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Abstract

In the spirit of the famous Komlós (1967) theorem, every sequence of nonnegative, measur-

able functions {fn}n∈N on a probability space, contains a subsequence which—along with all its

subsequences—converges a.e. in Cesàro mean to some measurable f∗ : Ω → [0,∞]. This re-

sult of von Weizsäcker (2004) is proved here using a new methodology and elementary tools;

these sharpen also a theorem of Delbaen & Schachermayer (1994), replacing general convex

combinations by Cesàro means.
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1 Introduction

On a probability space (Ω,F ,P), consider real-valued measurable functions f1, f2, · · · . If these are

independent and have the same distribution with E(|f1|) < ∞ , the celebrated Kolmogorov strong

law of large numbers ([18]; [19]; [11], p. 73) states that the “sample average” (f1 + · · · + fN )/N

converges P−a.e. to the “ensemble average” E(f1) =
∫

Ω f1 dP , as N → ∞. More generally, if

fn(ω) = f
(
Tn−1(ω)

)
, n ≥ 2, ω ∈ Ω are the images of an integrable function f1 : Ω → R along

the orbit of successive actions of a measure-preserving transformation T : Ω → Ω , then the above

sample average converges P−a.e. to the conditional expectation f∗ = E(f1|I) of f1 given the σ−algebra

I of T−invariant sets, by the Birkhoff pointwise ergodic theorem ([11], p. 333).

A deep result of Komlós [20], already 55 years old but always very striking, says that such

“stabilization via averaging” occurs within any sequence f1, f2, · · · of measurable, real-valued functions

with supn∈N E(|fn|) <∞ . More precisely, there exist then an integrable function f∗ and a subsequence

{fnk
}k∈N such that (fn1 + · · ·+ fnK )/K converges to f∗ , P−a.e. as K →∞; and the same is true for

any further subsequence of this {fnk
}k∈N .
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This result inspired further path-breaking work in probability theory ([12], [6], [7]) culminating with

Aldous (1977), where exchangeability plays a crucial rôle. It, and its ramifications [9], [10] involving

forward convex combinations, have been very useful in the field of convex optimization; more generally,

when one seeks objects with specific properties, and tries to ascertain their existence using weak

compactness arguments. Stochastic control, optimal stopping and hypothesis testing are examples of

the former (e.g., [22], [16], [8], [17], [23]); the Doob-Meyer and Bichteler-Dellacherie theorems

in stochastic analysis provide instances of the latter (e.g., [13], [2], [3]).

We develop here a very simple argument for the Komlós theorem, in the important special case

of nonnegative f1, f2, · · · treated by von Weizsäcker (2004). The argument dispenses with bound-

edness in L1, at the cost of allowing the function f∗ to take infinite values.

2 Background

We place ourselves on a given, fixed probability space (Ω,F ,P), and consider a sequence f1, f2, · · · of

measurable, real-valued functions defined on it. We say that this sequence converges hereditarily in

Cesàro mean to some measurable f∗ : Ω→ R∪ {±∞}, and write fn
hC−−−→

n→∞
f∗ , P− a.e., if, for every

subsequence
{
fnk

}
k∈N of the original sequence, we have

lim
K→∞

1

K

K∑
k=1

fnk
= f∗ , P− a.e. (2.1)

Clearly then, every other such sequence g1, g2, · · · which is equivalent to f1, f2, · · · , in the sense of∑
n∈N P(fn 6= gn) <∞ (cf. [19]), also has this property.

In 1967, Komlós proved the following remarkable result. The argument in [20] is very clear, but

also long and quite involved. Simpler proofs and extensions have appeared since (e.g., [25], [27]; [4]).

Theorem 2.1 (Komlós (1967)). If the sequence {fn}n∈N is bounded in L1, i.e., supn∈N E(|fn|) <∞
holds, there exist an integrable f∗ : Ω → R and a subsequence

{
fnk

}
k∈N of {fn}n∈N , which converges

hereditarily in Cesàro mean to f∗ :

fnk

hC−−−→
k→∞

f∗ , P− a.e. (2.2)

This result was motivated by an earlier one, Theorem 2.2 right below. For the convenience of

the reader, we provide in § 5.1 a simple proof (in the manner of [5], pp. 137-141) of that precursor

result, which proceeds by extracting first a martingale difference subsequence. This crucial idea,

which establishes a powerful link to martingale theory and simplifies the arguments, appears in this

context for the first time in [20] (for related results, see [21]).

