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Abstract. We present a multidimensional extension of Kellerer’s theorem on the existence of
mimicking Markov martingales for peacocks, a term derived from the French for stochastic pro-
cesses increasing in convex order. For a continuous-time peacock in arbitrary dimension, after
Gaussian regularization, we show that there exists a strongly Markovian mimicking martingale
Itô diffusion. A novel compactness result for martingale diffusions is a key tool in our proof.
Moreover, we provide counterexamples to show, in dimension d ≥ 2, that uniqueness may not
hold, and that some regularization is necessary to guarantee existence of a mimicking Markov
martingale.

1. Introduction

Given a finite set of probability measures on Rd that are increasing in convex order, Strassen
[31] showed in 1965 that there exists a Markov martingale whose marginals coincide with the
given probability measures. We call this latter property mimicking. For a family of measures
indexed by continuous time that are increasing in convex order, also called a peacock (Processus
Croissant pour l’Ordre Convex ), Kellerer [20] proved in 1972 that there exists a mimicking
Markov martingale in dimension one. The questions of continuity, strong Markovianity, and
uniqueness for Kellerer’s mimicking martingale remained open until the work of Lowther [23,
24, 26, 27, 25] completely clarified the situation. Lowther showed that, in dimension one, there
exists a unique continuous strong Markov mimicking martingale when the peacock is weakly
continuous and the marginals have convex support. It is also known that the strong Markov
property is required to obtain uniqueness; Beiglböck et al. [4] construct a one-dimensional
continuous Markov martingale whose marginals coincide with those of Brownian motion but
which does not have the strong Markov property.

While the problem of finding mimicking Markov martingales is thus very well understood
for one-dimensional peacocks, the higher dimensional case has remained wide open, although
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50 years have passed since the publication of Kellerer’s result. In this paper, to the best of
our knowledge, we provide the first known multidimensional extension of Kellerer’s theorem.
Given a peacock in Rd, we show that, after some Gaussian regularization, there exists a strongly
Markovian martingale Itô diffusion that mimics the regularized peacock.

To prove our result, we construct a martingale Itô diffusion that mimics the regularized
peacock on the dyadics, and then pass to a limit in finite dimensional distributions. In order
to take such a limit, we prove a compactness result for martingale Itô diffusions.

Additionally, we show that uniqueness does not necessarily hold in higher dimensions. We
consider an example of a martingale Itô diffusion studied by Robinson [29] and Cox–Robinson
[8], and we show that this martingale mimics the marginals of a two-dimensional Brownian
motion, while itself not being a Brownian motion. We also show, by means of counterexamples,
that the Gaussian regularization is necessary to guarantee the existence of a mimicking Markov
martingale.

Theorem 1.1 (existence of mimicking martingales). Let (µt)t∈[0,1] be a weakly continuous pea-

cock in P2(Rd). Fix δ, ε > 0 and, for each t ≥ 0, define the regularized measure µr
t := µt∗γε(t+δ).

Then there exists a strongly Markovian martingale Itô diffusion (Mt)t∈[0,1] mimicking the regu-
larized peacock (µr

t)t∈[0,1].
More precisely, there exists a measurable function (t, x) 7→ σt(x) on [0, 1]×Rd, taking values

in the set of positive definite matrices, and a standard Rd-valued Brownian motion (Bt)t∈[0,1]
such that the mimicking martingale (Mt)t∈[0,1] satisfies

dMt = σt(Mt)dBt,

where σ is locally Lipschitz continuous in the variable x, uniformly in t ∈ [0, 1] and, for every
x ∈ Rd, there exist constants cx, Cx > 0 such that, for t ∈ [0, 1], we have the bounds

cx id ≤ σt(x) ≤ Cx id.

Moreover, the martingale M is a strong Feller process.

Note that, in particular, the mimicking martingale that we construct in Theorem 1.1 is
continuous and strongly Markovian. A key ingredient in the construction of this mimicking
martingale is the following result which allows to pass to limits of martingale Itô diffusions, the
details of which are presented in Section 5.

Theorem 1.2 (compactness of martingale Itô diffusions). A set of martingale Itô diffusions
satisfying Assumptions 5.1 (A1)–(A5) is precompact in the set of martingale Itô diffusions with
respect to convergence in finite dimensional distributions.

Our next main result is that the mimicking martingale of Theorem 1.1 may not be unique.

Theorem 1.3 (non-uniqueness of mimicking martingales). Let (Bt)t∈[0,1] be a standard Brow-
nian motion in R2 with initial law Law(B0) = η, where η is rotationally invariant with finite
second moment. Define a peacock µ by µt = Law(Bt), for t ∈ [0, 1].

Then there exists a continuous strongly Markovian martingale diffusion (Mt)t∈[0,1], which is
not a Brownian motion, such that Law(Mt) = µt, for all t ∈ [0, 1].

We further construct a series of counterexamples in dimension d = 4 which show that, without
regularization, Theorem 1.1 does not hold in full generality, even without imposing continuity
of the mimicking martingale, let alone the Itô diffusion property.

Theorem 1.4 (necessity of regularization). There exists a weakly continuous square-integrable
peacock (µt)t≥0 on R4 such that, for the peacock (µt ∗ γt)t≥0, there exists no mimicking Markov
martingale.

While previous authors have considered the problem of finding mimicking martingales in
general dimensions, to the best of our knowledge the present work is the first to provide a
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multidimensional extension of Kellerer’s theorem. Prior to Kellerer’s work, Doob [9] proved the
existence of mimicking martingales taking values in an abstract compact space in continuous
time, but notably did not consider the Markov property. More recently Hirsch and Roynette
[16] proved existence for continuous-time peacocks on Rd, d ≥ 1, with right-continuous paths,
again without the Markov property.

Juillet [18] considered generalizing Kellerer’s theorem in two different directions, first showing
that when a peacock on R is indexed by a two-parameter family with some partial order,
mimicking martingales may not exist at all. Moreover, [18] provides an example of a peacock
on R2 for which no Lipschitz-Markov mimicking martingale exists; the condition of Lipschitz-
Markovianity implies strong Markovianity and it is defined and used to prove continuity in
the one-dimensional case in [3]. The Lipschitz-Markov property is also required in the proof
of continuity in [27]. In light of the result of [18], the approaches of [3] and [27] do not lend
themselves well to the higher-dimensional problem, and the strong Markovianity of mimicking
martingales that follows from Theorem 1.1 cannot be improved in general.
We have seen that, in dimension one, uniqueness holds in the class of continuous strong

Markov mimicking martingales when the marginals of the peacock have convex support. The-
orem 1.3 shows that strong Markovianity is not sufficient to guarantee uniqueness in higher
dimensions, by exhibiting a continuous two-dimensional strong Markov martingale with Brow-
nian marginals that is not itself a Brownian motion. The question of the existence of martingales
distinct from Brownian motion that have Brownian marginals goes back to Hamza and Kle-
baner [14], who showed that such a fake Brownian motion with discontinuous paths exists in
one dimension. As already mentioned, the culmination of this one-dimensional investigation
was the construction [4] of a continuous Markovian fake Brownian motion. Of course Brow-
nian motion is the unique continuous strong Markov martingale with Brownian marginals in
one dimension. In two dimensions however, we show in Theorem 1.3 that there exists a fake
Brownian motion that is continuous and strongly Markovian.

We remark that the mimicking martingale of Theorem 1.1 is an Itô diffusion process with
Markovian diffusion coefficient. Finding mimicking martingales of this form has also received
extensive interest since the work of Krylov [21] and Gyöngy [13]. In fact we twice apply a more
recent result of Brunick and Shreve [6] on mimicking Markovian diffusions in our construction
in Section 2.

For a more detailed review of the existing literature, we refer the reader to the surveys of
Hirsch and Roynette [17] and Beiglböck et al. [5], and the references therein.

The structure of the present article is as follows. In Section 2, we construct a strongly
Markovian mimicking martingale Itô diffusion, thus proving Theorem 1.1. We then prove The-
orem 1.3 in Section 3, by providing a counterexample to uniqueness of mimicking martingales.
We present further examples in Section 4, which show that existence may fail without regu-
larization, thus proving Theorem 1.4. Finally, in Section 5, we prove the compactness result
Theorem 1.2 for martingale Itô diffusions, which is key to the proof of Theorem 1.1 in Section 2.

We introduce some notation and terminology that will be used throughout the paper. We
denote by P2(Rd) the set of probability measures on Rd with finite second moment. We denote
by FX the natural filtration of a stochastic process X, enlarged as necessary to satisfy the
usual conditions. For η > 0, we write γη for the centered Gaussian law on Rd with covariance
matrix ηid. For measures µ, ν, we write µ ⪯ ν to denote that µ is dominated by ν in convex
order; i.e. for any convex function f ,

∫
fdµ ≤

∫
fdν. A family of measures (µt)t∈I is called a

peacock if it is increasing in the convex order.1 We say that a process (Xt)t∈I mimics (µt)t∈I if
Law(Xt) = µt for all t ∈ I.

For matrices A,B ∈ Rd×d the notation A ≤ B denotes that the matrix B − A is positive
semidefinite. When working with matrices, we will always use the Hilbert–Schmidt norm (also

1The terminology peacock was introduced by Hirsch et al. [15] as a pun on the French Processus Croissant pour
l’Ordre Convex (PCOC), meaning a process increasing in convex order.
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known as the Frobenius norm): for A ∈ Rd×d, we write ∥A∥ = tr(AA⊤) =
∑d

i,j=1A
2
ij =

∑d
i=1 λ

2
i ,

where λi are the eigenvalues of A.

2. Construction of a mimicking martingale

Let d ≥ 2 and let (µt)t∈[0,1] be a weakly continuous peacock in P2(Rd); i.e. µt0 ⪯ µt1 for all
t0 ≤ t1, supt∈[0,1]

∫
xµt(dx) < ∞, and t 7→

∫
fdµt is continuous for any bounded continuous

function f . Fix δ, ε > 0 and define the regularized peacock µr by

(2.1) µr
t = µt ∗ γε(t+δ), t ∈ [0, 1].

Note that the process (µr
t)t∈[0,1] is a peacock satisfying µt ⪯ µr

t, for all t ∈ [0, 1].

Remark 2.1. The relevant feature of the function

(2.2) φ(t) = ε(t+ δ), t ∈ [0, 1],

is that ϕ(0) > 0 and t 7→ ϕ(t) is strictly increasing. It will become clear from the construction
below that we can replace (2.2) with any such function.

In this context, we also normalize the peacock (µt)t∈[0,1] by making a deterministic time
change so that

∫
x2µt+h(dx) −

∫
x2µt(dx) = h, for t ∈ [0, 1), h > 0. For convenience, we still

take φ as in (2.2) after the time change.

