!)� x0(!)|+ |x0(!)� x(!)| < �+ ✏/2 < ✏

with Pn -probability 1 � � or more, which is certainly 1 � ✏ or more under Pn . And if
xn(!) 2 (x0� �, x0+ �) , since x0� � = ↵x� � > x , and x0+ � = ↵x+ � < x , we know that,
with Pn -probability one, xn 2 (x, x) . Hence we have the tighter probability-one bounds
on the synthesized claims.
As a final step, we need to extend Theorem 1 fromLiptschitz-continuous and bounded

contingent claims x to continuous and bounded contingent claims. We employ the fol-
lowing Lemma:

Lemma 2. Fix a bounded and continuous function x on
�
C0[0, 1], k · k1

�
. For ⇤ > 0 , define

x⇤(!) := inf
�
x(!0) + ⇤k! � !0k;!0 2 C0[0, 1]

 
for each ⇤ > 0 . Then:

a. If ⇤ < ⇤0 , then x⇤(!)  x⇤0
(!)  x(!) . And if x = inf! x(!) , then x⇤(!) � x . Hence

for all ⇤ , kx⇤k  kxk .

b. For all ! , lim⇤!1 x⇤(!) = x(!). Hence, by monotone convergence, limL!1 E⇤[x⇤] =
E⇤[x] . And for any compact set K in

�
C0[0, 1], k · k1

�
and for any ✏ > 0 , there is sufficiently

large ⇤ (depending on K and ✏) such that x(!)� x⇤(!)  ✏ for all ! 2 K .

c. x⇤ is Lipschitz continuous with Lipschitz constant ⇤ .

This is a standard construction, so we omit the proof.
Now fix a bounded and continuous claim x such that E⇤[x] = 0 and some ✏ > 0 . We

have the following (asymptotic) estimates.

i. Since E⇤[x⇤] % E⇤[x] = 0 , for all large enough v , |E⇤[x⇤]|  ✏/3.

ii. Since Pn ) P , the tightness of probability measures {Pn} allows us to produce a
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compact subset K of C[0, 1] such that Pn(K) > 1� ✏/3 for all n .

iii. Apply Lemma 2: For this compact set K and for all large enough ⇤ ,
|x⇤(!)� x(!)|  ✏/3 for all ! 2 K .

iv. Since x⇤ is Lipschitz, so is x̂⇤ := x⇤�E⇤[x⇤] . And
��x̂⇤

�� 
��x⇤

��+
��E⇤[x⇤]

�� 
��x
��+✏/3

v. Theorem 1 for Lipschitz continuous and bounded functions ensures that for all suffi-
ciently large n , we can produce in the nth discrete time economy a contingent claim
xn such that

Pn
��
|xn(!)|  kx̂⇤k+ ✏/3

 �
= 1 and Pn

��
|xn(!)� x̂⇤(!)|  ✏/3

 �
� 1� ✏/3.

Combining these estimates, we have that, for all sufficiently large n :

vi. Pn
��
|xn(!)|  kxk+ 2✏/3

 �
= 1, and

vii. If we denote by J n the set
�
|xn(!) � x̂⇤(!)|  ✏/3

 
, then on the set J n \ K ,

��xn(!)� x(!)
�� 

��xn(!)� x̂⇤(!)
��+

��x̂⇤(!)� x⇤(!)
��+

��x⇤(!)� x(!)
��  ✏ .

viii. And Pn(J n \K) � 1� 2✏/3 .

This completes the proof of Theorem 1.

6. Vanishing risk?
Theorem 1 establishes the ability to asymptotically synthesize bounded and contin-

uous contingent claims with bounded risk. It would be better (in terms of saying, for
instance, that markets are asymptotically complete) if we could replace “bounded risk”
with “vanishing risk” as defined earlier. But, this is not possible, even for examples in
which the Pn are created in the fashion of Section 3, for ⇣ with bounded support.
Consider, for instance, ⇣ with the following distribution:

⇣ =

8
><

>:

1.5, with probability 2/9,
0, with probability 5/9, and
�1.5, with probability 2/9.