Theorem 2.2 (Révész (1965)). If the sequence {fn}n∈N satisfies supn∈N E(f2
n) < ∞ , there exist a

function g ∈ L2 and a subsequence {fnk
}k∈N , such that

∑
k∈N ak

(
fnk
− g
)

converges P−a.e., for any

sequence {ak}k∈N of real numbers with
∑

k∈N a
2
k <∞.

It is clear that this property of the subsequence {fnk
}k∈N is inherited by all its subsequences (just

“stretch out” the ak’s accordingly, and fill out the gaps with zeroes).

In a related development, Delbaen & Schachermayer ([9], Lemma A1.1; [10]) showed with very

simple arguments that, from every sequence {fn}n∈N of nonnegative, measurable functions, a sequence

of forward convex combinations gn ∈ conv(fn, fn+1, · · · ), n ∈ N of its elements can be extracted, which
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converges P−a.e. to a measurable f∗ : Ω→ [0,∞]. This result was called “a somewhat vulgar version

of Komlós’s theorem” in [10], and is implied by Theorem 3.1 below. Indeed, convergence for Cesàro

averages is much more precise than for unspecified convex combinations.

In several contexts, including optimization treated via convex duality, nonnegativity is often no

restriction at all, but rather the natural setting (e.g., [22]; [23]; [14]; [15], Chapter 3 and Appendix).

Then, in the presence of convexity, Lemma A1.1 in [9], or Theorem 3.1 here, are very useful analogues

of Theorem 2.1: they lead to limit functions f∗ in convex sets (such as the positive orthant in L0, or

the unit ball in L1) which are not compact in the usual sense, but are “convexly compact” in the sense

introduced by Žitković [29].

3 Result

The purpose of this note is to prove with new and elementary tools the following version of Theorem

2.1, due to von Weizsäcker [28] and studied further in [26], § 5.2.3 of [14].

Theorem 3.1. Given a sequence {fn}n∈N of nonnegative, measurable functions on a probability space

(Ω,F ,P), there exist a measurable function f∗ : Ω→ [0,∞] and a subsequence
{
fnk

}
k∈N of the original

sequence, such that (2.2) holds.

Our proof appears in Section 5; it is, we believe, not without methodological/pedagogical merit.

We observe that the result imposes no restriction whatsoever on the functions f1, f2, · · · , apart from

measurability and nonnegativity. This comes at a price: the limiting function f∗ , constructed here

carefully in (4.3)–(4.6) below, can take the value +∞ on a set of positive measure.

4 Preparation

We place ourselves in the setting of Theorem 3.1. The arguments that follow often necessitate passing

to subsequences, and to diagonal subsequences, of a given {fn}n∈N. To simplify typography, we denote

frequently such subsequences by the same symbols, {fn}n∈N.

For each integer k ∈ N, we introduce now the truncated functions

f (k)
n := fn · 1{k−1≤fn<k} , n ∈ N (4.1)

and note the partition of unity
∑

k∈N f
(k)
n = fn , ∀ n ∈ N .

Lemma 4.1. For the sequence of functions {fn}n∈N in Theorem 3.1, there exists a subsequence,

denoted by the same symbols and such that, for every k ∈ N, the functions of (4.1) converge to an

appropriate measurable function f (k) : Ω→ [0,∞) , in the sense

f (k)
n

hC−−−→
n→∞

f (k), P− a.e. (4.2)

For each fixed k ∈ N, this convergence holds also in L1.

Proof (after [5], pp. 145–146): For arbitrary, fixed k ∈ N , the sequence
{
f

(k)
n

}
n∈N of (4.1) is bounded

in L∞, thus also in L2. Theorem 2.2 provides a function f (k) ∈ L2 and a subsequence {f (k)
nj }j∈N of
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{f (k)
n }n∈N , such that

∑
j∈N(f

(k)
nj − f (k))/j converges P−a.e.; as mentioned right after Theorem 2.2,

this is inherited by all subsequences of {f (k)
nj }j∈N, and the Kronecker Lemma ([11], p. 81) gives

0 = lim
J→∞

1

J

J∑
j=1

(
f (k)
nj
− f (k)

)
= lim

J→∞

1

J

J∑
j=1

f (k)
nj
− f (k), P− a.e.