Fix n ∈ N and consider the dyadics Sn := {2−n, 2 · 2−n, . . . , 2n · 2−n} ⊆ [0, 1]. For k ∈
{1, . . . , 2n − 1}, denote tnk := k2−n. We will construct a martingale Itô diffusion that mimics µr

on the dyadics Sn. Theorem 5.2 will allow us to pass to a limit. We first construct martingale
Itô diffusions on each interval [tnk , t

n
k+1], before concatenating these intervals. This step is rather

standard (cf. [15, 17]). For our purposes it is convenient to use the concept of stretched Brownian
motion introduced in [1].

Lemma 2.2. Let (µt)t∈[0,1] be a weakly continuous square-integrable peacock. Then there exists

a martingale diffusion (M̄n,k
t )t∈[tnk ,tnk+1]

, with the representation

(2.3) dM̄n,k
t = σ̄n,k

t (M̄n,k
t )dBt, on [tnk , t

n
k+1),

for some measurable function (t, x) 7→ σ̄n,k
t (x), taking values in the set of positive semidefinite

matrices, such that Law(M̄n,k
tnk

) = µtnk
and Law(M̄n,k

tnk+1
) = µtnk+1

.

Proof. Let (M̃n,k)t∈[tnk ,tnk+1]
be the stretched Brownian motion with Law(M̃n,k

tnk
) = µtnk

and

Law(M̃n,k
tnk+1

) = µtnk+1
, as defined in [1]. The represenation (2.3) follows from [1, Proposition

2.5 and Lemma 3.12]. □

We do not yet have a control on the matrix norm of (σ̄n,k
t (M̄n,R))t∈[tnk ,tnk+1]

. In order to achieve
an upper bound on the diffusion matrix, we make a first convolution with a Gaussian. This
will have an averaging effect and allow us to control the diffusion from above almost surely.
Namely, we take a centered Gaussian random variable Γn,k with covariance matrix (ε[tnk + δ])id,

independent of FB and FM̄n,k
, and define

(2.4) M̂n,k
t := M̄n,k

t + Γn,k, t ∈ [tnk , t
n
k+1].

Then, for the initial law in this interval, we have Law(M̂n,k
tnk

) = µtnk
∗ γε(tnk+δ) = µr

tnk
, and for

the terminal law, we have the ordering Law(M̂n,k
tnk+1

) = µtnk+1
∗ γε(tnk+δ) ⪯ µtnk+1

∗ γε(tnk+1+δ) =

µr
tnk+1

, where we recall the definition of µr from (2.1). Later we will make a second Gaussian

convolution, which will allow us to also bound the diffusion matrix σn,k from below. We now
prove that we have an upper bound.
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Lemma 2.3. For n, k ∈ N and σ̄n,k as in (2.3), define the positive semidefinite matrix-valued

function (t, x) 7→ σ̃n,k
t (x) by

(2.5) σ̃n,k
t (x) :=

∫
σ̄n,k
t (y)gn,k(x− y)m̄n,k

t (dy)∫
gn,k(x− y)m̄n,k

t (dy)
, t ∈ [tnk , t

n
k+1],

where gn,k is the density of a Gaussian with mean zero and covariance matrix (ε[tnk + δ])id,

and m̄n,k
t = Law(M̄n,k

t ). Let (M̃n,k
t )t∈[tnk ,tnk+1]

be the martingale defined by choosing a random

variable M̃n,k
tnk

with Law(M̃n,k
tnk

) = µr
tnk
, and solving

dM̃n,k
t = σ̃n,k(M̃n,k

t )dBt on [tnk , t
n
k+1],

so that for each t ∈ [tnk , t
n
k+1], Law(M̃n,k

t ) = Law(M̂n,k
t ) = m̄n,k

t ∗ γε(tnk+δ). In particular,

Law(M̃n,k
tnk+1

) = µtnk+1
∗ γε(tnk+δ).

For every compact set K ⊆ Rd, there exists a constant CK, independent of k and n, such
that

∥σ̃n,k
t (x)∥ ≤ CK , (t, x) ∈ [tnk , t

n
k+1]×K.

Moreover, there exists a Lipschitz constant LK, independent of t, n and k, such that the func-
tions x 7→ σ̃n,k

t (x) are Lipschitz with constant LK for x ∈ K, t ∈ [tnk , t
n
k+1].

Proof. From (2.4), it is clear that

dM̂n,k
t = σ̄n,k

t (M̂n,k
t − Γn,k)dBt.

We now make the following Markovian projection. Defining M̃n,k by

dM̃n,k
t = E

[
σ̄n,k
t (M̂n,k

t − Γn,k)|M̃n,k
t

]
dBt,

we find that M̂n,k and M̃n,k have the same marginals, by Corollary 3.7 of [6] on mimicking
diffusions.

We can check that E
[
σ̄n,k
t (M̂n,k

t − Γn,k)|M̃n,k
t

]
= σ̃n,k

t (M̃n,k
t ) by the following elementary

observations. For any x ∈ Rd, we consider the density of the conditional law

Law(M̂n,k
t − Γn,k|M̃n,k

t = x) = Law(M̃n,k
t − Γn,k|M̃n,k

t = x),

which must be proportional to gn,k(x− y)m̄n,k
t (dy). Computing the normalising constant leads

us to the equality E
[
σ̄n,k
t (M̂n,k

t − Γn,k)|M̃n,k
t = x

]
= σ̃n,k

t (x).

Next we bound the quantity σ̃n,k
t (x) in the Hilbert-Schmidt norm . Note that the law

(m̄n,k
t )t∈[tnk ,tnk+1]

of the martingale M̄n,k is tight. In particular, there exists a compact setK0 ⊆ Rd

such that m̄n,k
t (K0) ≥ 1

2
, for all t ∈ [tnk , t

n
k+1] and all k ∈ {1, . . . , 2n − 1}. Indeed, choosing K0

such that |K0|−1
∫
xdµ1(x) ≤ 1

2
, and applying Doob’s inequality and the convex ordering of the

marginals gives the desired bound. Then, for an arbitrary compact set K ⊆ Rd, not necessarily
coinciding with K0, we can bound the normalising constant in the denominator of (2.5) by∫

Rd

gn,k(x− y)m̄n,k
t (dy) ≥

∫
K0

gn,k(x− y)m̄n,k
t (dy)

≥ C̄K

2
(επ[tnk + δ])−

d
2 , for x ∈ K,

where C̄K := inf {exp{−ε−1δ−1|x− y|2} : x ∈ K, y ∈ K0} > 0, independent of t and k. We
bound the numerator of (2.5) in the Hilbert-Schmidt norm by∥∥∥∥∫ σ̄n,k

t (y)gn,k(x− y)m̄n,k
t (dy)

∥∥∥∥2 ≤ (επ[tnk + δ])dE[∥σ̄n,k
t (M̄n,k

t )∥2].
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Recall from Remark 2.1 that E[|M̄n,k
t+h|2 − |M̄n,k

t |2] = h, for all t ∈ [tnk , t
n
k+1) and h sufficiently

small. But, by the Itô isometry,

E[|M̄n,k
t+h|

2 − |M̄n,k
t |2] =

∫ t+h

t

E[∥σ̄n,k
t (M̄n,k

t )∥2dt,

and so E[∥σ̄n,k
t (M̄n,k

t )∥2 = 1, for all t ∈ [tnk , t
n
k+1]. Altogether, we have the upper bound

∥σ̃n,k
t (x)∥ ≤ 2

C̄K

, for x ∈ K.

It remains to prove continuity. To save notation in the following calculation, we suppress
the dependency on n and k, setting g := gn,k, σ̄ := σ̄n,k, m̄ := m̄n,k. Fix t ∈ [tnk , t

n
k+1], and

x0, x1 ∈ K for some compact set K ⊆ Rd. Then, from the definition (2.5), we calculate∥∥∥σ̃n,k
t (x1)− σ̃n,k

t (x0)
∥∥∥

≤ (επ[tnk + δ])dC̄−2
K

∥∥∥∥∫ g(x0 − y)m̄t(dy)

∫
σ̄tgt(x1 − y)m̄t(dy)

−
∫

gt(x1 − y)m̄t(dy)

∫
σ̄t(y)g(x0 − y)m̄t(dy)

∥∥∥∥
≤ (επ[tnk + δ])dC̄−2

K

∣∣∣∣∫ g(x0 − y)m̄t(dy)

∣∣∣∣ ∥∥∥∥∫ [g(x1 − y)− g(x0 − y)] σ̄t(y)m̄t(dy)

∥∥∥∥
+ (επ[tnk + δ])dC̄−2

K

∣∣∣∣∫ [g(x0 − y)− g(x1 − y)] m̄t(dy)

∣∣∣∣ ∥∥∥∥∫ g(x0 − y)σ̄t(y)m̄t(dy)

∥∥∥∥ .
As in the proof of the upper bound, note that ∥

∫
σ̄t(y)m̄t(dy)∥ ≤ 1, by Remark 2.1. We also

see that each constant (επ[tnk + δ])
d
2 cancels with a normalising constant from g = gn,k. The

Gaussian density g is Lipschitz with Lipschitz constant L that can be taken independent of
t, n, k. Together, we find that∥∥∥σ̃n,k

t (x1)− σ̃n,k
t (x0)

∥∥∥ ≤ 2C̄−2
K L|x1 − x0|,

as required. □

We now have a martingale M̃n,k on [tnk , t
n
k+1], whose diffusion matrix (t, x) 7→ σ̃n,k

t (x) is
bounded from above on compact sets in [0, 1] × Rd. To achieve a lower bound, we divide the
interval [tnk , t

n
k+1] in half and time-change the martingale by a factor of two in the first half of

the interval. In the second half of the interval, we shall simply add a Brownian motion with an
appropriately scaled covariance. This gives us a second Gaussian convolution to arrive at the
measure µr

tnk+1
= µtnk+1

∗ γε(tnk+1+δ), rather than µtnk+1
∗ γε(tnk+δ), at the terminal time tnk+1.

Define the function (t, x) 7→ σn,k
t (x) by

σn,k
t (x) :=


√
2 σ̃n,k

tnk+2(t−tnk )
(x), t ∈ [tnk , t

n
k + 2−(n+1)],

√
2ε id, t ∈ [tnk + 2−(n+1), tnk+1],

and define the martingale (Mn,k
t )t∈[tnk ,tnk+1]

by starting with a random variableMn,k
tnk

with Law(Mn,k
tnk

) =

µr
tnk

and then solving

dMn,k
t = σn,k

t (Mn,k
t )dBt, t ∈ [tnk , t

n
k+1].