Imagine trying to synthesize a European put option with strike price 1 on the stock,
x(!) =

�
1� S(1,!)

�+ . Asymptotically synthesizing x with vanishing risk implies doing
so with bounded risk, so by Theorem 2a, the initial investment for doing in the nth model
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must converge to E⇤[x] ⇡ 0.38239 > 0 . But, for any n , in the nth discrete-time economy,
there is positive probability of the path !o for which S(t) never moves from 1. Along this
path, the stock produces neither capital gains nor capital losses, and so every portfolio
strategy ✓ gives V✓(t,!o) = V✓(0) . Synthesis with vanishing risk would require that, for
every path ! with positive probability, and in particular, for !o , V✓(1,!) is close to x(!) .
But x(!o) = (1 � S(1,!o))+ = 0 . Since V✓(1,!o) = V✓(0) , we can’t have both V✓(1,!o)
close to 0 and V✓(0) close to 0.38239.

7. Concluding remarks
Theorem 1 is easily extended to claims that are unbounded on one side. Suppose x

is a continuous claim with x � 0 (for all ! ) and E⇤[x] < 1 . Then a simple corollary to
Theorem 1 is that, for any ✏ > 0 , there exists N such that for all n > N , a claim xn can be
synthesized in the nth discrete-time economy for an initial investment of E⇤[x] and such
that Pn

��
! : xn(!)� x(!) > ✏

 �
< ✏ and Pn

��
! : xn(!) > �✏

 �
= 1 . (Proof: Define xB

by xB(!) := min
�
x(!), B} . Choose B large enough so that Pn

��
! : x(!) > B

 �
 ✏/3

uniformly in n (recall that Pn ) P for theuniformity), and such that E⇤[x]�E⇤[xB] < ✏/3 .
And then apply Theorem 1 to xB for ✏/3 in place of ✏ .7

And, Theorem 1 has the following application to the consumer’s problem of choosing
an optimal consumption bundle. The context is where all consumption is done at time
1; the consumer is endowed with initial wealth in the form of an endowment of stock
and bond, whose value at time 0 is denoted W , and she trades (in self-financing fashion)
from time 0 to time 1, where she consumes the “dividend” paid by her portfolio at time
1. Suppose the consumer is an expected utility maximizer, with continuous and nonde-
creasing utility function, endowment wealth W , and subjective beliefs given by P . We
are agnostic as to whether she is constrained to nonnegative consumption or not. In the
continuous-time limit model, she has access to complete markets, with price of claims
given by E⇤[·] . Let

U⇤ := sup
�
E[u(x)] : x such that E⇤[x]  W and, if the nonnegativity constraint is imposed, x � 0}.

Under mild conditions on u (for instance, concavity), she has the same supremal
expected-utility level if she restricts attention to bounded and continuous claims x . More-

7 One must be careful in general how to interpret this. Kreps (2019, Chapter 4) provides an example of a
nonnegative and continuous (but not Lipschitz continuous) x andwhere ⇣ is binomial—hence for each n there
is a unique emm P ⇤n— such that E⇤[x] is finite but E⇤n[x]!1 .
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over, if x � 0 is imposed, she can achieve the same supremal level of expected utility with
claims that are bounded and continuous and uniformly (in ! ) bounded away from zero
and that satisfy her budget constraint. Fix ✏ and let x be such a claim that comes within
✏/2 of U⇤ in terms of expected utility. (If U⇤ = 1 , instead fix K arbitrarily large and
have x̂ be a claimwhose expected utility is at least K + 1 .) Then, as corollary to Theorem
1, there is N large enough so that, for n � N , she can in the nth discrete-time economy
synthesize a claim whose expected utility is within ✏/2 of the expected utility of x̂ . That
is, she can do at least as well asymptotically in the discrete-time economies, despite any
incomplete markets, as she can in the complete-markets limit economy. For full details,
see Kreps (2019, Proposition 5.2).
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Appendix. Vanishing risk—a positive result