We pass now to a diagonal subsequence, denoted
{
fn
}
n∈N again, and such that (4.2) holds for every

k ∈ N . The last claim follows by the dominated convergence theorem.

With these ingredients, we introduce the measurable function f : Ω→ [0,∞] via

f :=
∑
k∈N

f (k), and consider the set A∞ := {f =∞}. (4.3)

With the help of Fatou’s Lemma, and the notation of (4.1)–(4.3), Lemma 4.1 gives then

lim
N→∞

1

N

N∑
n=1

fn ≥ f , P− a.e. (4.4)

lim
N→∞

1

N

N∑
n=1

fn =∞ = f , P− a.e. on A∞ (4.5)

for a suitable subsequence (denoted by the same symbols) of the original sequence {fn}n∈N , and for

all further subsequences of this subsequence.

The inequality in (4.4) can easily be strict. Consider, for instance, fn ≡ n , so that f
(k)
n = 0 holds

in (4.1) for every fixed k ∈ N and all n ∈ N sufficiently large. We obtain f (k) = 0 in (4.2), thus f = 0

in (4.3); and yet 1
N

∑N
n=1 fn →∞ as N →∞.

This preparation allows us to formulate a more technical and precise version of Theorem 3.1,

Proposition 4.2 below, which implies it. The convention ∞ · 0 = 0 is employed here, and throughout.

Proposition 4.2. Fix a sequence {fn}n∈N of nonnegative, measurable functions on the probability

space (Ω,F ,P), and recall the notation of (4.1)–(4.3). There exist then a subsequence, denoted again

{fn}n∈N , and a set A ⊇ A∞ , such that

fn
hC−−−→

n→∞
f∗ := max

(
f, ∞ · 1A

)
, P− a.e. (4.6)

We have A = A∞ , thus also f∗ ≡ f, when limK→∞ limn→∞ P
(
fn ≥ K, f <∞

)
= 0 .

This last condition is satisfied when
{
fn 1{f<∞}

}
n∈N is bounded in L0, i.e., limK→∞ supn∈N P(fn ≥

K, f < ∞) = 0 holds. A bit more stringently, if not only {fn}n∈N but also its solid, convex hull in

L0
+, is bounded in L0, then {fn}n∈N is bounded in L1(Q) under some probability measure Q ∼ P, and

thus P(f < ∞) = 1 (e.g., Proposition A.11 in [15]). Whereas, if {fn}n∈N is bounded in L1(P), i.e.,

κ := supn∈N E(fn) <∞, then f in (4.3) is integrable, since E(f) ≤ κ holds the from (4.4) and Fatou.

5 Proofs

We shall need a couple of auxiliary results. First, and always with the notation of (4.1)–(4.3), we note

the following consequence of monotone and dominated convergence.
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Lemma 5.1. Suppose a set D ⊆ Ω\A∞ = {f < ∞} satisfies E
(
f 1D

)
< ∞ . Then, for any given

ε ∈ (0, 1), there exist an integer K ∈ N and a subsequence of the given sequence {fn}n∈N such that for

it, and for any one of its subsequences (denoted again {fn}n∈N), we have for all integers L > K :

lim
n→∞

E
[
fn 1{K≤fn<L}∩D

]
=: lim

n→∞
E
[
f [K,L)
n 1D

]
< ε . (5.1)

We are using throughout the notation

f [K,L)
n :=

L∑
k=K+1

f (k)
n = fn 1{K≤fn<L} , f [K,∞)

n :=
∑

k≥K+1

f (k)
n = fn 1{fn≥K} ; (5.2)

in an analogous manner f [K,L) :=
∑L

k=K+1 f
(k) , f [K,∞) :=

∑
k≥K+1 f

(k) , and Lemma 4.1 gives

f [K,L)
n

hC−−−→
n→∞

f [K,L) , both P−a.e. and in L1. (5.3)

Secondly, we recall (4.5) and observe the following dichotomy.

Lemma 5.2. In the setting of Proposition 4.2, consider any measurable set B ⊇ {f = ∞} such that

the property fn
hC−−−→

n→∞
∞ of (4.5) holds P−a.e. on B. Then, either

(i) there exist a set C ⊇ B with P(C) > P(B) and a subsequence, still denoted {fn}n∈N , with

fn
hC−−−→

n→∞
∞ valid P− a.e. on C ; or, (5.4)

(ii) the Cesàro convergence fn
hC−−−→

n→∞
f <∞ holds P− a.e. on Ω \B ⊆ {f <∞} .