Then we see that

Law(Mn,k
tnk+1

) = (µtnk+1
∗ γε(tnk+δ)) ∗ γε2−n

= µtnk+1
∗ γε(tnk+1+δ) = µr

tnk+1
,
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and we have the lower bound∫ tnk+1

tnk

σn,k
t (x)dt ≥

√
ε2−(n+1)id, x ∈ Rd.

We finally paste everything together and define (t, x) 7→ σn
t (x) by

σn
t (x) :=

2n−1∑
k=1

σn,k
t (x)1[tnk ,t

n
k+1]

(t),

and define a martingale (Mn
t )t∈[0,1] by first choosing a random variable Mn

0 with Law(Mn
0 ) = µr

0

and then solving

dMn
t = σn

t (M
n
t )dBt, on [0, 1].

For each dyadic tnk ∈ Sn, we thus have Law(Mn
tnk
) = µr

tnk
, by construction. Let us summarise

what we have achieved so far in the following proposition.

Proposition 2.4. For each n ∈ N, there exists a martingale diffusion (Mn
t )t∈[0,1] satisfying

dMn
t = σn

t (M
n
t )dBt,

with Law(Mn
r ) = µr

r, for all r ∈ Sn. Moreover, (t, x) 7→ σn
t (x) is locally Lipschitz in x,

uniformly in t ∈ [0, 1] and satisfies the following bounds. For any compact K ⊆ Rd,

σn
t (x) ≤ CK id, (t, x) ∈ [0, 1]×K,

and for any s, t ∈ Sn with t− s = 2−m, for any m ≤ n, we have the lower bound∫ t

s

σn
r (x)dr ≥

√
ε2−(m+1)id, x ∈ Rd.

The next step will be to find a limiting martingale, which mimics the peacock µr at every time
t ∈ [0, 1]. In Section 5, we will prove a result on compactness of Itô diffusions with respect to
convergence in finite dimensional distributions, which is tailor-made for the present application.
We now use this result to allow us to pass to a limit and complete the proof of Theorem 1.1.

Proof of Theorem 1.1 (admitting Theorem 5.2). Take the sequence of functions σn : [0, 1] ×
Rd → Rd×d, n ∈ N, to be as in Proposition 2.4. Then Assumptions 5.1 (A1)–(A5) are satisfied.
By Theorem 5.2, there exists a function (t, x) 7→ σt(x), which is locally Lipschitz in x, uniformly
in t ∈ [0, 1], such that Mn converges in finite dimensional distributions to M , the unique strong
solution of the SDE dMt = σt(Mt)dBt, with Law(M0) = µr

0. For each n ∈ N, we have that
Law(Mn

t ) = µr
t, for any dyadic t ∈ Sn. Therefore, taking the limit in finite dimensional

distributions, we have Law(Mt) = µr
t for all t ∈ [0, 1]. That is, M is a mimicking martingale

for the regularized peacock µr.
From the conclusion of Theorem 5.2, we also obtain the required bounds on σ. That is, for

each x ∈ Rd, there exist constants cx, Cx > 0 such that, uniformly in t ∈ [0, 1], we have

(2.6) cx id ≤ σt(x) ≤ Cx id.

It remains to verify the strong Feller property of M . The law of (Mt)t∈[0,1] is a solution of
the associated martingale problem of Stroock and Varadhan [32]. Moreover, we proved above
that the diffusion coefficient σ satisfies the bounds (2.6), and that σ is locally Lipschitz in
x, uniformly in t ∈ [0, 1]. Under these conditions, Theorem 10.1.3 of [32] implies that the
martingale problem admits at most one solution. We now have that the martingale problem is
well posed and, by applying Corollary 10.1.4 of [32], the unique solution has the strong Feller
property. We conclude that the martingale (Mt)t∈[0,1] also has the strong Markov property. □
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3. Non-uniqueness

We shall show that, even for the simple example of a two-dimensional Brownian motion,
uniqueness does not hold in the class of continuous strong Markov mimicking martingales. In
other words, the one-dimensional uniqueness result of Lowther [23] cannot be extended directly
to higher dimensions.

Considering the problem of mimicking the marginals of a standard two-dimensional Brownian
motion, the Brownian motion itself is of course a continuous strong Markov martingale with the
required marginals. In order to disprove uniqueness, we seek another mimicking process with
these properties. We will thus construct a two-dimensional continuous fake Brownian motion
(see [14]) that is strongly Markovian.

Proposition 3.1. For every peacock µ = (µt)t∈[0,1] on R2 defined as in Theorem 1.3, there exist
two distinct continuous strong Markov martingale diffusions mimicking µ.

Proof. Let B be a standard 2-dimensional Brownian motion started in some rotationally in-
variant law η ∈ P2(R2) \ {0}, and write (µt)t∈[0,1] for its marginals. Then B is a continuous
strong Markov martingale mimicking (µt)t∈[0,1]. We now construct a continuous strong Markov
martingale M that mimics (µt)t∈[0,1] and is not itself a Brownian motion.

For any x ∈ R2, let us denote x⊥ := (−x2, x1)
⊤, so that x · x⊥ = 0 and |x| = |x⊥|. Let W be

a standard R-valued Brownian motion and consider the SDE

(3.1) dMt =
1

|Mt|
(Mt +M⊥

t )dWt; Law(M0) = η.

It is shown in [8, Proposition 3.2] that any solution of (3.2) almost surely does not hit the
origin. Therefore, by applying standard arguments for SDEs with Lipschitz coefficients, one
can show that there exists a unique strong solution M of this SDE that is a continuous strong
Markov martingale. A simulated trajectory of M is shown in Figure 1b.

By [8, Proposition 3.2] again, the radius of M , denoted by Rt = |Mt| for all t ≥ 0, is a
2-dimensional Bessel process satisfying

Rt = Wt +
1

2Rt

dt, t > 0; Law(R0) = Law(|M0|).

Hence the radius of M coincides with the radius of the 2-dimensional Brownian motion B in
law (see e.g. [28, Chapter XI]). Moreover, the marginals of both the processes M and B have
rotational symmetry. Hence we conclude that these marginals coincide. However, we can see
that M is not itself a 2-dimensional Brownian motion, since the components of M in the two
coordinate directions are not independent. We have thus shown that there exist at least two
distinct continuous strong Markov martingales that mimic the marginals (µt)t∈[0,1]. □

Remark 3.2. Note that M solves the SDE (3.1) if and only if the time-changed process
(Xλ

t )t∈[0,1] := (Mλ2t)t∈[0,1] solves

(3.2) dXλ
t =

1

|Xλ
t |
(λXλ

t +
√
1− λ2(Xλ

t )
⊥)dWt; X0 = x0,

with λ =
√
2
2
. The SDE (3.2) with λ ∈ [0, 1] is as studied by Cox and Robinson in [7, 8] and

in [29]. For λ = 1, the martingale solving (3.2) acts as a one-dimensional Brownian motion
on a fixed line through the origin — see Figure 1c. For λ = 0, the martingale follows what
is dubbed tangential motion in [7, 8]. In this case, the process moves on a tangent to its
current position, increasing the radius of the process deterministically — see Figure 1a. Such
a martingale already appeared in [11] and [22] in the context of stochastic portfolio theory. In
[8, Theorem 1.1] Cox and Robinson showed that there is no strong solution to (3.2) with λ = 0
started from the origin, i.e. η = δ0, drawing parallels with Tsirelson’s famous one-dimensional
example [33] and the circular Brownian motion of Émery and Schachermayer [10]. In fact [8,
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Theorem 1.2] also shows that there is no strong solution to the SDE (3.2) started from the
origin for any λ ∈ [0, 1).

We will repeatedly refer to the SDE (3.2) with λ = 0 in the examples of Section 4 below.

(a) λ = 0, (b) fake Brownian motion, (c) λ = 1.

Figure 1. Simulations of the solution Xλ of (3.2), up to the first exit of a ball,
for different values of λ. Figure 1a and Figure 1c show the extreme behaviours
within the class of martingales {Xλ : λ ∈ [0, 1]} (as already appeared in [7]).

Figure 1b shows the midpoint between these cases, where we set λ =
√
2
2

then
rescale time so that the martingale mimics the marginals of a Brownian motion.

4. Necessity of regularization

In this section, we will construct a series of counterexamples, showing that a mimicking
Markov martingale may not exist without the regularization of Theorem 1.1. We present the
examples in increasing order of complexity, first showing that there may not exist a continuous
mimicking Markov martingale. We then remove the continuity assumption, and finally add
some (partial) regularization, in both cases showing that mimicking Markov martingales may
not exist.

The following examples build on the SDE (3.2), started from the origin, with λ = 0; i.e.

(4.1) dXt =
1

|Xt|
X⊥

t dWt, X0 = 0.

We recall some important properties of (4.1).

Remark 4.1. There exists a weak solution of (4.1) by [22, Theorem 4.3]. Moreover, [8, Theorem
1.1] shows that, at any time t ∈ (0, 1], the law of a weak solution X is a uniform measure on
the circle of radius

√
t, and so uniqueness in law holds for (4.1). In particular, a weak solution

X has deterministically increasing radius

|Xt| =
√
t, t ∈ [0, 1].

We construct each of the below examples2 on R4 ≡ X 1 ×X 2, where X 1,X 2 are copies of R2.
We also denote S1

t := {(x1, x2) ∈ X 1 : x2
1 + x2

2 = t}× {(0, 0)}, S2
t := {(0, 0)}× {(x3, x4) ∈ X 2 :

x2
1 + x2

2 = t}, and Si := ∪t≥0S
i
t for i = 1, 2. Note that S1 and S2 only intersect at the origin.

We emphasise that, throughout the following sections, the usual conditions of right-continuity
and completeness are in force for all filtrations that we consider, and σ(X) denotes the com-
pletion of the sigma-algebra generated by a given random variable X.

2We thank Nicolas Juillet who suggested similar examples to the third named author.
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4.1. The continuous case. Fix a probability space (Ω,F ,P) on which we can define two
independent copiesM1,M2 of the weak solution of (4.1), as well as an independent Bernoulli(1

2
)

random variable ξ. Now define a process X taking values in R4 by

(4.2) Xt =

{
(M1

t , 0), ξ = 0,

(0,M2
t ), ξ = 1,

t ∈ [0, 1],

and write µt = Law(Xt). Thus, following Remark 4.1, the measure µt is a uniform measure on
S1
t ∪ S2

t ⊂ R4. Note that the process X is a martingale, and so µ is a peacock.

Proposition 4.2. There exists a peacock µ on R4 such that there does not exist any continuous
Markov process mimicking µ.