We can provide a positive result concerning asymptotic synthesis of contingent claims
with vanishing risk, if the probabilitymeasure, subsequentlydenoted by PL , that governs
(via scaled copies of a fixed ⇣ ) the evolution of stock prices supports paths (and markets)
that can, at stopping times, move from paths on a coarser grid to paths on a finer grid.
A discussion of the economic meaning of this construction will follow definitions and
analysis.
In this construction, we restrict attention to models built in the fashion of the example

of Section 3: Fix a random variable ⇣ with expectation zero, unit variance, and bounded
support.
Consider an ensemble L consisting of a sequence of stopping times {⌧n;n = 0, 1, . . .}



26 Asymptotic synthesis of contingent claims in a sequence of discrete-time markets

anda sequenceof randomvariables {⌫n;n = 0, 1, . . .} , togetherwithaprobabilitymeasure
PL on C0[0, 1] , with the following properties:

1. ⌫0 is a deterministic number of the form ⌫0 = 2⌘0 . For each n = 0, 1, . . . , ⌫n+1 > ⌫n .
Each ⌫n takes values of the form 2⌘n for positive integer ⌘n .

2. ⌧0 = 0 , and for each n = 1, 2, . . . , ⌧n is either of the form ⌧n�1+n�1/⌫n�1 or1 , where
if ⌧n /=1 , then ⌧n < 1 . Put differently, given ⌧n�1 < 1 , we have either ⌧n = 1 or n�1

is integer valuedwith n�1 <
�
1� ⌧n�1

�
/⌫n�1, in which case ⌧n = ⌧n�1 +n�1/⌫n�1 .

3. If ⌧n < 1 , then for all k = 1, 2, . . . ,n , the distribution of !(⌧n + k/⌫n)� !(⌧n + (k �
1)/⌫n) under PL is the distribution of ⇣/p⌫n , independent of any prior history of
the path ! . For t 2 [ ⌧n + (k � 1)/⌫n, ⌧n + k/⌫n] , paths of ! are filled in by linear
interpolation. (This condition defines PL , as explained below.)

4. The random variables ⌧n and ⌫n are stoppping times with respect to the filtration
{F(t); 0  t  1} and the ⌫n are F(⌧n)-measurable.

5. limn!1 ⌧n = 1 , PL -almost surely.

This description of L and the implicit definition of the corresponding probability
measure PL on C0[0, 1] is fairly opaque, hiding a relatively simple (iterative) construction.
At time 0, a value ⌫0 = 2⌘0 is fixed. Paths ! are built for the interval [0, 1/⌫0] to be linear,
starting at !(0) = 0 and ending at !(1/⌫0) , which has the distribution of ⇣/

p
⌫0 . If,

given the value of !(1/⌫0) , the stopping time ⌧1 is not 1/⌫0 , then the path continues over
the interval [1/⌫0, 2/⌫0] in (piecewise) linear fashion, with !(2/⌫0)� !(1/⌫0) having the
distribution of ⇣/p⌫0 , independent of what happened previously.
The step-by-step construction of paths (and the measure PL ) thus continues. Either

⌧1 = 1 (for the path that is constructed step-by-step), in which case the construction
continues for ⌫0 steps,whentime1 is reached. But if ⌧1 < 1 , inwhichcase ⌧1 = 0/⌧0 < 1 ,
the construction of paths from time ⌧1 until ⌧2 , if ⌧2 < 1 , or until time 1, if ⌧2 = 1 ,
continues, but with a finer “grid size” 1/⌫1 , for ⌫1 = 2⌘1 > ⌫0 . Paths over this (random)
interval are piecewise linear, with the distribution of !

�
⌧0 + (k + 1)/⌫1

�
� !