Under Case (ii), the set B ⊇ A∞ = {f = ∞} is maximal for the P−a.e. property fn
hC−→ ∞ : it

cannot be “inflated” to a set C ⊇ B, which satisfies (5.4) and has measure bigger than that of B. This

leads eventually to Proposition 4.2, and thence to Theorem 3.1.

Before proving these two results, we dispense with the proof of Theorem 2.2; this is completely

self-contained, and has nothing to do with either Lemma 5.1 or Lemma 5.2.

5.1 Proof of Theorem 2.2

Because {fn}n∈N is bounded in L2, we can extract a subsequence that converges to some g ∈ L2 weakly

in L2. Thus, it suffices to prove the result for a sequence {gn}n∈N bounded in L2, and with gn → 0

weakly in L2. We take such a sequence, then, and approximate each gn by a simple function hn ∈ L2

with ‖gn − hn‖2 ≤ 2−n, ∀n ∈ N. This gives, in particular,∑
n∈N

∣∣gn − hn∣∣ <∞ , P− a.e. ; hn → 0 weakly in L2. (5.5)

We construct now, by induction, a sequence 1 = n1 < n2 < · · · of integers, such that∣∣ϑk∣∣ < 2−k holds P− a.e., for ϑk := E
(
hnk

∣∣hn1 , · · · , hnk−1

)
, k = 2, 3, · · · , (5.6)

as follows: The function hn1 = h1 is simple, thus so is E(hn|h1) =
∑J

j=1 γ
(n)
j 1Aj with A1, · · · , AJ a

partition of the space, and P(Aj) > 0, γ
(n)
j :=

(
1/P(Aj)

)
· E
(
hn 1Aj

)
. This last expectation tends to

zero as n → ∞ from (5.5), for every fixed j; so we can choose n2 > n1 = 1 with
∣∣γ(n2)

j

∣∣ < 2−2, for

j = 1, · · · , J ; i.e.,
∣∣ϑ2

∣∣ < 2−2, P−a.e. Clearly, we can keep repeating this argument since, at each

stage,
(
hn1 , · · · , hnk−1

)
generates a finite partition of the space; and this way we arrive at (5.6).
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The sequence {hn}n∈N is bounded in L2, thus so is the martingaleXk :=
∑k

`=0 a`
(
hn`
−ϑ`

)
, k ∈ N0 ,

for any {ak}k∈N0 ⊂ R with
∑

k∈N a
2
k < ∞. Martingale convergence theory ([11], p. 236) shows that

the series
∑

k∈N ak
(
hnk
− ϑk

)
converges P−a.e. But we have also

∑
k∈N

(∣∣ϑk∣∣ +
∣∣gnk

− hnk

∣∣) < ∞,
P−a.e. from (5.5)–(5.6), and deduce that

∑
k∈N ak gnk

converges P−a.e., the claim of the theorem.

5.2 Proof of Lemma 5.1

Let us call “Lemma 5.1 †” the same statement as that of Lemma 5.1, except that (5.1) is now replaced

by

∀ L = K + 1,K + 2, · · · : E
[
f [K,L)
n 1D

]
< ε , for all but finitely many n ∈ N. (5.7)

Claim: Lemma 5.1 † implies Lemma 5.1. Let a subsequence of the original {fn}n∈N be given (denoted

{fn}n∈N again), along with arbitrary ε ∈ (0, 1). Lemma 5.1 † guarantees the existence of K ∈ N,

depending on ε and the subsequence, such that (5.7) holds for all integers L ≥ K + 1.

Choose L = K + 1 first. From Lemma 5.1 † and Bolzano-Weierstrass, (the current) {fn}n∈N
has a subsequence for which the expectation in (5.7) converges, with limit ≤ ε/2. Now choose L = K+2

and a subsequence of the last subsequence, for which the expectation in (5.7) converges and has limit

≤ ε/2. Continuing in this manner, then diagonalizing, we obtain a subsequence that satisfies (5.7).