Proof. Let (µt)t∈[0,1] = (Law(Xt))t∈[0,1], where X is defined by (4.2). Suppose that there exists
a continuous process Y that mimics µ. We will show that Y is not Markovian at time 0.

By definition of the peacock µ and continuity of the paths, we have

P
[
{Yt ∈ S1

t , ∀t ∈ [0, 1]} ∪ {Yt ∈ S2
t , ∀t ∈ [0, 1]}

]
= 1.

In particular, for t0 > 0 the events A1 := {Yt ∈ S1
t , ∀t ∈ [0, 1]} and {Yt0 ∈ S1

t0
} ∈ Ft0 differ just

by a null set, hence P[A1] = 1
2
. On the one hand, we have by completeness and right-continuity

of the filtration that A1 ∈ F0. On the other hand, A1 can not be in σ(Y0) since the former
has probability 1

2
whereas the latter is the completion of the trivial σ-algebra. Now define a

function f : R4 → R by f(x) =
√

x2
3 + x2

4. Then, for any t ∈ (0, 1) we find
√
t

2
= E[f(Yt)| σ(Y0)] ̸= E[f(Xt)| F0] =

{
0 on A1,√
t on Ω \ A1.

We conclude that Y is not Markovian at time 0. □

Remark 4.3. For the peacock µ defined via (4.2), the continuity assumption in Proposition 4.2
is required in order to show non-existence of mimicking Markov processes. In the following we
construct a càdlàg strong Markov martingale X that mimics the peacock µ. The process
behaves similarly to a compensated Poisson process: at time t a particle Xt starting either in
x = (x1, x2, 0, 0) ∈ R4 or x = (0, 0, x3, x4) ∈ R4 drifts in the direction x with speed |x|2. This
drift is compensated with jumps of rate 1

2|x|2 to a uniform distribution on S2
|x|2 (resp. S

1
|x|2). For

t ∈ R+ define the rate function λ and its anti-derivative Λ by

λt :=
1

2t
and Λt :=

1

2
log(t).

To construct the process X, we first consider the peacock (µt)t∈[t0,1] where t0 ∈ (0, 1) and
define a mimicking process X t0 . To this end, let (ξn)n∈N, (Un)n∈N, and (Vn)n∈N be families
of independent random variables such that ξn ∼ exp(1), Un ∼ Unif(S1

1), and Vn ∼ Unif(S2
1).

Given that X t0
t0 = x ∈ S1

|x|2 , U0 := x/|x|, and t ∈ (t0, 1], we set

X t0
t =

√
t
∑

n∈N∪{0}

1{
∑n

k=1 ξk≤Λt−Λt0<
∑n+1

k=1 ξk} (12Z(n)Vn + 12Z+1(n)Un) ,

where we use the convention that the sum over an empty index set is −∞. Similarly, when
starting in S2

|x|2 , we define X t0
t analogously to the display above but with the roles of odd and

even integers reversed. It is straightforward to show that this process is a Feller process and
thus has the strong Markov property.

By Lemma B.1, which we postpone to the Appendix, X t0 mimics (µt)t∈[t0,1] and there exists
a process X with the property that, for any t1 ∈ (0, 1],

(4.3) (Xt)t∈[t1,1] ∼ (X t1
t )t∈[t1,1].
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Hence X mimics µ. We deduce from (4.3) and the strong Markov property of X t1 that X has
the strong Markov property for stopping times τ with τ ≥ t1 and t1 > 0. By Lemma B.2, we
also have that X is Markovian at time 0. Hence, by Lemma A.2 below, X is a strong Markov
process.

4.2. The general case. We now generalize the example given in Proposition 4.2 to find a pea-
cock for which there is no mimicking Markov martingale, even if we allow for jumps. We con-
struct such a peacock by modifying the previous example in the following way. Let us partition
the time interval [0, 1] into the intervals I1 :=

⋃
n∈N
n even

[2−(n+1), 2−n], I2 :=
⋃

n∈N
n odd

[2−(n+1), 2−n].

Introduce the notation nt := min{n ∈ N : t ≥ 2−n} and define the functions

a1(t) =

∫ t

0

1I1(s)ds, a2(t) =

∫ t

0

1I2(s)ds.

Now time-change the processes M1,M2 from (4.2) to define a process X by

(4.4) Xt =


(
M1

a1(t)
, 0
)
, ξ = 0,(

0, M2
a2(t)

)
, ξ = 1,

t ∈ [0, 1],

and write µt = Law(Xt). Then, at time t ∈ [0, 1], µt is the uniform measure on S1
a1(t)

∪ S2
a2(t)

⊂
R4. Note that, for t ∈ I1, the radius of S1

a1(t)
is increasing deterministically at rate

√
t, while

the radius of S2
a2(t)

remains constant, with the roles reversed on the set of times I2.
We will show that there is no Markov martingale mimicking µ.

Proposition 4.4. There exists a peacock µ on R4 such that there does not exist any Markov
martingale mimicking µ.

Proof. Let µt = Law(Xt), t ∈ [0, 1], where X is defined by (4.4). Suppose that there exists a
Markov martingale Y mimicking µ. As in Proposition 4.2, we will show that Y is not Markovian
at time 0.

Fix n ∈ N even and t0 ∈ [2−(n+1), 2−n) ⊂ I1, . Then, for all t ∈ [2−(n+1), 2−n], µt is supported

on S1
a1(t)

∪S2
a2(t0)

. Define a function f : R4 → R by f(x) =
√

x2
3 + x2

4, and note that f is convex.

Also note that, for any t ∈ [0, 1], f(x) = 0 for x ∈ S1
a1(t)

, and f(x) =
√

a2(t) for x ∈ S2
a2(t)

. Let

t ∈ (t0, 2
−n]. Then, by convex ordering,

E
[
f(Yt)| Yt0 ∈ S2

a2(t0)

]
≥ E

[
f(Yt0)| Yt0 ∈ S2

a2(t0)

]
≥
√

a2(t0),

and E
[
f(Yt)| Yt0 ∈ S1

a1(t0)

]
≥ E

[
f(Yt0)| Yt0 ∈ S1

a1(t0)

]
≥ 0.

(4.5)

This implies the lower bound E[f(Yt)] ≥
√

a2(t0). We also have

E[f(Yt)] =
√

a2(t)P
[
Yt ∈ S2

a2(t)

]
=
√

a2(t0)P
[
Yt0 ∈ S2

a2(t0)

]
= E[f(Yt0)] ≤

√
a2(t0),

where the second equality holds since both a2(t) and µt|X 2 are constant for t ∈ [2−(n+1), 2−n].
Hence equality holds in each inequality in (4.5) and, in particular,

P
[
Yt ∈ S1

a1(t0)
| Yt0 ∈ S1

a1(t0)

]
= 1.

This holds for any subinterval of I1, and a symmetric argument applies to I2. Since the peacock
µ is weakly continuous, we can suppose that Y has càdlàg paths. Therefore

P
[
Yt ∈ S1

a1(t)
, ∀t ≥ t0| Yt0 ∈ S1

a1(t0)

]
= 1.

For t ∈ (0, 1], define A1
t := {Ys ∈ S1

a1(s)
, ∀s ≥ t}, and let A1 :=

⋂
t>0A

1
t . Then, for each

t ∈ (0, 1], P(A1
t ) =

1
2
, and so P(A1) = 1

2
. Since σ(Y0) is trivial, A

1 /∈ σ(Y0). On the other hand,
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we have A1
t ∈ Ft, where F is the usual augmentation of the filtration generated by Y . Hence

A1 ∈ F0 :=
⋂

s>0Fs.
We conclude as in Proposition 4.2. Observe that, with f defined as above, for any t ∈ (0, 1),

we get √
a2(t)

2
= E[f(Yt)| σ(Y0)] ̸= E[f(Yt)| F0] =

{
0 on A1,√

a2(t) on Ω \ A1.

Hence Y is not Markovian at time 0. □

4.3. A partially regularized case. In this section, we present a final example, in which
we regularize a peacock defined similarly as in Proposition 4.4 by convolving the peacock at
time t ∈ [0, 1] with a centered Gaussian with covariance t id. We will show that, even after
such regularization, there exists no Markov martingale mimicking this peacock. Therefore, in
order to guarantee existence of a mimicking Markov martingale, some further regularization is
required, as in Theorem 1.1.

Throughout this section, we use the notation γσ for the 4-dimensional centered Gaussian
measure with covariance σid.

Proposition 4.5. There exists a peacock µ on R4 such that there is no Markov martingale
mimicking µr, which is defined by µr

t := µt ∗ γt, for t ∈ [0, 1].

Proof. Let νt = Law(Xt), where Xt is defined by (4.4), and define a regularized peacock νr

by νr
t := νt ∗ γt14 , for t ∈ [0, 1]. Suppose that there exists a martingale Y mimicking νr. In

the following, we will show that Y can not be Markovian at 0. Finally, we will time-change
ν in order to find a peacock µ such that any martingale mimicking µr := (µt ∗ γt)t∈[0,1] is not
Markovian.

Due to the convolution with a Gaussian νr
t is no longer concentrated on S1

a1(t)
∪ S2

a2(t)
, it

rather has full support on R4, for all t ∈ [0, 1]. Since Y mimics νr we have, for each t ∈ [0, 1],
that Law(Yt) = Law(Xt + Nt14) where Xt ∼ Unif(S1

a1(t)
∪ S2

a2(t)
) and Nt14 ∼ N (0, t14id) are

independent. Note that, from the definitions of a1 and a2, we can find constants c, C > 0 such
that c t ≤ ai(t) ≤ C t, for t ∈ [0, 1], i = 1, 2. We also have the estimate

P[|Nt14| ≥ a] ≤ t14

a2
, a > 0.

Define the events

S̄ i
t :=

{
∃x ∈ Si

ai(t)
, |x− Yt| < t

}
, Ŝ i

t :=
{
∃x ∈ Si

ai(t)
, |x− Yt| < t2

}
,

and write tk := 2−k for k ∈ N. By Lemma B.3 we have that for t ∈ [0, 1], i = 1, 2,

P[S̄ i
tk
△ S̄ i

tk+1
] ≤ Ctk,

where A△B := (A \B) ∪ (B \A) denotes the symmetric difference between events A and B.
Therefore, for m,n ∈ N, m ≥ n,

P

[
m⋂

k=n

S̄1
tk

]
= P[S̄1

tm \
m−1⋃
k=n

S̄1
tk
△ S̄1

tk+1
] ≥ P[S̄1

tm ]−
m−1∑
k=n

P[S̄1
tk
△ S̄1

tk+1
]

≥ 1

2
− P[|Nt14 | ≥ tm]− C

m−1∑
k=n

tk ≥
1

2
− C

m∑
k=n

tk
m,n→∞−−−−→ 1

2
,

since the sequence (tk)k∈N is summable. On the other hand,

P

[
m⋂

k=n

S̄1
tk

]
≤ inf

n≤k≤m
P[S̄1

tk
] ≤ 1

2
+ tm

m→∞−−−→ 1

2
.
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Defining an increasing sequence of events Sn, n ∈ N, and its limit S by

Sn :=
∞⋂
k=n

S̄1
tk
, and S :=

∞⋃
n=1

Sn,

we conclude that

P[S] = lim
n→∞

P[Sn] =
1

2
.

