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JULIO BACKHOFF-VERAGUAS, MATHIAS BEIGLBÖCK, WALTER SCHACHERMAYER,

AND BERTRAM TSCHIDERER

Abstract. In classical optimal transport, the contributions of Benamou–Brenier and Mc-

Cann regarding the time-dependent version of the problem are cornerstones of the field and

form the basis for a variety of applications in other mathematical areas.

Stretched Brownian motion provides an analogue for the martingale version of this

problem. In this article we provide a characterization in terms of gradients of convex

functions, similar to the characterization of optimizers in the classical transport problem

for quadratic distance cost.
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1. Introduction

Optimal transport as a field in mathematics goes back to Monge [38] and Kantorovich

[33], who established its modern formulation. The seminal results of Benamou, Brenier,

and McCann [15, 16, 13, 35] form the basis of the modern theory, with striking applications

in a variety of different areas, see the monographs [44, 45, 1, 42].

We are interested in transport problems where the transport plan satisfies an additional

martingale constraint. This additional requirement arises naturally in finance, but is of

independent mathematical interest. For example there are notable consequences for the

study of martingale inequalities (e.g. [14, 28, 40]) and the Skorokhod embedding problem

(e.g. [7, 32, 11]). Early articles on this topic of martingale optimal transport include

[30, 8, 43, 23, 21, 17].

In view of the central role taken by the results of Benamou–Brenier [13] and McCann

[36] on optimal transport for squared (Euclidean) distance, the related continuous-time

transport problem and McCann’s displacement interpolation, it is paramount to search for

similar concepts in the martingale context. This is the main motivation of the present

article. Before describing our results, we briefly recap the classical role models.

1.1. Benamou–Brenier transport problem and McCann interpolation in probabilistic

terms. Given probabilities `, a in the space P2(R3) of 3-dimensional distributions with

finite second moment, Brenier’s theorem asserts that, if ` is absolutely continuous, the

following are equivalent for a coupling c ∈ Cpl(`, a), i.e., a probability measure on

R3 × R3 with marginals ` and a:

(1) c minimizes the transportation costs w.r.t. the squared distance between ` and a.

(2) c is concentrated on the graph of a function 5 : R3 → R3 which is monotone in

the sense that 5 = ∇{ for a convex function { : R3 → R.

Brenier’s theorem gives a structural description of the optimal transport plan for the most

widely used cost function. Another essential consequence of the result is that it provides a

particularly natural way of moving probabilities: it implies that ` can be transported to a

We thank Ben Robinson for his valuable feedback and comments during the preparation of this paper. We

also acknowledge support by the Austrian Science Fund (FWF) through projects P 35197 and P 35519.

1

http://arxiv.org/abs/2306.11019v1


2 J. BACKHOFF-VERAGUAS, M. BEIGLBÖCK, W. SCHACHERMAYER, AND B. TSCHIDERER

via the gradient of a convex function. In fact, in many applications it is the mere existence

of this monotone transport map that is required, irrespective of its optimality properties.

Ideally, a martingale counterpart of Brenier’s theorem should mimic these aspects. That

is, starting from a natural optimization problem our goal is to define a natural martingale

that connects the probabilities ` and a.

While [10, 29, 24] have proposed martingale versions of Brenier’s monotone transport

map based on static transport problems, our starting point is a continuous formulation in

the spirit of the Benamou–Brenier continuous-time transport problem given in [3, 31].

We first recapitulate the continuous-time formulation of Brenier’s theorem in probabilis-

tic language. For `, a ∈ P2(R3), consider

)2 (`, a) ≔ inf
-0∼`, -1∼a,
-C=-0+

∫ C

0
1B 3B

E

[ ∫ 1

0
|1C |2 3C

]
. (BB)

Under the above assumptions, (BB) has a unique (in law) optimizer and the following are

equivalent for processes - = (-C )06C61 with -0 ∼ ` and -1 ∼ a:
(1) - solves (BB).

(2) -1 = 5 (-0), where 5 is the gradient of a convex function { : R3 → R and all

particles move with constant speed, i.e., -C = -0 + 1C, C ∈ [0, 1] for the random

variable 1 = -1 − -0.

1.2. Martingale optimization problem. Assume that `, a ∈ P2(R3) are in convex order,

in signs ` �c a, that is
∫
q 3` 6

∫
q 3a for all convex functions q : R3 → R with linear

growth. We consider the optimization problem

") (`, a) ≔ inf
"0∼`, "1∼a,

"C="0+
∫ C

0
fB 3�B

E

[ ∫ 1

0
|fC − Id|2HS 3C

]
, (MBB)

where � is Brownian motion on R3 and | · |HS denotes the Hilbert–Schmidt norm.

The main result of [3] is that (MBB) admits a unique optimizer "∗. Moreover, "∗

is a strong Markov martingale and has properties of time consistency analogous to the

classical deterministic case. While (BB) entails that particles move along straight lines, the

functional in (MBB) stipulates that " maximizes the correlation with Brownian motion

subject to the given marginal constraints. It is also shown in [3] that"∗ is the process whose

evolution follows the movement of a Brownian particle as closely as possible with respect

to an adapted Wasserstein distance (see e.g. [2, 22]) subject to the marginal conditions

"0 ∼ ` and "1 ∼ a. These properties motivate to call the martingale "∗ stretched

Brownian motion between ` and a as in [3].

1.3. The Bass martingale. Our main result relates the optimality property in the definition

of stretched Brownian motion to a structural description. As motivation we recall a classical

construction of Bass [5] which provides a particularly appealing martingale" = ("C )06C61

that terminates in a fixed measure a on the real line and starts at the barycenter of a. This

amounts to a solution of the Skorokhod embedding problem (modulo time change). Let

(�C )06C61 be Brownian motion (started in �0 = 0), let W ≔ Law(�1) denote the standard

Gaussian and define 5 : R→ R as the W-a.e. unique increasing mapping that pushes W to a.

Bass then defines the martingale

"C ≔ E[ 5 (�1) | f(�B : 0 6 B 6 C)] = E[ 5 (�1) | �C ], 0 6 C 6 1, (1.1)

so that "0 starts at the barycenter of a and Law("1) = a.
As we are interested in martingales in multiple dimensions with non-degenerate starting

law `, we consider the construction of Bass in the following generality:
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Definition 1.1. Let � = (�C )06C61 be Brownian motion on R3 , where �0 ∼ U ∈ P2(R3),
and let { : R3 → R be convex such that ∇{(�1) is integrable. Then we call

"C ≔ E[∇{(�1) | f(�B : 0 6 B 6 C)] = E[∇{(�1) | �C ], 0 6 C 6 1

a Bass martingale.

The question arises under which conditions on `, a ∈ P2(R3) there is a Bass martingale

" from ` to a, i.e., satisfying "0 ∼ ` and "1 ∼ a.

1.4. Structure of stretched Brownian motion. We need a connectivity assumption on

the marginals, known under the name of irreducibility in the martingale transport literature.

Definition 1.2. For `, a ∈ P(R3) we say that the pair (`, a) is irreducible if for all

measurable sets �, � ⊆ R3 with `(�), a(�) > 0 there is a martingale - = (-C )06C61 with

-0 ∼ `, -1 ∼ a such that P(-0 ∈ �, -1 ∈ �) > 0.

With this definition in hand we can announce our first main result:

Theorem 1.3. Let ` �c a be probabilities on R3 with finite second moments and suppose

that (`, a) is irreducible. Then the following are equivalent for a martingale" = ("C )06C61

with "0 ∼ ` and "1 ∼ a:
(1) " is stretched Brownian motion, i.e., the optimizer of (MBB).

(2) " is a Bass martingale.

We briefly provide some context for the irreducibility assumption in Theorem 1.3. In

classical optimal transport, the product coupling of the marginals guarantees that mass can

be transported from an arbitrary starting position to an arbitrary target position. However,

this is not necessarily true in the case of martingale transport where it may happen that R3

decomposes into disjoint (convex) regions that do not communicate with each other. The

irreducibility assumption excludes this as it guarantees that for any sets � and � that are

charged by ` and a, respectively, there exists a martingale - connecting them (in the sense

that P(-0 ∈ �, -1 ∈ �) > 0). For 3 > 1, the appearance of more than one irreducible

component leads to intricate phenomena, analyzed in the remarkable contributions [24, 20,

39]. We revisit this problem in terms of Bass martingales in a follow-up work.

For equivalent characterizations of the irreducibility assumption we refer to Theorem

D.1 in Appendix D. In particular, it is equivalent to consider continuous- or discrete-time

martingales in Definition 1.2. We also note that irreducibility is not only a sufficient

assumption for Theorem 1.3, but it is in fact necessary. Indeed, the Bass martingale

connects any two sets which are charged by ` and a, see Remark D.3.