�
⌧0 + k/⌫1)

having the law of ⇣/p⌫1 , independent of everything previous. If ⌧2 = 1 , this proceeds
until time 1; if ⌧2 = 0/⌫0 +1/⌫1 < 1 , then starting from ⌧2 , the grid size shrinks again to
1/⌫2 , and so forth. The final requirement, Condition 5, is that for PL -almost every path
constructed in this fashion, time 1 is reached after a finite number of “switches.”
For each such ensemble L , let T (!) be the set of t 2 [0, 1] of the form ⌧n(!)+k/⌫n(!) ,
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for k = 0, . . . ,n(!) . We imagine that T (!) is the set of “available trading times” for
consumer-investors along the path ! , times when they can rearrange their portfolios of
stock and bond (in self-financing fashion). There is a one-to-one correspondence between
ensembles L and the set T of trading times consistent with L ; we could have had T
as the primitive. But it is harder to write down the “rules” in terms of structure and
measurability of a “legitimate” set T .
That said, note that L is a directed set, with L = {⌧n, ⌫n} � L0 = {⌧ 0n, ⌫0n} if the times

satisfy ⌧n  ⌧ 0n and the fineness scales satisfy ⌫n � ⌫0n . Expressing this in terms of the
T is simple: If T are the trading times for L and T 0 are the trading times for L0 , then
L � L0 if and only if T � T 0 .
Fixing L or, equivalently, T or, equivalently (for fixed ⇣ ) themeasure PL , we imagine

a consumer–investor who takes an initial position in the stock and bond at time 0 and
trades at available trading times in a self-financing and non-anticipatory manner. Letting
✓(t,!) denote the number of shares of the “stock” in her portfolio at time t after she
trades (if allowed to do so) at time t , we have that ✓(t,!) is piecewise constant (in our
manner of doing things, right continuous with left limits), with ✓(t,!) changing values
only at available trading times t 2 T (!) . The value of her portfolio, denoted V✓(t,!) , is
computed as the value of its initial value V✓(0) plus the sum of capital gains (or losses)
accrued; becauseofCondition5, this value is awell-definedfinite sumwith PL probability
1.

Theorem 3. Suppose random variable ⇣ has expectation 0, variance 1, and bounded support. For
every bounded and continuous claim x : C0[0, 1] ! dR , and for every ✏ > 0 , there is an ensemble
L✏ as above such that for all ensembles L such that L � L✏ , there is a trading strategy ✓ for L
such that

PL
✓⇢

! :
��V✓(1,!)� x(!)

�� < ✏

�◆
= 1. (A.1)

Moreover, if ✏i & 0 , and we find Li and ✓i such that (A.1) is true for Li , ✓i , and ✏i , then
limi V i

✓ (0) exists and equals E⇤[x] .

In words, consumer-investor can asymptotically synthesize x with vanishing risk for a
sequence of these ensembles Li , and the initial investment required must converge to the
price of x in the BSM economy.



28 Asymptotic synthesis of contingent claims in a sequence of discrete-time markets

We will provide a formal proof of this theorem in another paper, which will deal with
further interesting mathematical issues that arise concerning the asymptotic properties
of measures PL as one moves out along the directed set of ensembles L . But we can
offer here a sketch of how the proof goes. As in the proof of Theorem 1, we work with
Lipschitz-continuous claims x , and then, in a final stage, approximate a given bounded
and continuous x by Lipschitz-continuous claims. And, for a Lipschitz-continuous claim
x :
Fix ✏ > 0 . Invoke the construction in the proof of Theorem1 for x , butwith ✏/2 instead