Hence S /∈ σ(Y0). However, we have that, for each k ∈ N, S̄1
tk
∈ Ftk , and so for n ∈ N, Sn ∈ Ftk

for all k ≥ n. Hence S ∈
⋂

k≥n Ftk = F0.

Now choose k ∈ N sufficiently large that P[S \ Sk] ≤ 1
8
and tk ≤ 1

8
. Then we have

P[S̄1
tk
|S] = P[S̄1

tk
∩ S]/P[S] ≥ 2P[Sk ∩ S] = 2(P[S]− P[S \ Sk]) ≥ 2

(
1

2
− 1

8

)
=

3

4
,

while on the other hand, P[S̄1
tk
|σ(Y0)] ≤ 1

2
+ tk ≤ 5

8
< 3

4
. Therefore Y cannot be Markovian at

time 0.
Now define a peacock µ by a time-change of ν such that µt := νt14−1 , and define a regularized

peacock µr by µr
t := µt ∗ γt, t ∈ [0, 1]. Then, rescaling time by t 7→ t14

−1
in all of the above

arguments, we obtain the result that any martingale mimicking µr cannot be Markovian at
time 0. □

5. Compactness of martingale Itô diffusions

In this section we prove a compactness result for martingale diffusions with respect to con-
vergence in finite dimensional distributions (Theorem 5.2). We applied this result in the proof
of Theorem 1.1 in order to pass to a limit when constructing a mimicking martingale diffusion.
This parallels the approach of Lowther [27] to the one-dimensional case.

From here on, we fix a probability space (Ω,F ,P) on which a standard Rd-valued Brownian
motion B is defined. We consider a sequence (σk)k∈N of positive semidefinite matrix-valued
measurable functions σk : [0, 1] × Rd → Rd×d. We use the notation Σk : [0, 1] × Rd → Rd×d to
denote the integral

Σk
t (x) :=

∫ t

0

(σk
s (x))

2 ds,

where (σk
s (x))

2 = σk
s (x)σ

k
s (x) = σk

s (x)σ
k
s (x)

⊤ is defined by matrix multiplication. Moreover, we
fix a sequence of initial distributions (µk

0)k∈N and consider, for t ∈ [0, 1], strong solutions of the
SDE

dXk
t = σk

t (X
k
t ) dBt, where Xk

0 ∼ µk
0.

Existence and uniqueness of the solution will be guaranteed by Assumptions 5.1 (A1) and (A2)
below (see, e.g., Theorem V.12.1 of [30]). We write (µk

t )t∈[0,1] for the marginal distributions
of Xk. In the following we will use combinations of the following assumptions, which were
typically satisfied in the setting of the previous sections.

Assumption 5.1.

(A1) The map x 7→ σk
t (x) is locally Lipschitz continuous, uniformly in k ∈ N and t ∈ [0, 1].

(A2) For every x ∈ Rd the value of ∥σk
t (x)∥ is bounded, uniformly in k ∈ N and t ∈ [0, 1].

(A3) The family of random variables {|Xk
1 |2 : k ∈ N} is uniformly integrable.

(A4) The matrix (σk
t (x))

2 is positive definite with eigenvalues bounded away from zero, locally

in x ∈ Rd, uniformly in t ∈
⋃2k−1

j=0 [j2−k, j2−k + 2−k−1], and k ∈ N.
(A5) The set of initial distributions {µk

0 : k ∈ N} converges to µ ∈ P2(Rd).

We start by noting that, due to Assumptions 5.1 (A1) and (A2) and the Arzelà-Ascoli
theorem, we can assume without loss of generality, by passing to subsequences, that (Σk

t (x))k∈N
converges for every (t, x) ∈ [0, 1]× Rd.
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Theorem 5.2. Under Assumptions 5.1 (A1)–(A5), suppose that (Σk
t (x))k∈N converges point-

wise for (t, x) ∈ [0, 1]× Rd to Σ: [0, 1]× Rd → Rd×d.
Then there exists a function (t, x) 7→ σt(x) taking values in the set of positive definite d× d-

matrices that is locally Lipschitz continuous in x ∈ Rd, uniformly in t ∈ [0, 1], with Σt(x) =∫ t

0
σs(x)

2 ds, such that (Xk)k∈N converges in finite dimensional distributions to X, the unique
strong solution of the SDE dXt = σt(Xt) dBt.

Moreover, for each x ∈ Rd, there exist constants c, C > 0 such that c id ≤ σt(x) ≤ C id, for
t ∈ [0, 1].

As a simple corollary we have the following compactness result.

Corollary 5.3. Under Assumptions 5.1 (A1)–(A5), the set of martingale Itô diffusions {Xk : k ∈
N} is precompact w.r.t. convergence in finite dimensional distributions in the set of martingale
Itô diffusions.

We start with two auxiliary lemmas.

Lemma 5.4. Under Assumptions 5.1 (A1)–(A3), the sequence of curves t 7→ µk
t , t ∈ [0, 1], of

marginal distributions of (Xk)k∈N is equicontinuous in C([0, 1],P2(Rd)) if we equip P2(Rd) with
the W2-metric.

Proof. Since by Assumption 5.1 (A3) the set of terminal distributions is W2-precompact, the
set {η ∈ P2(Rd) : ∃k ∈ N with η ≤cx µk

1} is also W2-precompact. Applying Doob’s maximal
L2-inequality, for each ε > 0, we can find a ball BR ⊆ Rd of radius R > 0 such that for all
t ∈ [0, 1] and k ∈ N, W2(µ

k
t , µ

k,R
t ) < ε where

Xk,R
t := Xk

τk∧t, µk,R
t := Law(Xk,R

t ), τ k := inf{s > 0: Xk
s /∈ BR}.

Next, we show that the curves (µk,R
t∈[0,1])k∈N are Λε-Lipschitz continuous, for some Λε > 0. Indeed,

by the Itô isometry, Assumptions 5.1 (A1) and (A2), we get, for 0 ≤ t0 ≤ t1 ≤ 1, k ∈ N,

W2
2 (µ

k,R
t0 , µk,R

t1 ) ≤ E
∣∣Xk

τk∧t1 −Xk
τk∧t0

∣∣2 = E

[∫ t1∧τk

t0∧τk
∥σn

s (X
k
s )∥2HS ds

]

≤ 3E

[∫ t1∧τk

t0∧τk
∥σk

s (0)∥2HS + ∥σk
s (0)− σk

s (X
k
t )∥2HS + ∥σk

s (X
k
t )− σk

s (X
k
s )∥2HS

]
≤ 3(t1 − t0)

(
C + L2

RE|Xk
t |2 + L2

RE|Xk
t0
−Xk

t1
|2
)
,

where LR denotes the Lipschitz constant on BR provided by Assumption 5.1 (A1). Setting
Λε := 3(C + 2L2

R supk∈N E|Xk
1 |2) we obtain a uniform Lipschitz bound.

Now we can define a modulus of continuity ω : R+ → R+ via

ω(δ) := inf
ε>0

{2ε+
√

Λεδ},

which is, as an infimum over concave functions, a concave function that vanishes at 0. We find
by the triangle inequality that, for 0 ≤ t0 ≤ t1 ≤ 1,

W2(µ
k
t0
, µk

t1
) ≤ inf

R>0

{
W2(µ

k
t0
, µk,R

t0 ) +W2(µ
k,R
t0 , µk,R

t1 ) +W2(µ
k,R
t1 , µk

t1
)
}
≤ ω(t1 − t0),

whence ω is in fact a modulus of continuity for the sequence (µk
t∈[0,1])k∈N. Hence the sequence

is equicontinuous. □

For the following lemma, compare to Beiglböck, Huesmann, Stebegg [3, Theorem 1].

Lemma 5.5. Let Λ be a W2-compact subset of P2(Rd) and denote by M(Λ) the set of probability
measures π on the Skorokhod space D(Rd) consisting of

M(Λ) := {π = Law(M) : (Mt)t∈[0,1] is a càdlàg martingale with Law(M1) ∈ Λ}.
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Then, for any sequence (πk)k∈N in M(Λ) there exists π ∈ M(Λ) and a subsequence (πkj)j∈N
that converges to π = Law(M) in finite dimensional distributions on the set of continuity points
w.r.t. the weak topology of the function t 7→ Law(Mt).

Proof. Let (πk)k∈N be a sequence in M(Λ) and write Mk for a martingale with law πk. Since Λ
is compact, it follows easily that {µ ∈ P2(Rd) : ∃ν ∈ Λ with µ ≤c ν} is also compact. Therefore
we find a subsequence (πkj)j∈N such that, for any finite subset S ⊆ [0, 1] ∩Q,

Law(M
kj
t )t∈S → π̃S weakly for j → ∞,

where π̃S is the law of a discrete-time martingale in |S| time steps with values in Rd. The family
(π̃S)S⊂[0,1]∩Q,|S|<∞ is a consistent family and we can apply Kolmogorov’s extension theorem to
obtain a probability π̃ on

∏
t∈[0,1]∩Q Rd. Note that, for any S ⊆ [0, 1] ∩ Q, the projection of π̃

onto the S-coordinates coincides with π̃S. Hence π̃ is the law of a martingale M̃ = (M̃t)t∈[0,1]∩Q
with terminal distribution Law(M̃1) ∈ Λ. By standard arguments, there exists M where Mt :=
limq↘t, q∈Q∩[0,1] M̃q for t ∈ [0, 1] which is a càdlàg martingale (in the right-continuous version of
the filtration). We claim that π := Law(M) has the desired properties.

As t 7→ Var(Mt) is non-decreasing there are at most countably many points of discontinuity.
Let S be a finite subset of the continuity points of t 7→ Var(Mt), which coincide with the
continuity points of t 7→ Law(Mt). Fix N ∈ N and note that, as all involved processes are
martingales, (Mkj)t∈S̃ converges for j → ∞ inW2 to (M̃t)t∈S̃ uniformly for all S̃ ⊆ [0, 1]∩Q with

|S̃| ≤ N . Moreover, by Doob’s martingale convergence theorem, we have, for any t ∈ S, that

limq↘t,∈[0,1]∩Q M̃q almost surely. We conclude that (M
kj
t )t∈S converges in W2 to (Mt)t∈S. □

Proposition 5.6. In addition to Assumptions 5.1 (A1)–(A5), suppose that there exists R > 0
such that (σk)k∈N satisfies σk(x) = σk( Rx

|x|∨R) for x ∈ Rd, k ∈ N, and that (Σk
t (x))k∈N converges

pointwise for (t, x) ∈ [0, 1]× Rd to Σ: [0, 1]× Rd → Rd×d.
Then the conclusion of Theorem 5.2 holds.