An important consequence of Theorem 1.3 is that for any irreducible pair ` �c a there

exists a unique Bass martingale

"C = E[∇{(�1) | f(�B : B 6 C)] = E[∇{(�1) | �C ], 0 6 C 6 1, (1.2)

with "0 ∼ `, "1 ∼ a and it is worthwhile to comment on the properties of " . We write

WC for the 3-dimensional centered Gaussian distribution with covariance matrix C�3 and

{C ≔ { ∗ W1−C : R3 → R for the convolution of the function { and the measure W1−C . In

these terms, (1.2) amounts to

"C = ∇{C (�C ), 0 6 C 6 1, (1.3)

which emphasizes that the Bass martingale is obtained as a monotone transformation of

Brownian motion at each time point. Finally, as a Brownian martingale, " is a diffusion

which connects ` and a. Indeed, applying Itô’s formula to (1.3) we obtain

3"C = ∇2{C ◦ ∇{∗C ("C ) 3�C , 0 6 C 6 1,

where {∗C denotes the convex conjugate of {C , i.e., {∗C (H) ≔ supG∈R3 {〈G, H〉 − {C (G)}.
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1.5. Dual viewpoint. Our arguments rely on a novel dual viewpoint on stretched Brownian

motion. In classical transport minimization of the squared distance is equivalent to max-

imization of correlation and the latter formulation yields a dual problem which is simpler

to interpret. A similar fact holds true in the present martingale setting: problem (MBB) is

equivalent to maximizing the covariance with Brownian motion

%(`, a) ≔ sup
"0∼`, "1∼a,

"C="0+
∫ C

0
fB 3�B

E

[ ∫ 1

0
tr(fC ) 3C

]
, (1.4)

in the sense that both problems have the same optimizer and the values are related via

") (`, a) = 3 +
∫
|H |2 3a(H) −

∫
|G |2 3`(G) − 2%(`, a).

As in the classical case, the advantage of the formulation (1.4) is that its dual problem

admits a simpler formulation.

Theorem 1.4. Assume that `, a ∈ P2(R3) are in convex order. The value %(`, a) of the

problem (1.4) is equal to

� (`, a) ≔ inf
k∈!1 (a) ,
k convex

( ∫
k 3a −

∫
(k∗ ∗ W)∗ 3`

)
(1.5)

and is attained by a convex function kopt if and only if (`, a) is irreducible. In this case the

(unique) optimizer to (MBB) is given by the Bass martingale

"C ≔ E[∇{(�1) | f(�B : B 6 C)] = E[∇{(�1) | �C ], 0 6 C 6 1,

where { = k∗
opt and �0 ∼ ∇(k∗

opt ∗ W)∗ (`).

We note that, in order for the difference of the integrals in (1.5) to be well-defined,

attainment of � (`, a) has to be understood in a “relaxed” sense frequently encountered

in martingale transport problems; see [10, 11, 12] and Propositions 4.1, 4.2 below. It

turns out that the optimizer kopt : R
3 → (−∞, +∞] is a convex function which is lower

semicontinuous and satisfies `(ri(domkopt)) = 1, but is not necessarily a-integrable.

1.6. Literature. The first article that provides structural results for the martingale transport

problem in general dimensions is the work [24] of Ghoussoub–Kim–Lim. They obtain

descriptions for the minimizers and maximizers for the cost function 2(G, H) = |G − H |,
when marginals are supported on R2, as well as for marginals on higher-dimensional state

spaces that are in subharmonic order. Given a specific martingale - , Ghoussoub–Kim–

Lim also define a coarsest paving of the source space into cells that are invariant under the

martingale - .

The contributions of De March–Touzi [20] and Obłój–Siorpaes [39] put the theme of

irreducible decompositions center stage. In contrast to the work of Ghoussoub–Kim–Lim,

their interest lies in pavings that are invariant under all martingales which start in ` and

terminate in a. Specifically it is shown in [20] that there exists a unique coarsest paving with

this property. This De March–Touzi paving plays a crucial role in our follow-up article,

where it is characterized in terms of Bass martingales.

Huesmann–Trevisan [31] investigate Benamou–Brenier-type formulations for the mar-

tingale transport problem on R3 . In particular, they provide equivalent PDE-formulations

and establish existence and duality results.

For further contributions to the martingale transport in continuous time, we mention

[21, 9, 19, 26, 25, 18] among many others.

Finally, [3] is a predecessor of the present article in which it is established that the

martingale transport problem (MBB) admits a unique solution, solves further related opti-

mization problems and has properties of time consistency in the spirit of classical optimal

transport for the squared distance cost function. Furthermore, the counterpart of our main
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result is established in dimension one (without reference to duality). Among other dif-

ferences, we highlight a particular property which distinguishes martingale transport in

dimension one from the higher-dimensional case: on the real line the convex pavings of

Ghoussoub–Kim–Lim [24] and De March–Touzi [20] / Obłój–Siorpaes coincide (and their

existence is relatively trivial, see [10]). This is no longer true in higher dimensions which

renders Theorem 1.3 substantially more intricate in the present multi-dimensional case.

1.7. Structure of the paper. In Section 2 we introduce some definitions and frequently

used notation. Duality results for stretched Brownian motion and the important role of

convexity are discussed in Section 3. The proof of the first part of Theorem 1.4, namely

that there is no duality gap between the primal problem (1.4) and the dual problem (1.5),

is given in Section 4. In Section 5 we outline and prepare the proof of the second part

of Theorem 1.4, which gives a necessary and sufficient condition for dual attainment in

terms of the irreducibility assumption. To this end, we analyze the connection between

the existence of dual optimizers and Bass martingales, which is the content of Section 6.

In Section 7 we show that the irreducibility assumption implies the existence of a dual

optimizer. After these preparations we are in a position to prove Theorem 1.3 in Subsection

7.2 and complete the proof of Theorem 1.4 in Subsection 7.3.

In Appendix A we prove Theorem 3.1, which shows that there is no duality gap between

the auxiliary optimization problems (3.1) and (3.2). The rather technical proofs of Lemmas

4.4, 5.1, 6.2, 6.4 and 6.5 are collected in Appendix B. In Appendix C we provide the proof of

Proposition 7.20, a result which will be of crucial importance in our follow-up paper on the

non-irreducible case, but which also seems of independent interest. Finally, in Appendix

D we give equivalent characterizations of irreducibility, as introduced in Definition 1.2.
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2. Definitions and Notation

• We write P(R3) for the probability measures on R3 , P? (R3) for the subset of

probability measures satisfying
∫
|G |? 3` < +∞, and P G

? (R3) for the elements of

P? (R3) with barycenter G ∈ R3 , for ? ∈ [1, +∞).
• For `, a ∈ P(R3), we denote by Cpl(`, a) the set of all couplings c ∈ P(R3 ×R3)

between ` and a, i.e., probability measures c on R3 ×R3 with first marginal ` and

second marginal a.

• We say that ` ∈ P1(R3) is dominated by a ∈ P1(R3) in convex order and write

` �c a, if for all convex functions q : R3 → R with linear growth we have∫
q 3` 6

∫
q 3a.

• For `, a ∈ P1(R3) with ` �c a we define the collection of martingale transports

MT(`, a) as those couplings c ∈ Cpl(`, a) satisfying bary(cG) ≔
∫
H cG (3H) = G,

for `-a.e. G ∈ R3 . Here, the family of probability measures {cG}G∈R3 ⊆ P(R3) is

obtained by disintegrating the coupling c with respect to its first marginal `, i.e.,

c(3G, 3H) = cG (3H) `(3G).
• The 3-dimensional Gaussian distribution with barycenter G ∈ R3 and covariance

matrix C�3 is denoted by WCG and we set WG ≔ W1
G as well as W ≔ W0.

• We denote by �q(R3) the set of continuous functions k : R3 → R with quadratic

growth, meaning that there are constants 0, :, ℓ ∈ R with

ℓ + | · |2
2 6 k( · ) 6 0 + : | · |

2.

We also introduce the set

�aff
q (R3) ≔

{
k( · ) + aff( · ) : k ∈ �q(R3), aff: R3 → R affine

}
.

• For two measures r and d we write r ∗ d for their convolution. If 5 is a function,

the convolution of 5 and d is defined as

( 5 ∗ d) (G) ≔
∫

5 (G − H) d(3H).

In particular, ( 5 ∗ W) (G) =
∫
5 (G + H) W(3H).

• For a function 5 : R3 → (−∞, +∞], its convex conjugate is given by

5 ∗ (H) ≔ sup
G∈R3

(
〈G, H〉 − 5 (G)

)

and we write

dom 5 ≔ {G ∈ R3 : 5 (G) < +∞}
for the domain of 5 . If 5 is convex and dom 5 ≠ ∅, we say that 5 is a proper

convex function. If 5 is additionally lower semicontinuous, then 5 = 5 ∗∗ by the

Fenchel–Moreau theorem, a fact that we will use repeatedly in this work.

• The operators int and ri denote the interior and relative interior of a set, respectively.

We write � for the closure of a set � ⊆ R3 . The operator conv applied to a function

or a set denotes the convex hull.

• The support and the closed convex hull of the support of a measure d are denoted

by supp(d) and ŝupp(d), respectively.

• The symbol m, applied to a convex function, denotes its subdifferential or — by

abuse of notation — also a subgradient.

3. Duality for stretched Brownian motion

We fix `, a ∈ P2(R3) with ` �c a and consider the primal problem

%̃(`, a) ≔ sup
c∈MT(`,a)

∫
MCov(cG , W) `(3G), (3.1)
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where the maximal covariance (MCov) between two probability measures ?1, ?2 ∈ P2(R3)
is defined as

MCov(?1, ?2) ≔ sup
@∈Cpl(?1 , ?2 )

∫
〈G1, G2〉 @(3G1, 3G2).