of ✏ . The n that Theorem 1 produces is the ⌫0 here, where (in this setting) we insist on
⌫0 = 2⌘0 for some integer ⌘0 . Of course, there is positive probability – which approaches
1 as ⌫0 approaches 1 –that there is never the need to stop the process, in which case
⌧1 = 1 . But if, in the Theorem 1 construction, the process is stopped, this becomes the
value of ⌧1 . Note that, at time ⌧1 ^ 1 , the portfolio being constructed for each ! in the
support of PL is at most ✏/2 away from x(⌧1 ^ 1) . (Indeed, it is true that, at all t  ⌧1 ^ 1)
that the value of the portfolio is less than ✏/2 away from x(t) .) And, instead of really
stopping the process, as in the proof of Theorem 1, at this point you invoke Theorem 1
fromwhatever is your current situation, but for ✏/4 in place of ✏ . Thiswill take, in general,
a larger—perhaps significantly larger – value of n , but whatever value is required, this is
⌫1 = 2⌘1 . Again, there is positive probability – which approaches 1 as ⌫1 approaches 1
– of making it to time 1 with the fineness grid set at ⌫1 . But if the Theorem 1 construction
calls for a stop—at which point you are at most 3✏/4 away from x(⌧2 ^ 1) – this is ⌧2 ,
and you invoke Theorem 1 once more, but for ✏/8 . And so forth. As long as, at each
time you stop, you choose a fine-enough grid size – that is, a large enough ⌫n – so that
your potential error in the sequel is no larger than ✏/2n – hence your accumulated error
is no larger than ✏(1� (1/2)n) – and the probability that you reach time 1 before stopping
is uniformly (in n) bounded away from zero, then, almost surely, you will reach time 1,
with a portfolio within ✏ of x , after a finite (but, in general, unbounded in ! ) number of
“switches.”
Please note: This sketch says how we show that x can be synthesized with vanishing

risk. The last piece of Theorem3, pertaining to the asymptotic uniqueness of the cost of the
initiating portfolio—in essence, that there is no asymptotic arbitrage in this context—also
requires proof.
One point should be stressed. When, at time 1, the portfolio is within ✏ of the claim x ,

what is really being said is that the value of the portfolio is within ✏ of x(!) for the path !
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that has been traversed. And that path is the concatenation, at the different stopping times,
of a path that starts off with grid size ⌫0 , then (perhaps) has increments of grid size ⌫1 ,
and so forth.

Tounderstandwhat isgoingonhere, consider theexampleofSection6 in thepaper: The
consumer-investor attempts to synthesize the European put option x(!) =

�
1�S(1,!)

�+

with vanishing risk, where ⇣ has the trinomial distribution specified in Section 6. To do so,
she must begin with a portfolio whose value (asymptotically) is the Black-Scholes price,
or E⇤[x] ⇡ 0.38239 > 0 . To simplify the exposition, suppose she starts with a portfolio
whose value is precisely E⇤[x] . Suppose she sets her target ✏ at ✏ = 0.08 . And suppose
that the first several increments she observes are all ⇣ = 0 ; that is, the trajectory !(t) does
not move from 0 (and, therefore, the stock price trajectory S(t,!) does not move from 1).
Because the stockprice doesn’t change along this path, she accrues neither capital gains

nor losses, no matter which strategy she uses: her portfolio does not change value but
remains worth the initial E⇤[x] ⇡ 0.38239 . But, as time elapses, the Black-Scholes value
of the put, x(t) = E⇤[x|!(k/⌫0) = 0] , falls as k grows. At some specific time (along this
path), long before time 1, x(t) along this path reaches a level such that there is positive
probability that, in one more step, it will fall below 0.38239� ✏/2 = 0.34239 . It is at this
point that ⌧1 fires. The investor increases the grid-size parameter to some ⌫1 . Suppose she
continues to see only ⇣ = 0 ; that is, ! ⌘ 0 and S(t,!) ⌘ 1 . As E⇤[x|!(t) = 0] continues
to fall, reaching (well before time 1) a point where there is positive probability that, in the
next step, it may fall below 0.32239 ; that is, more than 3✏/4 away from the value of the
investor’s portfolio. At the time (of the form ⌧1 + k/⌫1 for some k ) when this prospect
looms as possible, ⌧2 fires, and a new and smaller grid size comes into effect.
Suppose it continues to happen that !(t) ⌘ 0 . For as long as this happens, the value of

the investor’s portfolio keeps its original value, 0.38239. And, as time passes, E⇤[x|!(t) =
0] continues to fall. At some time t⇤ which is less than 1, we have E⇤[x|!(t⇤) = 0]  0.30239 ,
which is the (constant) value of the investor’s portfolio (along this extraordinary path) less
the value of ✏ = 0.08 she set as the error she is willing to tolerate. So, before t⇤ , along this
path, ⌧n < t⇤ for all n = 1, 2, . . . , which implies that she will have “observed” countably
many independent “increments” in the path ! , each having probability 5/9. Of course,
this has probability zero; the investor can be sure that, PL -almost surely, the path she
observes will deviate from !(t) ⌘ 0 and, in fact, it will do so almost surely prior to time
t⇤ < 1 , because, if not, there will be countably many “steps” crowded in between time 0
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and t⇤ .