We break the proof of Proposition 5.6 into the following lemmas.

Lemma 5.7. In the setting of Proposition 5.6, there exists σ : [0, 1]×Rd → Rd×d, with Σt(x) =∫ t

0
σs(x)

2ds, such that x 7→ σt(x) is locally Lipschitz continuous, uniformly in t ∈ [0, 1], and for

fixed x ∈ Rd, there exist constants cx, Cx > 0 such that cx id ≤ σt(x) ≤ Cx id, for t ∈ [0, 1].

Proof. As the limit of Lipschitz functions, t 7→ Σt(x) is Lipschitz continuous on the ball BR :=
{x ∈ Rd : |x| < R} of radius R > 0, and so are the entries (Σi,j)di,j=1 of Σ. Therefore there exist
densities

ρt(x) := (ρi,jt (x))di,j=1 ∈ Rd×d, where

∫ t1

t0

ρt(x) dt = Σt1(x)− Σt0(x), x ∈ Rd.

We define σ as the matrix square root of ρ, which is possible as ρ is a.s. positive semidefinite.
Next, we define, Lipschtitz norm of a function g : [0, 1]×BR → Rd×d as

F (g) := esssupx,y∈BR,t∈[0,1]
∥gt(x)− gt(y)∥HS

|x− y|
,

where the essential supremum is taken w.r.t. dt⊗dx. Since F : L2([0, 1]×BR;Rd×d) → R+∪{∞}
is lower semicontinuous and convex, we have by [2, Theorem 9.1] that F is weakly lower
semicontinuous, and in particular

lim inf
j→∞

F ((σkj)2) ≥ F (ρ) =: L,

which implies that x 7→ ρt(x) is dt ⊗ dx-almost everywhere L-Lipschitz continuous. Thus, by
choosing a suitable L2-representative of ρ we can assume w.l.o.g. that x 7→ ρt(x) is, for every t ∈
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[0, 1], L-Lipschitz continuous in x, and that supt∈[0,1] ∥ρt(x)∥HS < ∞. By Lipschitz continuity

of t 7→ Σk
t (x) and x 7→ ρt(x), we have that, for every x ∈ BR, ξ ∈ Rd and 0 ≤ t0 ≤ t1 ≤ 1,∫ t1

t0

ξTρt(x)ξ dt = lim
k→∞

ξT
(
Σk

t1
(x)− Σk

t0
(x)
)
ξ.

Therefore, by Assumption 5.1 (A4), there exists a constant c > 0 such that ρt(x) ≥ c id for every
x ∈ BR and Lebesgue-almost every t ∈ [0, 1]. As the matrix square root is Lipschitz continuous
on the set of symmetric, positive matricesM such thatM ≥ c id, we deduce Lipschitz continuity
of x 7→ σt(x) :=

√
ρt(x) on BR. □

The final result that we will make use of in the proof of Proposition 5.6 is the Lipschitz
continuity of the W2-distance between Gaussian laws with respect to covariance matrices.

Lemma 5.8. Let C, δ > 0. Then the map

(σ, σ′) 7→ W2 (N (0, σ),N (0, σ′))

is Lipschitz continuous on the set {σ ∈ Rd×d symmetric : δ id ≤ σ ≤ C id}2 equipped with the
product of the Hilbert-Schmidt norm.

Proof. As shown in [12, Proposition 7], the Wasserstein-2-distance between two centered Gaus-
sians with covariance matrices σ, σ′ is explicitly given by

tr

(
σ + σ′ − 2

(
σ

1
2σ′σ

1
2

) 1
2

)
,

from which the assertion follows. □

Proof of Proposition 5.6. By Lemma 5.4 there exists a subsequence, still denoted by (Xk)k∈N,
such that the curves (µk

t )t∈[0,1], k ∈ N converge to a W2-continuous curve (µt)t∈[0,1]. After
a deterministic time-change, if necessary, we can assume w.l.o.g. that t 7→

∫
|x|2 µt(dx) is

1-Lipschitz. By Lemma 5.7, we can find a diffusion coefficient σ = σt(x), with the desired
properties. Combining Lemma 5.7 with the particular form of the (σk)k∈N, we see that x 7→
σt(x) is in fact Lipschitz continuous, uniformly in t ∈ [0, 1]. We write L for a suitable Lipschitz
constant and C for a uniform bound of the Hilbert-Schmidt norms of σk

t , k ∈ N. For m ∈ N
and k = 0, . . . , 2m, we define tmk := k2−m and consider the kernels

πn
m,k(x) := Law(Xn

tmk+1
|Xn

tmk
= x), dXn

t = σn
t (X

n
t ) dBt, Xn

tmk
= x,

π̄n
m,k(x) := Law(Y n

tmk+1
|Y n

tmk
= x), dY n

t = σn
t (x) dBt, Y n

tmk
= x.

Observe that

(5.1) π̄n
m,k(x) = N

(
x,

∫ tmk+1

tmk

(σn
t (x))

2 dt

)
= N

(
x,Σn

tmk+1
(x)− Σn

tmk
(x)
)
.

In a similar manner we define πm,k, X, π̄m,k, and Y . Since (Σn)n∈N converges uniformly on BR

and therefore on Rd to Σ, we find by (5.1) and Lemma 5.8 that

lim
n→∞

π̄n
m,k(x) = π̄m,k(x) uniformly in x ∈ Rd, uniformly in m and k.

Combining this with the bound ∥Σt∥HS ≤ C gives

(5.2) lim
n→∞

2m−1∑
k=0

E
[
W2

2

(
π̄n
m,k(X

n
tmk
), π̄m,k(X

n
tmk
)
)]

= 0.



A REGULARIZED KELLERER THEOREM IN ARBITRARY DIMENSION 17

In the following we choose n := n(m) ∈ N, n(m) ≥ m sufficiently large such that for this
particular n the sum in (5.2) is smaller than 2−m. We estimate

W2
2

(
πn
m,k(x), π̄

n
m,k(x)

)
≤ E

[
|Xn

tmk+1
− Y n

tmk+1
|2 | Xn

tmk
= x = Y n

tmk

]
= E

[∫ tmk+1

tmk

|σn
t (X

n
s )− σn

t (x)|2 ds | Xn
tmk

= x

]

≤ L2E

[∫ tmk+1

tmk

|Xn
s −Xn

tmk
|2 ds | Xn

tmk
= x

]
,

using the Itô isometry and the Lipschitz continuity of σn. Now, since Xn is a square-integrable
martingale, we have

W2
2

(
πn
m,k(x), π̄

n
m,k(x)

)
≤ L2E

[∫ tmk+1

tmk

|Xn
tmk+1

−Xn
tmk
|2 ds | Xn

tmk
= x

]

=
L2

2m
E
[
|Xn

tmk+1
−Xn

tmk
|2 | Xn

tmk
= x

]
=

L2

2m
E

[∫ tmk+1

tmk

∥σn
s (X

n
s )∥2HS ds | Xn

tmk
= x

]

≤ L2C2

22m
,(5.3)

where we use the Itô isometry again, as well as the bound on the norm of σn. By the same line
of reasoning we find that W2

2 (πm,k(x), π̄m,k(x)) admits the very same bound as in (5.3). Hence
the triangle inequality together with the above estimates yields

(5.4)
2m−1∑
k=0

E
[
W2

2

(
π
n(m)
m,k (X

n(m)
tmk

), πm,k(X
n(m)
tmk

)
)]

≤ L2C2 + 1

2m−2
.

Next, we define for every m ∈ N an auxiliary process Sm that has càdlàg paths and the same
marginals as Xn(m) at the m-dyadics, where n(m) is fixed after (5.2). For k = 0, . . . , 2m − 1,
the process is given by

Sm
0 = X

n(m)
0 , dSm

t = σt(S
m
t ) dBt, Sm

tmk+1
= Tm

k (Sm
tm,k+1−

),

where Tm
k is the W2-optimal map between πm,k(S

m
tmk
) and πn

m,k(S
m
tmk
). The discrete-time jump

process Zm
t :=

∑2m

l=1 1[0,t](tm,l)
(
Sm
tm,l

− Sm
tm,l−

)
is a martingale in the underlying filtration and

S̃m := Sm − Zm is a continuous martingale. Indeed

E
[
Zm

t̂ |Ft

]
= Zm

t +
2m∑
l=1

1(t,t̂](tm,l)E
[
Sm
tm,l

− Sm
tm,l−

|Ft

]
= Zm

t +
2m∑
l=1

1(t,t̂](tm,l)E
[
Sm
tm,l−1

− Sm
tm,l−1

|Ft

]
= Zm

t .

Moreover, by (5.4), Zm admits the following estimate

E
[
|Zm

1 |2
] 1

2 = E

[
2m−1∑
k=0

W2
2

(
πm,k(X

n
tmk
), πn

m,k(X
n
tmk
)
)] 1

2

≤
√
L2C2 + 1

2m/2
,
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whence, by Doob’s maximal inequality, the term E
[
supt∈[0,1] |Zm

t |
]
also vanishes as m → ∞.

We claim that (S̃m)m∈N is a Cauchy sequence. Indeed, for m, m̂ ∈ N, m̂ ≥ m we have

E
[
|S̃m

t − S̃m̂
t |2
]
≤ 2

(
E
[
|Xn(m)

0 −X
n(m̂)
0 |2

]
+ E

[∫ t

0

|σt(S
m
t̂ )− σt(S

m̂
t̂ )|2 dt̂

])
≤ 2

(
E
[
|Xn(m)

0 −X
n(m̂)
0 |2

]
+ L2E

[∫ t

0

|Sm
t̂ − Sm̂

t̂ |2 dt̂
])

≤ 2

(
E
[
|Xn(m)

0 −X
n(m̂)
0 |2

]
+ 3L2

(
E
[∫ t

0

|S̃m
t̂ − S̃m̂

t̂ |2 dt̂
]
+

L2C2 + 1

2m−3

))
.

By Grönwall’s lemma, we have that (S̃m
1 )m∈N is an L2-Cauchy sequence. Thus, there exists

a continuous L2-martingale S such that (S̃m
1 )m∈N converges in L2 to S1. As Zm vanishes

uniformly, we get

lim
m→∞

E

[
sup
t∈[0,1]

|Sm
t − St|2

]
= 0.