The optimization problem (3.1) is a weak optimal transport problem in the sense of [27],

since the function c ↦→
∫

MCov(cG , W) `(3G) is non-linear, as opposed to classical op-

timal transport, where linear problems of the form c ↦→
∫
2(G, H) c(3G, 3H) are studied.

The problem (3.1) can also be viewed as a discrete-time version of the continuous-time

optimization problem (1.4). In fact, by [3, Theorem 2.2] the value %̃(`, a) of (3.1) is

finite and equals %(`, a), as defined in (1.4). Furthermore, there exists a unique optimizer

cSBM ∈ MT(`, a) of (3.1) and if ("C )06C61 is the stretched Brownian motion from ` to a,

then the law of ("0, "1) equals cSBM. From now on, we will focus on the discrete-time

formulation (3.1).

To formulate a dual problem to (3.1), we consider the set of continuous functions with

quadratic growth

�q(R3) ≔
{
k : R3 → R continuous s.t. ∃ 0, :, ℓ ∈ R with ℓ + | · |2

2 6 k( · ) 6 0 + : | · |
2
}
.

Then we define the dual problem

�̃ (`, a) ≔ inf
k∈�q (R3 )

( ∫
k 3a −

∫
ik 3`

)
, (3.2)

where the function R3 ∋ G ↦→ ik (G) is given by

ik (G) ≔ inf
?∈PG

2 (R3 )

( ∫
k 3? − MCov(?, W)

)
. (3.3)

Theorem 3.1. Let `, a ∈ P2(R3) with ` �c a. There is no duality gap between the

primal problem (3.1) and the dual problem (3.2), i.e., %̃(`, a) = �̃ (`, a). Moreover,

the primal problem is uniquely attained and has a finite value, i.e., there exists a unique

cSBM ∈ MT(`, a) such that

%̃(`, a) =
∫

MCov(cSBM
G , W) `(3G) < +∞. (3.4)

Unique attainment of the primal problem is a consequence of the results in [3], while

duality can be derived from the general duality results for weak optimal transport provided

in [4], see Appendix A for details. To motivate (3.2) as a plausible dual formulation of

(3.1) we provide some heuristics:

Indeed, considering

j(c) ≔ inf
k∈�q (R3 )

( ∫
k 3a −

∫
k 3cG 3`(G)

)
=

{
0, if

∫
cG 3`(G) = a,

−∞, else,

we formally obtain the desired duality relation by interchanging inf and sup:

%̃(`, a) = sup
c (3G,3H )=cG (3H ) ` (3G ) ,

cG∈PG
2 (R3 )

( ∫
MCov(cG, W) 3`(G) + j(c)

)

= inf
k∈�q (R3 )

( ∫
sup

cG∈PG
2 (R3 )

(
MCov(cG, W) +

∫
k 3 (a − cG)

)
3`(G)

)
= �̃ (`, a).

In the remainder of this section we make the important observation that in the dual

problem (3.2) it suffices to optimize over the class of functions k ∈ �q(R3) which are

convex. We then show that it is also equivalent to optimize over all convex functions

k : R3 → (−∞,∞], which are only `-a.s. finite, but not necessarily of quadratic growth.
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Given some k ∈ �q(R3), we denote by convk the convex hull of k, i.e., the greatest

convex function smaller or equal tok. It will be convenient to have an explicit representation

for the convex hull of a function, as in (3.5) below. This identity is usually stated in the

more specific form

(convk) (H) = inf

{ 3+1∑

8=1

_8k(H8) :

3+1∑

8=1

_8H8 = H

}
,

where the infimum is taken over all expressions of H as a convex combination of 3 + 1

points, see [41, Corollary 17.1.5].

Lemma 3.2. Let k ∈ �q(R3). Then the convex hull convk satisfies

(convk) (H) = inf
?∈PH

2 (R3 )

∫
k 3?, H ∈ R3 (3.5)

and again convk ∈ �q(R3).

Recalling the dual problem (3.2), we define the dual function

D(k) ≔
∫

k 3a −
∫

ik 3`, (3.6)

for k ∈ �q (R3). Now we can prove our crucial observation, that it suffices to optimize the

dual function over the class of functions k ∈ �q(R3) which are convex.

Proposition 3.3. Let `, a ∈ P2(R3) with ` �c a. Then D(convk) 6 D(k) for all

k ∈ �q (R3) and consequently

�̃ (`, a) = inf
k∈�q (R3 )

D(k) = inf
k∈�q (R3 ) ,
k convex

D(k). (3.7)

Proof. Let Y > 0, k ∈ �q (R3) and {?G}G∈R3 ⊆ P2(R3) be a measurable collection of

probability measures with bary(?G) = G. To show the claim, it is sufficient to construct a

measurable family { ?̄G}G∈R3 ⊆ P2(R3) with bary( ?̄G) = G such that

MCov(?G , W) +
∫

convk 3 (a − ?G) 6 MCov( ?̄G , W) +
∫

k 3 (a − ?̄G) + Y. (3.8)

Let us construct appropriate probability measures { ?̄G}G∈R3 . By Lemma 3.2 and a mea-

surable selection argument, we can choose a measurable functionR3 ∋ H ↦→ @H ∈ PH

2 (R
3)

such that ∫
k 3@H 6 (convk) (H) + Y. (3.9)

Then we define ?̄G (3I) ≔
∫
H
@H (3I) ?G (3H), so that bary( ?̄G) = G. Integrating (3.9) with

respect to ?G (3H) yields
∫

k 3 ?̄G 6

∫
convk 3?G + Y. (3.10)

Since k, convk ∈ �q(R3) and ?G ∈ P G
2 (R

3) we conclude

ℓ + 1
2

∫
|H |2 ?̄G (3H) 6 0 + :

∫
|H |2 ?G (3H) + Y < +∞,

so that ?̄G ∈ P G
2 (R

3).
In order to show the inequality (3.8), let us begin by estimating the maximal covari-

ances. By the classical Kantorovich duality (see, e.g., [45, Theorem 5.10]) and by Jensen’s
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inequality we observe that

MCov( ?̄G , W) = inf
q : R3→R

convex

( ∫

H

∫

I

q(I) 3@H (I) 3?G (H) +
∫

q∗ 3W
)

> inf
q : R3→R

convex

( ∫
q 3?G +

∫
q∗ 3W

)
= MCov(?G , W).

(3.11)

On the other hand, from convk 6 k and (3.10) we have the inequality
∫

convk 3 (a − ?G) 6
∫

k 3 (a − ?̄G) + Y. (3.12)

Finally, summing (3.11) and (3.12), we obtain the inequality (3.8). �

Remark 3.4. On the right-hand side of (3.7) we can further require k to be smooth. Indeed,

if k ∈ �q(R3) is convex, then kY ≔ k ∗ W Y is a smooth convex function in �q(R3) and

lim inf
Y→0

( ∫
kY 3a −

∫
ik

Y

3`
)
6

∫
k 3a −

∫
ik 3`,

as follows by dominated convergence and the inequality kY > k.

For k ∈ �q (R3), we recall the definition (3.6) of the dual function D( · ), which we

rewrite as

D(k) =
∫ ( ∫

k(H) cG (3H) − ik (G)
)
`(3G), (3.13)

where c(3G, 3H) = cG (3H) `(3G) is an arbitrary fixed element of MT(`, a). The “relaxed”

representation (3.13) of (3.6) allows us to extend the definition of the dual function D( · ) to

convex functions k : R3 → (−∞, +∞] which are not confined to be in �q(R3), but which

are only required to be `-a.s. finite, i.e., satisfy `(domk) = 1. This is summarized in the

following lemma.

Lemma 3.5. Let `, a ∈ P2(R3) with ` �c a and fix c ∈ MT(`, a). Letk : R3 → (−∞, +∞]
be a convex function which is `-a.s. finite. Formula (3.13) then defines D(k) ∈ [0, +∞]
and, recalling (3.2), we have the inequality

D(k) > �̃ (`, a). (3.14)

In particular, recalling (3.7), we have

�̃ (`, a) = inf
k∈�q (R3 ) ,
k convex

D(k) = inf
` (dom k)=1,
k convex

D(k). (3.15)

Proof. Let k : R3 → (−∞, +∞] be a convex function which is `-a.s. finite. First, note that

by Jensen’s inequality we have
∫

k(H) cG (3H) > k
( ∫

H cG (3H)
)
= k(G),

and by taking ? = XG in (3.3) we obtain ik (G) 6 k(G). Hence
∫

k(H) cG (3H) − ik (G) > 0, (3.16)

for `-a.e. G ∈ R3 , so that D(k) ∈ [0, +∞]. In order to prove the inequality (3.14), we

distinguish two cases. In the case
∫
k 3cG = +∞, for G ∈ R3 in a set of positive `-measure,

we conclude from (3.16) that D(k) = +∞, so that (3.14) is trivially satisfied. Now suppose

that
∫
k 3cG < +∞, for `-a.e. G ∈ R3 . Recall from Theorem 3.1 that there exists an

optimizer cSBM ∈ MT(`, a) of (3.1). Taking ? = cSBM
G in (3.3) we get

ik (G) 6
∫

k 3cSBM
G − MCov(cSBM

G , W)
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and therefore

D(k) >
∫ ( ∫

k 3cG + MCov(cSBM
G , W) −

∫
k 3cSBM

G

)
`(3G) = %̃(`, a),

as cSBM is a primal optimizer and both cSBM and c have a as second marginal. Since

%̃(`, a) = �̃ (`, a) by Theorem 3.1, we again see that (3.14) is satisfied.