Proof of Lemma 5.1 †. We argue by contradiction, assuming that {fn}n∈N has a subsequence for which

Lemma 5.1 † fails. Then there exists an ε ∈ (0, 1) with the property that, for every subsequence of

{fn}n∈N and every K ∈ N, there exists an integer L > K such that

E
[ L∑
k=K+1

f (k)
n 1D

]
= E

(
f [K,L)
n 1D

)
≥ ε (5.8)

holds for infinitely many integers n ∈ N. But this means that there is a subsequence, again denoted

by {fn}n∈N , along which we have (5.8) for every n ∈ N; and, as a result, also

E
[ L∑
k=K+1

( 1

N

N∑
n=1

f (k)
n

)
1D

]
≥ ε , ∀ N ∈ N . (5.9)

Now, all the truncated functions f
(k)
n in (4.1), for k = K + 1, . . . , L and n ∈ N, take values on

the “Procrustean bed” {0} ∪ [K,L); and limN→∞
1
N

∑N
n=1 f

(k)
n = f (k) holds P−a.e., for the selected

subsequence and all its subsequences, on account of Lemma 4.1. Thus, E
[∑L

k=K+1 f
(k) 1D

]
≥ ε from

bounded convergence and (5.9); and the nonnegativity of these f (k)’s implies also

E
( ∑

k≥K+1

f (k) 1D

)
= E

(
f [K,∞) 1D

)
≥ ε , ∀ K ∈ N . (5.10)

The nonnegativity gives also limK→∞ ↑
∑K

k=1 f
(k) 1D = f 1D , both P−a.e. and in L1. Since

E
(
f 1D

)
< ∞ by assumption, E

[
f [K,∞) 1D

]
< ε/2 holds for all K ∈ N large enough. But this

contradicts (5.10), and we are done.

5.3 Proof of Lemma 5.2

We start by fixing j ∈ N and distinguishing two contingencies, with the definitions

Dj := {f ≤ j}\B , E[K,∞)
n :=

{
f [K,∞)
n ≥ K

}
∩Dj =

{
fn ≥ K

}
∩Dj , (5.11)

α := lim
K→∞

lim
n→∞

P
(
E[K,∞)

n

)
: (5.12)
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Contingency I: α > 0 .

Contingency II: α = 0 .

• Under Contingency I , we pass to a subsequence {fn}n∈N with P
(
E

[n2,∞)
n

)
≥ α/2 , ∀ n ∈ N ;

and consider indicators gn := 1
E

[n2,∞)
n

, n ∈ N , all of them supported on the set Ω \ B. Arguing as

in Lemma 4.1 we obtain a subsequence, still denoted {gn}n∈N, with gn
hC−−−→

n→∞
g , P − a.e., for some

g : Ω→ [0, 1] with {g > 0} ⊆ Ω\B and E(g) ≥ α/2 by bounded convergence.

Thus, fn
hC−−−→

n→∞
∞ holds P−a.e. on {g > 0} . This set has measure P

(
g > 0

)
= E[1{g>0}] ≥

E(g) ≥ α/2 ; we are under Case (i) of Lemma 5.2, with C := {g > 0} ∪B and P(C) > P(B).

• Now we pass to Contingency II . We fix ε > 0, Dj = {f ≤ j}\B, and apply Lemma 5.1 with this

Dj to construct inductively a subsequence
{
nm
}
m∈N , along with sequences

{
Km

}
m∈N ,

{
Lm

}
m∈N of

integers increasing to infinity and such that

P
(
E [Lm,∞)

nm

)
= P

({
fnm ≥ Lm

}
∩Dj

)
< 2−m (5.13)

E
[
f

[Km,Lp)
np 1Dj

]
< 2−m , ∀ p = m,m+ 1, · · · (5.14)

hold for every m ∈ N. With the choice (5.13), the sequences
{
fnm ·1Dj

}
m∈N and

{
f

[0,Lm)
nm ·1Dj

}
m∈N

are equivalent in the sense introduced in section 2, as the probability of their respective general terms

being different is bounded from above by 2−m. We claim that

fnm · 1Dj

hC−−−−→
m→∞

f · 1Dj , P− a.e.; (5.15)

and in view of the previous statement, this amounts to

f [0,Lm)
nm

· 1Dj

hC−−−−→
m→∞

f · 1Dj , P− a.e. (5.16)

To prove (5.16), we start by observing that the sequence
{
f

[0,Lm)
nm ·1Dj

}
m∈N is uniformly integrable,

thus bounded in L1, as sup p∈N
p≥m

E
[
f

[0,Lp)
np 1Dj · 1{f [0,Lp)

np ≥Km

} ] < 2−m holds on account of (5.14) for

every m ∈ N . Theorem 2.1 gives an integrable function h : Ω→ [0,∞) with

f [0,Lm)
nm

· 1Dj

hC−−−−→
m→∞

h · 1Dj , P− a.e., (5.17)

and we need to argue that this h agrees with f from (4.3), P−a.e. on Dj .