Since Sm
t ∼ µt for t ∈ {0, 2−m, . . . , 1}, we have by continuity of t 7→ µt that St ∼ µt for every

t ∈ [0, 1]. By L-Lipschitz continuity of x 7→ σt(x) we find that

lim
m→∞

E
[∫ 1

0

|σt(S
m
t )− σt(St)|2 dt

]
= 0

This means that (σ ◦ Sm
t )m∈N converges to σ ◦ St in L2(dt ⊗ P;Rd×d), which yields by the Itô

isometry that ∫
σt(St) dBt = lim

m→∞

∫
σt(S

m
t ) dBt = lim

m→∞
S̃m = S,

whence dSt = σt(St) dBt.
In order to prove convergence of (Xn)n∈N in finite dimensional distributions, it suffices to show

for every m̂ ∈ N that (Xn
0 , X

n
tm̂,1

, . . . , Xn
1 )n∈N converges in distribution to (S0, Stm̂,1

, . . . , S1). Fix
ε > 0 and m̂ ∈ N. Then there exists M ≥ m̂ such that for all m ≥ M

E

[
sup
t∈[0,1]

|Sm
t − St|

]
< ε.

Recall that by construction we have (Sm
0 , Sm

tm̂,1
, . . . , Sm

1 ) = (X
n(m)
0 , X

n(m)
tm̂,1

, . . . , X
n(m)
1 ) in law,

from which we deduce that (Xn(m))m∈N converges in finite dimensional distributions to S.
Finally, to see uniqueness of the limit, note that by Lemma 5.5 the sequence (Law(Xn))n∈N

is precompact w.r.t. f.d.d. convergence. By the first part of the proof any subsequence of
(Xn)n∈N admits an f.d.d.-convergent subsequence with limit S. Hence, we conclude that Law(S)
is the unique limit by recalling that the finite dimensional distributions separate points on
P(D([0, 1];Rd)). □

Having established Proposition 5.6, we now extend the result from compact subsets to the
whole of Rd in order to complete the proof of Theorem 5.2. For this step, we require the
following lemma on domination of stochastic integrals in convex order by Brownian motion B.

Lemma 5.9. Let σ be a process adapted to FB, and let (Xt)t∈[0,1] be defined by the stochastic

integral Xt =
∫ t

0
σs dBs, t ∈ [0, 1]. Let C > 0 and suppose that σt ≤ C id, for all t ∈ [0, 1].

Then Law(X1) ⪯ Law(BC) = N (0, C id).

Proof of Lemma 5.9. The statement is obvious for simple σ. Noting that convex order can be
checked against convex functions with linear growth, the assertion follows for general σ by a
limiting argument. □
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Proof of Theorem 5.2. In order to apply Proposition 5.6, we will define for any radius R > 0
the diffusion coefficients (σn,R)n∈N by

σn,R
t (x) :=

{
σn
t (x) |x| ≤ R,

σn
t

(
R x

|x|

)
else.

Since in Hilbert spaces projections onto convex sets are contractions, we find that x 7→ σn,R
t (x)

is both Lipschitz continuous and bounded, uniformly in (t, n) ∈ [0, 1]×N. Denote by Xn,R the

unique strong solution of the SDE dXn,R
t = σn,R

t (Xn,R
t ) dBt with initial condition Xn,R ∼ µn

0 .

By Lemma 5.9, {µn,R
1 : n ∈ N} is a precompact subset of P2(Rd). We can apply Proposition

5.6, which yields a diffusion coefficient σR = σR
t (x) such that (Xn,R)n∈N converges in finite

dimensional distributions to XR, the unique strong solution of the SDE dXR = σR
t (X

R
t ) dBt.

Observe that, for R′ ≥ R, the corresponding diffusion coefficients are compatible, in the sense
that

σR
t (x) = σR′

t (x) for every x ∈ BR and almost every t ∈ [0, 1].

Defining σt(x) :=
∑∞

R=0 1[R,R+1)(|x|)σR
t (x), the properties of σ

R given by Proposition 5.6 imply
that σ is locally Lipschitz continuous, uniformly in t ∈ [0, 1], and that, for each x ∈ Rd, there
exist constants c, C > 0 such that c id ≤ σt(x) ≤ C id, for t ∈ [0, 1].

As a consequence of uniqueness of the solutions of the SDE dXR = σR
t (X

R
t ) dBt and dXt =

σt(Xt) dBt, we have that

(5.5) XR
t∧τR = Xt∧τR ∀t ∈ [0, 1],

where τR := inf{t > 0: |XR
t | ≥ R}. An analogous relation holds between Xn,R and Xn,

where τn,R := inf{t > 0: |Xn,R
t | ≥ R}. By the optional stopping theorem we therefore get

E[|Xn,R
τn,R |2] ≤ E[|Xn

1 |2] and, by Assumption 5.1 (A3), C := supn∈N E[|Xn
1 |2] < ∞.

Using (5.5) and applying Doob’s martingale inequality yields

(5.6) E

[
sup
t∈[0,1]

|Xn,R
t −Xn

t | ∧ 1

]
≤ P

(
sup
t∈[0,1]

|Xn
t | ≥ R

)
≤ C

R2
.

Moreover, we have

P

(
sup
t∈[0,1]

|Xt| > R

)
= P

(
sup
t∈[0,1]

|XR
t | > R

)
= sup

I⊆Q∩[0,1]
P
(
sup
t∈I

|XR
t | > R

)
≤ sup

I⊆Q∩[0,1]
sup
n∈N

P
(
sup
t∈I

|Xn,R
t | > R

)
≤ C

R2
,

where we used (5.5) for the first equality, continuity of the paths of XR for the second equality
and f.d.d. convergence of (Xn,R)n∈N to XR in the first inequality. Therefore, similarly to (5.6),
we get that

(5.7) E

[
sup
t∈[0,1]

|XR
t −Xt| ∧ 1

]
≤ P

(
sup
t∈[0,1]

|Xt| ≥ R

)
≤ C

(R− 1)2
.

By combining (5.6) and (5.7) we find, for any finite subset I ⊆ Q ∩ [0, 1], that

(5.8) lim
n→∞

E
[
sup
t∈I

|Xn
t −Xt| ∧ 1

]
≤ lim inf

n→∞
E

[
sup
t∈[0,1]

|Xn
t −Xn,R

t | ∧ 1 + sup
t∈I

|Xn,R
t −XR

t |+ sup
t∈[0,1]

|XR
t −Xt| ∧ 1

]

≤ 2C

(R− 1)2
+ lim inf

n→∞
E
[
sup
t∈I

|Xn,R
t −XR

t | ∧ 1

]
=

2C

(R− 1)2
,
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where we used f.d.d. convergence distributions of (Xn,R)n∈N to XR in the final line. Hence,
(Xn)n∈N converges in finite dimensional distributions to X. □

Appendix A. The strong Markov property

We take the following definition from Karatzas and Shreve [19, Chapter 2, Definition 6.2].

Definition A.1. An Rd-valued stochastic process X with right-continuous filtration F is strong
Markov if, for every bounded measurable function g : Rd → R and every t ∈ R+, there exists a
measurable function f : R+ × Rd → R such that for every finite stopping time τ

(A.1) f(τ,Xτ ) = E[g(Xτ+t)|Fτ ].

Lemma A.2. Let X be a càdlàg process on a filtered probability space with the usual conditions.
Suppose that X satisfies the Markov property for all times t ∈ [0, 1] and satisfies the strong
Markov property (A.1) for all ε > 0 and all finite stopping times τ ≥ ε > 0. Then X is strong
Markov.

Proof. Let g : Rd → R be measurable and bounded, t ∈ R+, and fix ε > 0. For a given finite
stopping time τ , we consider the event Aε := {τ ≤ ε} ∈ Fε and define the finite stopping time

τε := ε1Aε + τ1Ac
ε
.

On the one hand, by assumption, there exists a measurable map f : R+ × Rd → R such that,
for all ε > 0 and finite stopping times τ , we have on Ac

ε that

f(τ,Xτ ) = f(τε, Xτε) = E[g(Xτε+t)|Fτε ].

In particular, since Ac
ε ↗ {τ > 0} as ε ↘ 0 we find on {τ > 0} that

f(τ,Xτ ) = E[g(Xτ+t)|Fτ ].

On the other hand, we have by the Markov property of X that there is a measurable function
f0 : Rd → R with f0(X0) = E[g(Xt)|F0]. Combining these two observation yields that for all
finite stopping times τ

1{τ=0}f0(X0) + 1{τ>0}f(τ,Xτ ) = 1{τ=0}E[g(Xt)|F0] + 1{τ>0}E[g(Xτ+t)|Fτ ]

= E[g(Xτ+t)|Fτ ],

hence X has the strong Markov property. □

Appendix B. Auxiliary results for the examples of Section 4

Lemma B.1. In the setting of Remark 4.3, for each t0 ∈ (0, 1], the process X t0 mimics µ on
[t0, 1]. Moreover, as t0 → 0, there exists a limit X of X t0 in distribution such that (Xt)t∈[t1,1] ∼
(X t1

t )t∈[t1,1], for any t1 ∈ (0, 1].

Proof. For t0 ∈ (0, 1) and n ∈ N, denote An,t0 := {
∑n

k=1 ξk < Λt − Λt0 ≤
∑n+1

k=1 ξk}. Note
that the sum of n independent exponential distributions with rate parameter 1 is distributed
according to a Gamma distribution with shape paramter n and rate parameter 1. Therefore
we have

(B.1) P[An,t0 ] =

∫ Λt−Λt0

0

xn−1

(n− 1)!
e−x+x+Λt−Λt0 dx =

(Λt − Λt0)
n

n!
e−(Λt−Λt0 ).
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For i = 1, 2, we compute

P[X t0
t ∈ Si

t |X
t0
t0 ∈ S2

t0
] =

∑
n∈N∪{0}

12Z+i(n)P [An,t0 ]

=
∑

n∈N∪{0}

12Z+i(n)
(Λt − Λt0)

n

n!
e−(Λt−Λt0 )

=

{
sinh(Λt−Λt0 )

e
(Λt−Λt0

) i = 1,
cosh(Λt−Λt0 )

e
(Λt−Λt0

) i = 2.

Therefore, by rotational symmetry, we have that X t0
t0 ∼ µt0 implies that X t0

t ∼ µt for all
t ∈ [t0, 1]. Now note that by the memoryless property of the exponential distribution we have,
for 0 < t0 < t1 ≤ 1,

(X t0
t )t∈[t1,1] ∼ (X t1

t )t∈[t1,1].