Finally, from (3.14) and recalling (3.7),we conclude

�̃ (`, a) 6 inf
` (dom k)=1,
k convex

D(k) 6 inf
k∈�q (R3 ) ,
k convex

D(k) = �̃ (`, a),

which shows (3.15). �

4. Proof of the first part of Theorem 1.4

In Section 3 we already noted (by citing Theorem 2.2 of [3]) that the value %(`, a) of the

continuous-time optimization problem (1.4) equals %̃(`, a), the value of the discrete-time

formulation (3.1). We also know from Theorem 3.1 that there is no duality gap between

the primal problem (3.1) and the dual problem (3.2), i.e., %̃(`, a) = �̃ (`, a). Therefore we

can formulate the first part of Theorem 1.4 equivalently as follows.

Proposition 4.1. Let `, a ∈ P2(R3) with ` �c a. Then �̃ (`, a) is equal to

� (`, a) = inf
k∈!1 (a) ,
k convex

( ∫
k 3a −

∫
(k∗ ∗ W)∗ 3`

)
. (4.1)

In Subsection 7.3 we will prove the second part of Theorem 1.4 and in particular discuss

the existence of dual optimizers of (4.1). Since in general we cannot expect a dual optimizer

to be integrable with respect to the probability measure a, we need the following “relaxed”

formulation of Proposition 4.1.

Proposition 4.2. Let `, a ∈ P2(R3) with ` �c a. Then �̃ (`, a) is equal to

�rel(`, a) ≔ inf
` (dom k)=1,
k convex

E(k), (4.2)

where

E(k) ≔
∫ ( ∫

k(H) cG (3H) − (k∗ ∗ W)∗(G)
)
`(3G), (4.3)

with c being an arbitrary fixed element of MT(`, a).
The main idea behind the proofs of Propositions 4.1, 4.2 (which we will present at the

end of this section) is to apply Proposition 3.3 and then to show that ik = (k∗ ∗ W)∗, for

every convex function k ∈ �q(R3). This motivates our next goal, namely to solve the

minimization problem (3.3), which we rewrite as a maximization problem

−ik (G) = sup
?∈PG

2 (R3 )

(
MCov(?, W) −

∫
k 3?

)
. (4.4)

As a preliminary step, we consider the simpler problem

rk ≔ sup
?∈P2 (R3 )

(
MCov(?, W) −

∫
k 3?

)
, (4.5)

where we do not prescribe the barycenter G of ? ∈ P2(R3). In Lemma 4.4 below we will

show for an arbitrary proper convex function k : R3 → (−∞, +∞], that the value rk equals∫
k∗ 3W. In fact, this information is essentially enough to prove Propositions 4.1, 4.2.

Solving the maximization problem (4.5) leads to an interesting connection with Brenier

maps in Lemma 4.3 below. By Brenier’s theorem (see, e.g., [44, Theorem 2.12]), the

optimal transport for quadratic cost between W and ? ∈ P2(R3) is induced by the W-a.e.

defined gradient ∇{ of some convex function { : R3 → R via (∇{) (W) = ?.
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Lemma 4.3. Let { : R3 → R be a finite-valued convex function and k ≔ {∗ its convex

conjugate. Assume that the probability measure ?̂ ≔ (∇{) (W) has finite second moment.

Then ?̂ is the unique maximizer of the optimization problem (4.5) and

rk =

∫
{ 3W =

∫
k∗ 3W < +∞.

Proof. We denote by )
?
W the Brenier map from W to ? ∈ P2(R3) and note that )

?̂
W = ∇{.

Since the convex function { is finite-valued, its gradient exists W-a.e. and we have that

{(I) = sup
H∈R3

(
〈H, I〉 − {∗(H)

)
= 〈∇{(I), I〉 − {∗(∇{(I)),

for W-a.e. I ∈ R3 . Using these observations, for ? ∈ P2(R3) we get

MCov(?, W) −
∫

k 3? =

∫ (〈
)
?
W (I), I

〉
− {∗

(
)
?
W (I)

) )
W(3I)

6

∫
sup
H∈R3

(
〈H, I〉 − {∗(H)

)
W(3I) =

∫
{(I) W(3I)

=

∫ (〈
∇{(I), I

〉
− {∗

(
∇{(I)

))
W(3I)

= MCov( ?̂, W) −
∫

k 3 ?̂,

with equality if and only if )
?
W (I) = ) ?̂W (I), for W-a.e. I ∈ R3 . This in turn is the case if

and only if ? = ?̂. Finally, from the convexity of { and the Cauchy–Schwarz inequality we

obtain
∫

|{ | 3W 6 |{(0) | +

√∫
|∇{ |2 3W ·

√
3 < +∞, (4.6)

which proves that rk < +∞. �

Note that in Lemma 4.3 we started with a finite-valued convex function { : R3 → R and

then defined k ≔ {∗. If we additionally know that the probability measure ?̂ = (∇{) (W)
has finite second moment, then ?̂ is the unique maximizer of the optimization problem

(4.5). These are rather strong assumptions. However, if we are given just a proper convex

function k : R3 → (−∞, +∞], we can still compute the value of the supremum in (4.5),

without explicitly constructing a maximizer of this optimization problem.

Lemma 4.4. Let k : R3 → (−∞, +∞] be a proper convex function. Then

rk =

∫
k∗ 3W. (4.7)

We postpone the proof of Lemma 4.4 to Appendix B. As already announced, with the

help of (4.7), we are now able to prove Propositions 4.1, 4.2. We first show a simpler

variant, where we optimize over the class of convex functionsk in�q (R3) (i.e., which have

quadratic growth), as in (4.8) of Proposition 4.5 below. Proposition 4.2, where we optimize

over all `-a.s. finite-valued convex functions k : R3 → (−∞, +∞] as in (4.2), is then a

straightforward consequence. Proposition 4.1, where we optimize over all a-integrable

convex functions k as in (4.1), follows from a “sandwich argument”.

Proposition 4.5. Let `, a ∈ P2(R3) with ` �c a. Then �̃ (`, a) is equal to

�q(`, a) ≔ inf
k∈�q (R3 ) ,
k convex

( ∫
k 3a −

∫
(k∗ ∗ W)∗ 3`

)
. (4.8)
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Proof. By Proposition 3.3 we have

�̃ (`, a) = inf
k∈�q (R3 ) ,
k convex

( ∫
k 3a −

∫
ik 3`

)
.

Hence it remains to show that ik = (k∗ ∗ W)∗, for every convex function k ∈ �q(R3).
In order to do this, we will first prove that (ik)∗ = k∗ ∗ W. By definition of the convex

conjugate and (4.4), for G ∈ R3 , we have

(ik)∗(G) = sup
b ∈R3

(
〈b, G〉 − ik (b)

)
(4.9)

= sup
b ∈R3

sup
?∈P b

2 (R3 )

(
MCov(?, W) −

∫
kG 3?

)
(4.10)

= sup
?∈P2 (R3 )

(
MCov(?, W) −

∫
kG 3?

)
, (4.11)

where the function kG is defined by kG (H) ≔ k(H) − 〈G, H〉, for H ∈ R3 . Now applying

Lemma 4.4 to the proper convex function kG yields

(ik)∗ (G) = rkG =

∫
k∗
G 3W =

∫
k∗ (G + H) 3W(H) = (k∗ ∗ W) (G). (4.12)

To complete the proof, we must justify that (ik)∗∗ = ik , i.e., that the Fenchel–Moreau

theorem is applicable. To see this, we first note that the function G ↦→ ik (G) is convex and

we have the upper bound ik 6 k < +∞. Furthermore, for any ? ∈ P G
2
(R3) we have the

inequalities

MCov(?, W) 6 1
2

∫
|H |2 3?(H) + 3

2

as well as ∫
k 3? > ℓ + 1

2

∫
|H |2 3?(H),

the latter following from the fact that k ∈ �q(R3). As a consequence, we get the lower

bound ik > ℓ − 3
2
> −∞. Altogether, ik is a convex function which is finite everywhere

on R3 , thus it is continuous and we indeed have (ik)∗∗ = ik . �

Proof of Proposition 4.2. We first show that the function E( · ) in (4.3) is well-defined for

every convex function k : R3 → (−∞, +∞], which is `-a.s. finite. To this end, we will

prove the inequality (k∗ ∗W)∗ 6 k. By Jensen’s inequality, this implies that the integrand in

(4.3) is `-a.s. non-negative, and hence E(k) is well-defined and [0, +∞]-valued. Recalling

the equation (4.12) above, we have k∗ ∗ W = (ik)∗. Taking the convex conjugate and using

that ik 6 k, we obtain (k∗ ∗ W)∗ = (ik)∗∗ 6 ik 6 k, as required.