Indeed, for every K ∈ N and all m large enough,
∑K

k=1 fnm 1{k−1≤fnm<k} = f
[0,K)
nm ≤ f

[0,Lm)
nm

holds, therefore
∑K

k=1 f
(k) · 1Dj ≤ h · 1Dj by letting m → ∞, on account of (5.17) and Lemma 4.1.

Passing now to the limit as K →∞ and recalling (4.3), we arrive at

f · 1Dj ≤ h · 1Dj , P− a.e. (5.18)

To obtain the inequality in the reverse direction, we take expectations. From the analogue of (5.17)

f
[0,Lm∧K)
nm · 1Dj

hC−−−−→
m→∞

h(K) · 1Dj , P− a.e., with 0 ≤ h(K) ↑ h as K →∞ , uniform integrability, and

Lemma 4.1, we have E
[
f

[0,Lm∧K)
nm · 1Dj

]
hC−−−−→

m→∞
E
[
h(K) · 1Dj

]
, therefore also

E
[
h(K) · 1Dj

]
= lim

M→∞

1

M
E
[ M∑

m=1

f [0,Lm∧K)
nm

· 1Dj

]
= lim

M→∞

1

M
E
[ M∑

m=1

Lm∧K∑
k=1

f (k)
nm
· 1Dj

]

≤ lim
M→∞

1

M
E
[ M∑

m=1

( K∑
k=1

f (k)
nm

)
· 1Dj

]
= E

[ K∑
k=1

f (k) · 1Dj

]
≤ E

[
f · 1Dj

]
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for every K ∈ N . Letting K → ∞ , monotone convergence gives E
[
h · 1Dj

]
≤ E

[
f · 1Dj

]
; in

conjunction with (5.18), this shows f ·1Dj = h ·1Dj , P−a.e.; and on account of (5.17), it establishes

(5.16), thus (5.15) as well. Finally, we let j →∞ : we do this by extracting subsequences, successively

for each j ∈ N ; then passing to a diagonal subsequence; obtaining (5.15) with Dj replaced by D :=⋃
j∈NDj = {f <∞}\B ; and deducing that we are in Case (ii) of Lemma 5.2.

5.4 Proofs of Proposition 4.2 and Theorem 3.1

On the strength of Lemma 5.2 we construct, by exhaustion or transfinite induction arguments and as

long as we are under the dispensation of its Case (i), an increasing sequence B ⊆ B1 ⊆ B2 ⊆ . . . of

sets as postulated there, whose union B∞ :=
⋃

j∈NBj ⊇ B ⊇ {f =∞} is maximal with the property

(5.4) for an appropriate subsequence. But maximality means that, on the complement Ω\B∞ of this

set, we must be in the realm of Case (ii) in Lemma 5.2. This establishes the first claim of Proposition

4.2 with A = B∞ ⊇ {f =∞} , thus also Theorem 3.1.

For the second claim of the Proposition, we note that equality holds right above, that is, B∞ =

{f = ∞}, if we are under Contingency II (i.e., α = 0) in § 5.3 (proof of Lemma 5.2) and with

B = {f = ∞} in (5.11); a sufficient condition for this, is limK→∞ limn→∞ P(fn ≥ K, f < ∞) = 0.

The claim now follows.
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[8] Cvitanić, J. and Karatzas, I. (2001) Generalized Neyman-Person lemma via convex duality.

Bernoulli 7, 79-97.

[9] Delbaen, F. and Schachermayer, W. (1994) A general version of the fundamental theorem

of asset pricing. Math. Annalen 300, 463-520.

[10] Delbaen, F. and Schachermayer, W. (1999) A compactness principle for bounded sequences

of martingales, with applications. In “Proceedings of the Seminar on Stochastic Analysis, Random

Fields and Applications” (R. Dalang, M. Dozzi, F. Russo, editors). Progress in Probability 45, 137-
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