Hence, for t0 ↘ 0 we have that the law of (X t0
t )t∈[0,1] converges to some law η ∈ P(D(R4)) with

the property that (Xt)t∈[t1,1] ∼ (X t1
t )t∈[t1,1], for any t1 ∈ (0, 1], where X = (Xt)t∈[0,1] denotes

the canonical process on the probability space D(R4) equipped with its Borel σ-algebra, the
probability measure η, and the right-continuous η-complete filtration (Ft)t∈[0,1] generated by
X. □

Lemma B.2. Let X,F be as in Remark 4.3 and let f : Rd → [0, 1] be measurable. Then we
claim that, for t ∈ [0, 1],

(B.2) E[f(Xt)|F0] = lim
t0↘0

E[f(Xt)|Ft0 ] = E[f(Xt)] a.s.

Proof. Note that the first equality in (B.2) is due the martingale convergence theorem. By the
Markov property at t0, we have that, for 0 < t0 < t,

E[f(Xt)|Ft0 ] = E[f(Xt)|Xt0 ].

By construction, given the starting point Xt0 = x ∈ S2
t0
, we have Xt ∼ X t0

t . Now use the
independence of (Un)n∈N and (ξk)k∈N to compute that

E[f(Xt)|Xt0 = x] =
∑

n∈N∪{0}

E[1An,t0
(12Z(n)f(Vn) + 12Z+1(n)f(Un)]

=
∑

n∈N∪{0}

P[An,t0 ] (12Z(n)E[f(V )] + 12Z+1(n)E[f(U)]) ,

where U ∼ Unif(S1
1) and V ∼ Unif(S2

1). Since the law of Xt is given explicitly by µt =
1
2
(L((0, 0,

√
tU)) + L(

√
tU, 0, 0)), it remains to prove that∑

n∈N∪{0}

P[A2n,t0 ] →
1

2
as t0 ↘ 0.

Using (B.1) and noting that Λt − Λt0 diverges to +∞ for t0 ↘ 0, we find that∑
n∈N∪{0}

P[A2n,t0 ] =
cosh(Λt − Λt0)

eΛt−Λt0
→ 1

2
,

and conclude that (B.2) holds. □

Lemma B.3. Let n ∈ N and set t0 = 2−(n+1), t1 = 2−n. Then, in the setting of Proposition 4.5,
there exists a constant C > 0 such that

P[S̄ i
t0
△ S̄ i

t1
] ≤ Ct0.
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Proof. Fix t0 = 2−(n+1), t1 = 2−n for some even integer n ∈ N ∪ {0}. Then we have that
[2−(n+1), 2−n] ∈ I1, and so a2(t) and µt|X2 are constant on this interval. Subsequently, we will
repeatedly employ the estimates

E[|Xt|4 + |Nt14|4] ≤
a1(t)

2 + a2(t)
2

2
+ 3t28 ≤ Ct2,

P[|Nt14| ≥ a] ≤ t14

a2
, a > 0.

(B.3)

Similarly as in Proposition 4.4, we split the vector Y into two parts where Y 1
t denotes the

first two coordinates and Y 2
t the last two components of Yt, for t ∈ [0, 1]. We aim to bound the

probability of Y i leaving a small ball around Y i
t0
in the time interval [2−(n+1), 2−n].

First we compute the upper bound

E[|Y i
t |2] ≤ E[|X i

t |2 + |Nt14|2] ≤
1

2
ai(t) + t14.(B.4)

In the case that i = 2 we get the lower bound

E[|Y 2
t0
|21Ŝ2

t0

] ≥ E[|Xt0 +Nt140
|21Ŝ2

t0

; |Nt140
| < t20]

≥ E[|Xt0 +Nt140
|21Ŝ2

t0

]− E[|Xt0 +Nt140
|2; |Nt140

| ≥ t20]

≥ E[|Xt0|21Ŝ2
t0

]− E[|Xt0|2 + |Nt140
|2; |Nt140

| ≥ t20],

using the independence of Xt0 and Nt140
. We use this independence again, together with the

Cauchy-Schwarz inequality and the estimates (B.3), to show that

E[|Y 2
t0
|21Ŝ2

t0

] ≥ 1

2
a2(t0)− E[|Xt0|2 + |Nt140

|2; |Nt140
| ≥ t20]

≥ 1

2
a2(t0)−

(
P[|Nt140

| ≥ t20]E[|Xt0|4 + |Nt140
|4]
) 1

2

≥ 1

2
a2(t0)− Ct60.

Recalling that a2 is constant on [t0, t1], (B.4) implies that E|Yt1|2 ≤ 1
2
a2(t0) + t141 . Since Y is

a martingale we have

E[|Y 2
t1
− Y 2

t0
|2] = E[|Y 2

t1
|2 − |Y 2

t0
|2] ≤ E|Y 2

t1
|2 − E[|Y 2

t0
|21Ŝ2

t0

].

Thus combining the upper and lower bounds above gives us

(B.5) E[|Y 2
t1
− Y 2

t0
|2] ≤ 1

2
a2(t0) + t141 −

(
1

2
a2(t0)− Ct60

)
≤ C0t

6
0.

for some C0 > 0. By Doob’s maximal inequality we obtain

(B.6) P[ sup
t∈[t0,t1]

|Y 2
t − Y 2

t0
| ≥ t0/2] ≤ 4C0t

4
0.

Next, we show an analogous result to (B.5) when i = 1. We claim that, for some constant
C1 > 0,

(B.7) E[|Y 1
t1
− Y 1

t0
|2; (Ŝ1

t0
)c] ≤ C1t

3
0.

Since Y is a martingale, we have

E[|Y 1
t1
− Y 1

t0
|2; (Ŝ1

t0
)c] = E[|Y 1

t1
|2 − |Y 1

t0
|2; (Ŝ1

t0
)c] ≤ E[|Y 1

t1
|2; (Ŝ1

t0
)c]

≤ E[|Y 1
t1
|2; (Ŝ1

t0
∪ Ŝ2

t0
)c] + E[|Y 1

t1
|2; Ŝ2

t0
]
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We estimate each term separately, using the Cauchy-Schwarz inequality and the estimates (B.3)
in each case. We first bound

E[|Y 1
t1
|2; (Ŝ1

t0
∪ Ŝ2

t0
)c] ≤ E[|Yt1|4]

1
2P[(Ŝ1

t0
∪ Ŝ2

t0
)c]

1
2 ≤ Ct1P[|Nt140

| ≥ t20]
1
2 ≤ C2t

6
0.

In bounding the second term, we additionally apply (B.6) to get

E[|Y 1
t1
|2; Ŝ2

t0
] = E[|Y 1

t1
|2; Ŝ2

t0
, |Y 2

t1
− Y 2

t0
| ≤ t0/2] + E[|Y 1

t1
|2; |Y 2

t1
− Y 2

t0
| ≥ t0/2]

≤ E[|Y 1
t1
|2; (Ŝ1

t1
)c] +

(
E[|Yt1|4]P[|Y 2

t1
− Y 2

t0
| ≥ t0/2]

) 1
2

≤ C2t
6
0 +

(
Ct20 · 4C0t

4
0

) 1
2 ≤ C3t

3
0.

Combining the two preceding inequalities yields (B.7). As before, Doob’s maximal inequality
implies

(B.8) P[ sup
t∈[t0,t1]

|Y 1
t − Y 1

t0
| ≥ t0/4; (Ŝ1

t0
)c] ≤ 16C1t0.

Note that, for i = 1, 2,

P[S̄ i
t0
△ S̄ i

t0
] ≤ P[Ŝ i

t0
△ S̄ i

t1
] + P[S̄ i

t0
\ (Ŝ i

t0
∪ S̄ i

t1
)],

and

P[S̄ i
t0
\ (Ŝ i

t0
∪ S̄ i

t1
)] = P[t20 ≤ |Nt140

| < t0, |Nt141
| ≥ t1] ≤ t100 .

Hence, to prove the conclusion of the lemma, we only require bounds on P[Ŝ i
t0
△S̄ i

t1
], for i = 1, 2.

Now consider the events

At0 := {|Y 2
t1
− Y 2

t0
| ≤ t0/4} and Bt0 := Ŝ2

t0
∩ {|Y 1

t1
− Y 1

t0
| ≤ t0/4},

and observe that (B.6) and (B.8) imply that

P[Ac
t0
] ≤ 16C0t

4
0 and P[Ŝ2

t0
\Bt0 ] ≤ 16C1t0.

We calculate that

P[Ŝ1
t0
△ S̄1

t1
] = P[Ŝ1

t0
\ (Ŝ1

t0
∩ S̄1

t1
)] + P[S̄1

t1
\ (Ŝ1

t0
∩ S̄1

t1
)]

= P[Ŝ1
t0
] + P[S̄1

t1
]− 2P[Ŝ1

t0
∩ S̄1

t1
]

≤ 2(P[S̄1
t1
]− P[Ŝ1

t0
∩ S̄1

t1
]) + t100 ,

since P[S̄1
t1
] ≥ P[Ŝ1

t0
, |Nt140

| < t20] ≥ P[Ŝ1
t0
]− t100 . Note that we have the inclusions

(Ŝ1
t0
)c ∩ S̄1

t1
⊆ (Ŝ1

t0
∪ Ŝ2

t0
)c ∪ (Ŝ2

t0
∩ S̄1

t1
), Ŝ2

t0
∩ S̄1

t1
⊆ Ac

t0
.

Hence

P[Ŝ1
t0
△ S̄1

t1
] ≤ 2P[(Ŝ1

t0
)c ∩ S̄1

t1
] + t100 ≤ 2P[(Ŝ1

t0
∪ Ŝ2

t0
)c ∪ (Ŝ2

t0
∩ S̄1

t1
)] + t100

≤ 2P[|Nt14| ≥ t20] + 2P[Ac
t0
] + t0

≤ 3t100 + 32C0t
4
0.

On the other hand, we have

P[Ŝ2
t0
△ S̄2

t1
] ≤ P[Ŝ2

t0
\Bt0 ] + P[|Nt140

| ≥ t0] ≤ Ct0.

Thus we have shown the claim in the case that n is even. Due to symmetry of the arguments
we also obtain the desired result when n is odd. □
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[1] J. Backhoff-Veraguas, M. Beiglböck, M. Huesmann, and S. Källblad. Martingale Benamou-Brenier: a
probabilistic perspective. Ann. Probab., 48(5):2258–2289, 2020.

[2] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces,
volume 408. Springer, 2011.
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[4] M. Beiglböck, G. Lowther, G. Pammer, and W. Schachermayer. Faking brownian motion through contin-
uous Markov martingales. ArXiv e-prints, 2021.
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