Now let us turn to the proof of �̃ (`, a) = �rel(`, a). Recalling (4.2), (4.8), and using

Proposition 4.5, we have �rel (`, a) 6 �q (`, a) = �̃ (`, a), so that we need to show the

inequality �̃ (`, a) 6 �rel(`, a). Let c ∈ MT(`, a) and k : R3 → (−∞, +∞] be convex

with `(domk) = 1. Since �̃ (`, a) = %̃(`, a) (recall Theorem 3.1 and (3.4)), we have to

verify the inequality∫
MCov(cG , W) 3`(G) 6

∫ ( ∫
k(H) cG (3H) − (k∗ ∗ W)∗ (G)

)
`(3G).

It is sufficient to prove, for `-a.e. G ∈ R3 , that

MCov(cG, W) 6
∫

k 3cG − (k∗ ∗ W)∗(G). (4.13)

We express the convex conjugate on the right-hand side of (4.13) as

−(k∗ ∗ W)∗ (G) = inf
b ∈R3

(
(k∗ ∗ W) (b) − 〈b, G〉

)
= inf
b ∈R3

( ∫
k∗
b 3W − 〈b, G〉

)
,
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where the function kb is defined by kb (H) ≔ k(H) − 〈b, H〉, for H ∈ R3 . Substituting back

into (4.13) yields

MCov(cG, W) 6 inf
b ∈R3

( ∫
kb 3cG +

∫
k∗
b 3W

)
. (4.14)

Now observe that by the Fenchel–Young inequality we have

MCov(cG , W) 6
∫

q 3cG +
∫

q∗ 3W,

for every proper convex function q : R3 → (−∞, +∞]. In particular, for every b ∈ R3 , it

holds that

MCov(cG , W) 6
∫

kb 3cG +
∫

k∗
b 3W,

which implies (4.14). This completes the proof of Proposition 4.2. �

Proof of Proposition 4.1. The assertion follows immediately from Proposition 4.2 and

Proposition 4.5 by a “sandwich argument”. Indeed, we have

�̃ (`, a) = �rel(`, a) 6 � (`, a) 6 �q (`, a) = �̃ (`, a). (4.15)

The inequalities in (4.15) are due to the inclusions

{k ∈ �q (R3) : k convex} ⊆ {k ∈ !1(a) : k convex} ⊆ {k convex: `(domk) = 1};
the equalities on the left-hand side and on the right-hand side of (4.15) are justified by

Proposition 4.2 and Proposition 4.5, respectively. �

5. Preparation for the proof of the second part of Theorem 1.4

The goal of this section is to outline and prepare the proof of the second part of Theorem

1.4, for which we will need the results of Sections 6 and 7. In Section 7 we will show that

the value � (`, a) is attained by a convex function kopt if and only if (`, a) is irreducible.

In Section 6 (see Theorem 6.6) we will prove that there is a dual optimizer kopt if and only

if there exists a Bass martingale from ` to a.

Comparing the primal problem (3.1), with optimizer cSBM ∈ MT(`, a), to the dual

problem (3.2), with optimizer kopt (supposing that this optimizer exists), we see that

the minimization problem ikopt (G) (recall (3.3)) is attained by cSBM
G ∈ P G

2
(R3), for `-

a.e. G ∈ R3 . To draw the connection to the Bass martingale, we need to express the

optimizer cSBM
G in terms of the (single) convex function kopt. More precisely, we will

see as a consequence of Proposition 5.3 that cSBM
G = (∇k∗

opt) (Wb ), for some appropriate

b = b (G) ∈ R3 , and where Wb denotes the translated standard Gaussian measure on R3

with barycenter b. For this purpose, we have to return to the optimization problem (3.3)

and study its optimizers.

First, we need the following technical result, formulated in Lemma 5.1 below. Let

k : R3 → (−∞, +∞] be a lower semicontinuous convex function. We recall from convex

analysis that k is called co-finite if

∀G ∈ R3 \ {0} : lim
C→+∞

k(CG)
C

= +∞.

According to [41, Corollary 13.3.1], the convex function k is co-finite if and only if its

convex conjugate k∗ is finite everywhere on R3 . We derive now a sufficient condition for

the co-finiteness of k, in terms of the function ik defined in (3.3). We defer the proof of

Lemma 5.1 to Appendix B.

Lemma 5.1. Let k : R3 → (−∞, +∞] be a proper, lower semicontinuous convex function.

Then ik is convex on domk. If we additionally assume that ik (G) > −∞, for some

G ∈ int(domk), then ik > −∞ on int(domk) and k is co-finite.
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Our next result is the analogue of Lemma 4.4. But now, instead of maximizing over all

? ∈ P2(R3) as in (4.5), we have to maximize over all ? ∈ P G
2
(R3), with a fixed barycenter

G ∈ R3 , as in (4.4).

Proposition 5.2. Let k : R3 → (−∞, +∞] be a lower semicontinuous convex function and

assume that ik (G) > −∞ for some G ∈ int(domk). Then we have the duality formula

ik (G) = sup
b ∈R3

(
〈b, G〉 −

∫
k∗ (b + H) 3W(H)

)
, (5.1)

and the right-hand side admits a unique maximizer b (G) ∈ R3 .

Proof. We deploy a similar strategy as in the proof of Proposition 4.5. Recalling equations

(4.9) – (4.12), for each b ∈ R3 , we have

(ik)∗ (b) = sup
?∈P2 (R3 )

(
MCov(?, W) −

∫
kb 3?

)
=

∫
k∗ (b + H) 3W(H), (5.2)

where the functionkb is defined bykb (H) ≔ k(H)−〈b, H〉, for H ∈ R3 . Since ik (G) > −∞
for some G ∈ int(domk), the convex function b ↦→ ik (b) is finite and thus also continuous

in a neighbourhood of G. Hence we can apply the variant [6, Proposition 13.44] of the

Fenchel–Moreau theorem and obtain

ik (G) = (ik)∗∗(G) = sup
b ∈R3

(
〈b, G〉 −

∫
k∗ (b + H) 3W(H)

)
, (5.3)

which proves the duality formula (5.1).

To prove the existence of a maximizer b (G) ∈ R3 , we define the function

5G (b) ≔ sup
?∈P2 (R3 )

(
MCov(?, W) −

∫
k 3? +

∫
〈b, H − G〉 3?(H)

)
, (5.4)

so that −ik (G) = inf b ∈R3 5G (b). Indeed, it follows from (5.2), (5.3) that

−ik (G) = inf
b ∈R3

( ∫
k∗ (b + H) 3W(H) − 〈b, G〉

)

= inf
b ∈R3

sup
?∈P2 (R3 )

(
MCov(?, W) −

∫
kb 3? − 〈b, G〉

)
.

By assumption, the function 5G takes values in (−∞, +∞] and is not constant equal to +∞.

Equivalently, we can express 5G (b) as

5G (b) =
∫ (

k∗ (b + H) + k(G) − 〈b + H, G〉
)
3W(H) − k(G). (5.5)

We will show that b ↦→ 5G (b) is lower semicontinuous and coercive, implying the existence

of an optimizer b (G). It is easy to see from the representation (5.5) that 5G is lower

semicontinuous. Indeed, this directly follows from the lower semicontinuity of the non-

negative integrand in (5.5) and Fatou’s lemma. For the verification of the coercivity, we take

a sequence (b (=) )=>1 in R3 with |b (=) | → +∞. Then there is a coordinate : ∈ {1, . . . , 3}
such that |b (=)

:
| → +∞. Since G ∈ int(domk), we can choose Y > 0 small enough such

that G ± Y 4: ∈ domk, where 4: denotes the :-th standard basis vector of R3 . Defining

H (=) ≔ G + sign(b (=)
:

) Y 4: ∈ domk

and taking ? = XH (=) , we conclude from (5.4) that

5G (b (=) ) > −k(H (=) ) + Y |b (=)
:

| → +∞,
which shows lim| b |→+∞ 5G (b) = +∞.

We now show that the maximizer b (G) ∈ R3 of the right-hand side of (5.1) is unique. As

the assumptions of Lemma 5.1 are satisfied, the convex function k is co-finite, and thus k∗
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is finite everywhere on R3 . In particular, k∗ is continuous everywhere and differentiable

Lebesgue-a.e. onR3 . In order to establish the uniqueness of b (G), we show that the function

b ↦→
∫
k∗ (b + H) 3W(H) ∈ (−∞, +∞] is strictly convex onto its domain. By contradiction,

suppose that there are b1, b2 ∈ R3 with b1 ≠ b2 such that both
∫
k∗ (b1 + H) 3W(H) and∫

k∗ (b2 + H) 3W(H) are finite and
∫

k∗ (Cb1 + (1 − C)b2 + H
)
3W(H) = C

∫
k∗ (b1 + H) 3W(H) + (1 − C)

∫
k∗ (b2 + H) 3W(H),

for some C ∈ (0, 1). Then

k∗ (Cb1 + (1 − C)b2 + H
)
= Ck∗ (b1 + H) + (1 − C)k∗ (b2 + H),

for W-a.e. H ∈ R3 . Consequently, the function k∗ is affine on the line segment from b1 + H
to b2 + H, for Lebesgue-a.e. H ∈ R3 . By convexity and finiteness of k∗ on R3 , we thus have

that the function

R ∈ _ ↦−→ k∗ (_(b2 − b1) + H
)

is affine, for every H ∈ R3 . By [41, Theorem 8.8], there exists some I ∈ R3 such that

k∗ (_(b2 − b1) + H
)
= k∗ (H) + _I.