What is the economic story behind this model? There are a variety of (not entirely
satisfactory) stories one can tell. Perhaps the story that comes closest to making sense
is that there is a countable number of risky securities being marketed, one that is priced
every 1/2k units of time, for k = 1, . . . The consumer-investor can trade in any of these
risky securities, but for reasons that don’t have an entirely satisfactory economic rationale,
she is constrained to hold no more than one risky asset at a time. Think, if you will, of
a sequence of “trading rooms,” something like a sequence of casinos; she can gamble
(invest) in any one of these rooms, but to invest in any one you must be within that room,
and if you leave a room, you must “cash out ” first. Then the stopping times ⌧n become
times at which the consumer-investor moves at her own volition (and with tremendous
speed) from one room to the next, and the ⌫n give the “name” of the room to which she
moves. In this interpretation, L is not handed down exogenously; rather, it is part of the
overall investing strategy of the investor.8

There is one nice feature of this interpretation. Because the Pn—the probability laws
that govern what goes on in the various rooms—converge weakly to Wiener measure P ,
the Skorohod Representation Theorem tells us that we can embed all this into a single
probability space ( ,P) , with a sequence of random variables {!n} , each taking values
in C0[0, 1] , where the “marginal distribution” of !n , the measure P � (!n)�1 , is Pn , and
!(n) ! ! P -a.s., where ! is a standard Brownian motion.
This is nice because, while it is a bit hard to attach economic meaning to x evaluated

at the concatenated path “created” by the consumer-inventor, with this interpretation, by
choosing ⌫0 large, Theorem3canbeextendedto say: theconsumer-investorcansynthesize
a claimwhose value at time 1 is within ✏ of x evaluated along the “fundamental” path ! .
However, this interpretation is not without problems. To mention three:

1. If the theory is meant to support Arrow’s original notion that a few securities, traded
frequently, can “span” a large state space, moving to amodel with a countable number
of securities is hardly in the spirit of Arrow’s idea. Put differently, if Arrow’s story is,
ultimately meant to be about economizing on the activity of market making, there is
no economizing here.

2. Why is the consumer–investor restricted to portfolios with at most one risky asset at a
8 And, in this story, the text of the paper can be thought of as describing a world with all these trading rooms,
but where an investor must choose one and only one in which to do her trading.
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time? And, if she isn’t, is this ensemble of countablymanymarkets viable, in the sense
of Cuchiero, Klein, and Teichmann?

3. In the story in the text, the idea is that, as long as there is a single market that meets
relatively frequently, markets are relatively close to complete, where the criterion is
getting close to the contingent claim with probability close to one, while not wind-
ing up very far from the desired claim with small probability. Of course, as in any
asymptotic analysis, the linkage between “relatively frequently” and “relatively close”
is not shown; without a much more precise rate-of-convergence analysis, we aren’t
quantifying the linkage.

However, if the criterion is gettingarbitrarily closewithprobability1,which iswhat
vanishing risk entails, then having a “very large but finite” number of these trading
rooms is insufficient. Togetvanishingrisk, youneed(ingeneral) the full complementof
countablymany rooms (as illustrated by our example of the put option), even though,
with probability one, a consumer–investor will only visit finitely many of them.

Which explains why Theorem 3 is relegated to the Appendix. It is an appealing story
mathematically (with further interestingmathematics thatwewill explore in a subsequent
paper), but as economics, it somewhat misses the mark.