Differentiating at the point _ = 1 yields 〈∇k∗ (H), b2 − b1〉 = I, for Lebesgue-a.e. H ∈ R3 .

But this is a contradiction to ∅ ≠ int(domk) ⊆ (mk∗) (R3), where the symbol m, applied

to a convex function, denotes its subdifferential. �

The final result of this section is the analogue of Lemma 4.3. The duality formula (5.1)

established in Proposition 5.2 enables us to identify the structure of the optimizer in the

maximization problem (4.4).

Proposition 5.3. Let k : R3 → (−∞, +∞] be a lower semicontinuous convex function. For

fixed b ∈ R3 we define the function kb by kb (H) ≔ k(H) − 〈b, H〉, for H ∈ R3 , so that

k∗
b
(H) = k∗(b + H).

(i) If there are G, b ∈ R3 such that (∇k∗
b
) (W) ∈ P G

2
(R3), then this is actually the

unique optimizer of the supremum in (4.4). If additionally ik (G) > −∞ and

G ∈ int(domk), then b = b (G) is the optimizer of the supremum in (5.1).

(ii) If ik (G) > −∞ for some G ∈ int(domk) and the supremum in (4.4) is attained

by some ?̂G ∈ P G
2
(R3), then ?̂G = (∇k∗

b
) (W) and b = b (G) is the optimizer of the

supremum in (5.1).

Proof. (i) We set ?̂G ≔ (∇k∗
b
) (W) and let ?G ∈ P G

2
(R3) be arbitrary. We denote by )

?G
W

the Brenier map from W to ?G , note that )
?̂G
W = ∇k∗

b
, and compute

∫
k 3?G − MCov(?G , W) =

∫ (
kb

(
)
?G
W (H)

)
+
〈
b, )

?G
W (H)

〉
−
〈
)
?G
W (H), H

〉)
3W(H)

> 〈b, G〉 +
∫

inf
I∈R3

(
kb (I) − 〈I, H〉

)
3W(H)

= 〈b, G〉 −
∫

k∗ (b + H) 3W(H)

=

∫
k 3 ?̂G − MCov( ?̂G , W),

with equality if and only if )
?G
W (H) = ) ?̂GW (H), for W-a.e. H ∈ R3 . This in turn is the case

if and only if ?G = ?̂G . We conclude that ?̂G is the unique optimizer of the supremum in

(4.4), i.e.,

ik (G) =
∫

k 3 ?̂G − MCov( ?̂G , W) = 〈b, G〉 −
∫

k∗ (b + H) 3W(H). (5.6)



16 J. BACKHOFF-VERAGUAS, M. BEIGLBÖCK, W. SCHACHERMAYER, AND B. TSCHIDERER

On the other hand, if additionally ik (G) > −∞ and G ∈ int(domk), by Proposition 5.2 we

have that

ik (G) = sup
Z ∈R3

(
〈Z , G〉 −

∫
k∗ (Z + H) 3W(H)

)
,

which in light of (5.6) implies that b is the optimizer of the supremum in (5.1).

(ii) By assumption and Proposition 5.2, we have that

ik (G) = 〈b, G〉 −
∫

k∗
b (H) 3W(H)

= 〈b, G〉 +
∫ (

kb
(
)
?̂G
W (H)

)
−
〈
)
?̂G
W (H), H

〉)
3W(H)

and therefore ∫ (
kb

(
)
?̂G
W (H)

)
+ k∗

b (H) −
〈
)
?̂G
W (H), H

〉)
3W(H) = 0.

As the integrand is pointwise non-negative, we conclude that

k
(
)
?̂G
W (H)

)
+ k∗ (b + H) =

〈
)
?̂G
W (H), b + H

〉

and consequently )
?̂G
W (H) ∈ mk∗(b + H), for W-a.e. H ∈ R3 . Hence )

?̂G
W (H) = ∇k∗ (b + H),

for W-a.e. H ∈ R3 , which implies that ?̂G = (∇k∗
b
) (W). �

6. Existence of dual optimizers and Bass martingales

Throughout this section we fix `, a ∈ P2(R3) with ` �c a.

Definition 6.1. A lower semicontinuous convex functionkopt : R
3 → (−∞, +∞] satisfying

`(ri(domkopt)) = 1 is called an optimizer of the dual problem (3.15) (in short, a dual

optimizer) if �̃ (`, a) = D(kopt), for the dual function D( · ) as defined in (3.13).

As the next result shows, we could have required in the definition of a dual optimizer

that the dimension of its domain is at least as large as the dimension of the support of a; we

defer the proof to Appendix B.

Lemma 6.2. If kopt is an optimizer according to Definition 6.1, then

dim(domkopt) > dim(supp a).
We recall Definition 1.1 and list some important properties of Bass martingales. Such

martingales were introduced in [3] under the name of a “standard stretched Brownian

motion”. In this paper, we use — with Richard Bass’ permission — the term “Bass

martingale” instead.

Remark 6.3. Let " = ("C )06C61 be a Bass martingale from ` to a, with corresponding

convex function { : R3 → R and initial distribution P(R3) ∋ U ∼ �0 of the underlying

Brownian motion � = (�C )06C61.

(i) As shown in [3] (and as a result of Theorem 6.6 below), the martingale transport

Law("0, "1) ∈ MT(`, a)
is equal to the unique optimizer cSBM of (3.1). Furthermore, the knowledge of

cSBM already determines the martingale ("C )06C61 as well as the function {, which

is (U ∗ W)-a.e. (equivalently, Lebesgue-a.e.) unique up to an additive constant.

(ii) The convex function { and the probability measure U satisfy the identities

(∇{ ∗ W) (U) = ` and ∇{(U ∗ W) = a, (6.1)

which we summarize in the following graphic:

` a

U U ∗ W
∇{∗W ∇{
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(iii) We also remark (see [3]) that we have

"C = (∇{ ∗ W1−C ) (�C ) and cSBM
= Law

(
(∇{ ∗ W) (�0),∇{(�1)

)
, (6.2)

where WB denotes the 3-dimensional centered Gaussian distribution with covariance

matrix B�3 .

(iv) Let � be the affine space generated by the support of a, and call 3� its dimension

and %� the orthogonal projection from R3 onto � . Then {(G) = {̃(%�G), for a

convex function {̃ : � → R. If we denote �̃C ≔ %��C , which is a 3�-dimensional

Brownian motion on � with initial distribution Ũ ≔ %� (U), then

"C = (∇{ ∗ W1−C ) (�C ) = (∇� {̃ ∗ W̃1−C ) (�̃C ),
where W̃1−C

≔ %� (W1−C ) is the 3�-dimensional centered Gaussian distribution

with covariance matrix (1− C)�3� . This provides a “minimal representation” of the

Bass martingale " , and therefore — if necessary — we can always assume that

� = R3 by redefining 3 ≔ 3� .

(v) In the same spirit as the previous point, the kernels of every martingale transport c

from ` to a are supported on � . It follows that MCov(cG , W) = MCov(cG, %� (W))
and hence the primal problem (3.1) may be redefined as

%̃(`, a) ≔ sup
c∈MT(`,a)

∫
MCov

(
cG , %� (W)

)
`(3G).

Thus also the dual problems may be redefined as taking place over functions on � .

The next result, Theorem 6.6 below, explains how the existence of a dual optimizer

kopt is related to the existence of a Bass martingale. Along with it we need the following

technical lemmas, whose proofs we postpone to Appendix B.

Lemma 6.4. Let 5 : R3 → R be a finite convex function such that ∇ 5 ∈ !2(WZ ;R3), for

some Z ∈ R3 . Then

(i) ∇( 5 ∗ W) = (∇ 5 ) ∗ W.

If additionally int(dom 5 ∗) ≠ ∅, then

(ii) ( 5 ∗ W)∗ is differentiable and strictly convex on int(dom( 5 ∗ W)∗) ⊇ int(dom 5 ∗),
(iii) ∇( 5 ∗ W)∗ : int(dom( 5 ∗ W)∗) → R3 and ∇( 5 ∗ W) : R3 → int(dom( 5 ∗ W)∗) are

bĳections, and we have

(∇ 5 ∗ W)−1
= ∇( 5 ∗ W)∗.

Lemma 6.5. Let k : R3 → (−∞, +∞] be a lower semicontinuous convex function and

assume that ik (G) > −∞, for some G ∈ int(domk). Furthermore, we suppose that

∇k∗ ∈ !2(WZ ;R3), for some Z ∈ R3 . Then, for all [ ∈ R3 and all C > 0, we have

int(domk) = int
(
(mk∗) (R3)

)
= (∇k∗ ∗ WC[) (R3), (6.3)

where WC[ denotes the 3-dimensional Gaussian distribution with barycenter [ and covari-

ance matrix C�3 .

Theorem 6.6. There exists an optimizer kopt of the dual problem (3.15) if and only if there

exists a Bass martingale ("C )06C61 from ` to a. In this case, Law("0, "1) is equal to

the optimizer cSBM ∈ MT(`, a) of the primal problem (3.1), and — after passing to the

minimal representation discussed in Remark 6.3, (iv), (v) and redefining the dimension of

the problem to be dim(supp a) if necessary — kopt, {, U, c
SBM are related via {∗ = kopt,

U = b (`) and

cSBM
G = Law("1 | "0 = G) = ∇{

(
b (G) + ·

)
(W), (6.4)

where the function b : - → R3 is given by

b (G) ≔ argmaxZ ∈R3
(
〈Z , G〉 −

∫
{(Z + H) 3W(H)

)
(6.5)
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as in (5.1), and we have

b (G) = (∇{ ∗ W)−1(G) = ∇({ ∗ W)∗ (G) (6.6)

for all G ∈ - . The domain - of the function b satisfies - ⊆ int(domkopt) and `(-) = 1.

Proof. “⇒”: By point (v) of Remark 6.3 we can assume without loss of generality that

dim(supp a) = 3. Suppose that a dual optimizer kopt exists. Then �̃ (`, a) − D(kopt) = 0

and from (3.4), (3.13) we obtain
∫ (

ikopt (G) −
( ∫

kopt (H) cG (3H) − MCov(cSBM
G , W)

))
`(3G) = 0.

Hence, for `-a.e. G ∈ R3 , the infimum in

ikopt (G) = inf
?∈PG

2 (R3 )

( ∫
kopt 3? − MCov(?, W)

)

must be attained by cSBM
G ∈ P G

2
(R3). Furthermore, as D(kopt) is finite, we deduce as in

the proof of Lemma 3.5 that
∫
kopt 3c

SBM
G < +∞, for `-a.e. G ∈ R3 . Thus also ikopt (G) is

finite, for `-a.e. G ∈ R3 . Recalling our assumption that dim(supp a) = 3 as well as Lemma

6.2, we have `(int(domkopt)) = 1 by Definition 6.1. In particular, kopt is co-finite by

Lemma 5.1. All in all, we can apply part (ii) of Proposition 5.3 to kopt, for `-a.e. G ∈ R3 .

This yields that cSBM
G = ∇{(b (G) + · )(W), with { ≔ k∗

opt and b (G) ∈ R3 as in (6.5). We now

define U ≔ b (`). Since cSBM has second marginal equal to a, we obtain ∇{(U ∗ W) = a.
On the other hand, as cSBM

G has barycenter G, we have
∫

∇{
(
b (G) + H

)
3W(H) = (∇{ ∗ W)

(
b (G)

)
= G. (6.7)

We denote the set of points G ∈ R3 for which the identity (6.7) holds by - and note that

- ⊆ int(domkopt) as well as `(-) = 1. Since U = b (`), we conclude from (6.7) that

(∇{∗W) (U) = `. By (6.1), this establishes the existence of a Bass martingale ("C)06C61 from

` to a, which by construction satisfies Law("0, "1) = cSBM, and connects kopt, {, U, c
SBM

as claimed.

It remains to check the identity (6.6). Since cSBM
G ∈ P G

2
(R3), and as we already

established (6.4), we conclude that
∫ ��∇{

(
b (G) + H

)��2 3W(H) < +∞, (6.8)

for every G ∈ - . In particular, we can apply part (iii) of Lemma 6.4 to the function 5 = {.

Then from (6.7) we derive (6.6).

“⇐”: Conversely, suppose that a Bass martingale " = ("C )06C61 from ` to a exists. By

points (iv), (v) of Remark 6.3, we can assume without loss of generality that dim(supp a) = 3
after passing to the minimal representation of the Bass martingale. We denote by { : R3 → R
the associated convex function and define the proper, lower semicontinuous convex function

kopt ≔ {∗. Since (m{) (R3) ⊆ dom {∗ and

int conv
(
(m{) (R3)

)
= int conv

(
(m{) (R3)

)
= int ŝupp(a) ≠ ∅,

we also have that int(dom {∗) ≠ ∅. In the following we show that kopt is indeed a dual

optimizer in the sense of Definition 6.1.

First, we verify that ikopt (G) > −∞, for all G ∈ R3 . As a consequence, we will see that

the identity (6.6) holds for all G ∈ int(domkopt). Note that from (6.1) we have the relation

∇{(U ∗ W) = a. Since a has finite second moment, we conclude that
∫

|∇{(Z + H) |2 3W(H) < +∞, (6.9)
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for U-a.e. Z ∈ R3 . In particular, by analogy with (4.6), we obtain that

({ ∗ W) (Z ) =
∫

{(Z + H) 3W(H) ∈ (−∞, +∞), (6.10)

for U-a.e. Z ∈ R3 . Recalling the second equality in (5.3), we have

ikopt (G) > (ikopt )∗∗(G) = sup
Z ∈R3

(
〈Z , G〉 −

∫
k∗

opt (Z + H) 3W(H)
)
, (6.11)

and by (6.10), the right-hand side of (6.11) is greater than −∞, for every G ∈ R3 . In

particular, we can apply Proposition 5.2 to the function kopt. As a result, for every

G ∈ int(domkopt), we obtain an equality in (6.11) and the right-hand side admits a unique

maximizer b (G) ∈ R3 . Differentiating under the integral sign, which is justified by part

(i) of Lemma 6.4 applied to the function 5 = { = k∗
opt, the first order condition for the

optimality of b (G) reads

(∇k∗
opt ∗ W)

(
b (G)

)
= G. (6.12)

Now we use part (iii) of Lemma 6.4 and obtain the identity (6.6) from (6.12) above, for all

G ∈ int(domkopt).
Next, we show that U = b (`) and `(int(domkopt)) = 1. Recalling from (6.1) that

(∇{ ∗ W) (U) = `, and using (6.6), we get U = (∇{ ∗ W)−1(`) = b (`). For the second claim,

we again use (6.6) and obtain

1 = U(R3) = `
(
(∇{ ∗ W) (R3)

)
= `(int(domkopt)),

where the last equality follows from Lemma 6.5.

It remains to check that �̃ (`, a) = D(kopt) and Law("0, "1) = cSBM. For each

G ∈ int(domkopt), we define a probability measure c{G ≔ ∇{(b (G) + · )(W). By (6.9) and

(6.12), c{G is an element of P G
2
(R3), for `-a.e. G ∈ R3 . Hence we can apply part (i) of

Proposition 5.3, showing that the infimum

ikopt (G) = inf
?∈PG

2 (R3 )

( ∫
kopt 3? − MCov(?, W)

)

is attained by c{G . Therefore, from the representation (3.13) of the dual function D( · ) and

the fact that c{G (3H) `(3G) ∈ MT(`, a), we obtain

D(kopt) =
∫ ( ∫

kopt(H) c{G (3H) − ikopt (G)
)
`(3G) =

∫
MCov(c{G, W) `(3G). (6.13)

On the other hand, from (3.1), Theorem 3.1 and (3.14) we have
∫

MCov(c{G , W) `(3G) 6 %̃(`, a) = �̃ (`, a) 6 D(kopt),

which in light of (6.13) implies that �̃ (`, a) = D(kopt). This completes the proof that kopt

is a dual optimizer. We still have to show that Law("0, "1) equals the optimizer cSBM

of (3.1). Since " is a Bass martingale with associated convex function {, it follows from

the identities (6.1) that c{G = Law("1 | "0 = G). But then from (6.13) we conclude that

c{G = c
SBM
G . In particular, this shows (6.4). �

We now give a one-dimensional example in which a dual optimizer kopt in the sense of

Definition 6.1 is not integrable with respect to a. Example 6.7 below illustrates that the

form (3.6) of the dual function D( · ) may fail to make sense when we allowk to range more

generally than in �q(R3). On the other hand, the dual function written in the form (3.13)

makes perfect sense for general convex functions k : R3 → (−∞, +∞], which are `-a.s.

finite (recall Lemma 3.5). This leads to the satisfactory characterization of dual attainment

as given by Theorem 6.6.
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Example 6.7. Let U ≔
∑∞
==1 2−=XI= ∈ P(R), with the sequence (I=)=>1 ⊆ R satisfying

lim=→∞
|I= |
2=

= +∞. Consider the convex function {(I) ≔ I arctan I − 1
2

log(1 + I2), with

the derivative {′(I) = arctan I being a strictly increasing, continuous and bounded function.

Define ` ≔ ({′ ∗W) (U), so that ` =
∑∞
==1 2−=XG= for some bounded sequence (G=)=>1 ⊆ R,

and let a ≔ {′(U ∗ W). Note that ` and a are supported by (− c
2
, c

2
). Then, according to

(6.1), the pair ({, U) defines a Bass martingale from ` to a. Theorem 6.6 shows that the

derivative of the dual optimizer is given by

3
3H
kopt(H) = ({′)−1(H) = tan H.

By definition of a and U, this function is not a-integrable, and neither is its antiderivative

kopt.

We finish this section by deducing a subtle trajectorial property of Bass martingales

from Lemma 6.5 and Theorem 6.6.

Corollary 6.8. Let " = ("C )06C61 be a Bass martingale with "1 ∼ a. Define g as the

stopping time

g ≔ inf
{
C ∈ [0, 1] : "C ∉ ri ŝupp(a)

}
∧ 1,

i.e., the minimum of 1 and the first time that " reaches the boundary of ŝupp(a). Then

g = 1 a.s.

Proof. As in the proof of Theorem 6.6 we assume without loss of generality that supp a

is 3-dimensional, so that int(dom {∗) ≠ ∅. By (6.2), the Bass martingale is given by

"C = (∇{ ∗ W1−C ) (�C ), where ∇{(W) = a, for some finite-valued convex function {. We

now define the proper, lower semicontinuous convex function k ≔ {∗. As in the proof

of the second implication of Theorem 6.6, we see that ik (G) > −∞, for all G ∈ R3 , and

∇k∗ ∈ !2 (W�0 ;R
3) a.s. Therefore we can apply Lemma 6.5 and from (6.3), (B.11) we

obtain for all C ∈ [0, 1) the a.s. equality

int(domk) = int conv
(
(mk∗) (R3)

)
= (∇k∗ ∗ W1−C

�0
) (R3).

Since

int conv
(
(mk∗) (R3)

)
= int conv

(
(mk∗) (R3)

)
= int ŝupp(a)

we conclude for all C ∈ [0, 1) that

int ŝupp(a) = (∇k∗ ∗ W1−C
�0

) (R3)

a.s. Hence a.s. "C lies in int ŝupp(a) as long as C ∈ [0, 1). Thus if " ever reaches the

boundary of ŝupp(a), this will happen at time C = 1, so g = 1. Otherwise, i.e., if " never

reaches the boundary of ŝupp(a), then by definition g = 1, too. �

7. Irreducibility and existence of dual optimizers

We fix `, a ∈ P2(R3) with ` �c a. The following notation from [20] will be used

throughout this section.

Definition 7.1. We denote by � ≔ ŝupp(a) the closed convex hull of the support of a and

by � ≔ ri� its relative interior.

As in the proofs of Theorem 6.6 and Corollary 6.8, we can assume without loss of

generality that the support of a has dimension 3, so that � is open in R3 ; see also Remark

6.3, (iv) and (v).

Definition 7.2. We say that the pair (`, a) is De March–Touzi irreducible, if the irreducible

convex paving of De March–Touzi [20] consists of the single irreducible component � . By

[20, Theorem 2.1], this condition means that

(i) the set � = ri�, with � = ŝupp(a), satisfies `(�) = 1,



THE STRUCTURE OF MARTINGALE BENAMOU–BRENIER IN R3 21

(ii) there exists some martingale transport cDMT ∈ MT(`, a) with the property that

� = ŝupp(cDMT
G ), for `-a.e. G ∈ R3 . We refer to cDMT as a De March–Touzi

transport.

The main assumption of this section is the following.

Assumption 7.3. The pair (`, a) is De March–Touzi irreducible.

Assumption 7.3 is equivalent to the irreducibility of the pair (`, a) in the sense of

Definition 1.2. For a proof of this result and for further equivalent characterizations of

irreducibility we refer to Theorem D.1 in Appendix D.

In Lemma 7.5 below we give a more quantitative description of the defining property of

a De March–Touzi transport cDMT ∈ MT(`, a) between an irreducible pair (`, a).

Definition 7.4. Let  ⊆ � be compact. For an element H∗ of the unit sphere S3−1 in R3 we

define the slice (H∗ of � beyond  by

(H∗ ≔
{
H ∈ � : 〈H, H∗〉 > sup{〈H̃, H∗〉 : H̃ ∈  }

}
. (7.1)

Lemma 7.5. Under Assumption 7.3, for `-a.e. G ∈ R3 and for every compact set  ⊆ � ,

there exists a constant X( , G) > 0 such that cDMT
G ((H∗) > X( , G) for every H∗ ∈ S3−1.

Proof. We fix G ∈ R3 with � = ŝupp(cDMT
G ) and note that the map AG : S3−1 → [0, 1]

given by AG (H∗) ≔ cDMT
G ((H∗), for H∗ ∈ S3−1, is lower semicontinuous. As the set� equals

the closed convex hull of the support of cDMT
G , the map AG is also strictly positive. Indeed,

if there was some H∗ ∈ S3−1 with AG (H∗) = 0, then the closed convex set � \ (H∗ would

support cDMT
G , which is in contradiction to � \ (H∗ ( � = ŝupp(cDMT

G ). Since S3−1 is

compact we conclude that AG attains its minimum X( , G) ≔ minH∗∈S3−1 AG (H∗) > 0. �

The main result of this section is the following.

Theorem 7.6. Under Assumption 7.3, there exists a dual optimizer kopt in the sense of

Definition 6.1.

Together with Theorem 6.6, this has the following consequence for the primal optimizer

cSBM ∈ MT(`, a) of the primal problem (3.1).

Corollary 7.7. Under Assumption 7.3, there exists a Bass martingale ("C )06C61 from ` to

a. Moreover, Law("0, "1) = cSBM and, for `-a.e. G ∈ R3 , the measure cSBM
G is equivalent

to a. In particular, cSBM is a De March–Touzi transport in the sense of Definition 7.2, (ii).

Proof. Admitting Theorem 7.6, there exists a dual optimizer kopt. Thus, by Theorem

6.6, there is a Bass martingale from ` to a with the property that Law("0, "1) = cSBM.

In particular, by (6.4), there is a measurable set � with `(�) = 1, such that cSBM
G and

cSBM
G′ are image measures of suitably translated Gaussians under the same function ∇{,

for all G, G′ ∈ �. Hence cSBM
G ∼ cSBM

G′ , for all G, G′ ∈ �, and this in turn implies the

equivalence of a(3H) =
∫
cSBM
G (3H) `(3G) with cSBM

G′ (3H), for each G′ ∈ �. In particular,

supp(cSBM
G ) = supp(a), for `-a.e. G ∈ R3 , which implies Definition 7.2, (ii) for cSBM. �

7.1. Proof of Theorem 7.6. The proof is split into two main steps.

7.1.1. Step 1 of the proof of Theorem 7.6. We first construct a convergent optimizing

sequence of convex functions (k=)=>1 ⊆ �aff
q (R3) (see Remark 7.11 below) for the dual

problem (3.2).

Proposition 7.8. Under Assumption 7.3, there is an optimizing sequence (k=)=>1 of non-

negative convex functions in�aff
q (R3) for the dual problem (3.2), which converges compactly

on � (i.e., uniformly on compact subsets ⊆ �) to some convex functionklim : � → [0, +∞).



22 J. BACKHOFF-VERAGUAS, M. BEIGLBÖCK, W. SCHACHERMAYER, AND B. TSCHIDERER

Before we turn to the proof of Proposition 7.8, we still need some preparation. The

following auxiliary result does not require the irreducibility Assumption 7.3, but solely

relies on the finiteness of the value �̃ (`, a) of the dual problem (3.2).

Lemma 7.9. Let (k=)=>1 ⊆ �q (R3) be an optimizing sequence for the dual problem (3.2)

and take any c ∈ MT(`, a). Then

sup
=>1

∫ ∫ (
k= (H) − k= (G)

)
cG (3H) `(3G) < +∞. (7.2)

Proof. Recalling (3.3), we consider for = > 1 the functions

R3 ∋ G ↦−→ ik= (G) = inf
?∈PG

2 (R3 )

( ∫
k= 3? − MCov(?, W)

)
. (7.3)

By taking ? = XG in (7.3) we obtain the trivial estimate ik= (G) 6 k= (G) and consequently
∫ ∫ (

k= (H) − k= (G)
)
cG (3H) `(3G) 6

∫ ∫ (
k= (H) − ik= (G)

)
cG (3H) `(3G).

By definition (3.13) of the dual function D( ·) we have

D(k=) =
∫ ( ∫

k= (H) cG (3H) − ik= (G)
)
`(3G),

and as the sequence of real numbers (D(k=))=>1 converges to the finite number �̃ (`, a),
we conclude (7.2). �

Definition 7.10. We fix an arbitrary optimizing sequence (k=)=>1 ⊆ �q(R3) of convex

functions for the dual problem (3.2), which is possible thanks to Proposition 3.3. For

G ∈ R3 , we define

kG= ( · ) ≔ k= ( · ) − k= (G) − 〈mk=(G), · − G〉, (7.4)

so that kG= (G) = 0 and kG= ( · ) takes values in [0, +∞), for every = > 1. Here — by abuse

of notation — mk=(G) denotes a subgradient of k= at G, i.e., an arbitrary element of the

subdifferential of k= at G.

Remark 7.11. We observe that passing from k ∈ �q (R3) to k + aff, where aff: R3 → R
is an arbitrary affine function, does not change the value of the dual function (3.13), i.e.,

D(k) = D(k + aff). In particular, we note that the sequence (kG= )=>1 defined in (7.4) is

contained in the class of functions

�aff
q (R3) ≔

{
k( · ) + aff( · ) : k ∈ �q(R3), aff: R3 → R affine

}
,

and hence D(kG= ) = D(k=).

Our goal is to show that — under the irreducibility Assumption 7.3 and after passing to

Cesàro means of a suitable subsequence — the sequence (kG= )=>1 of (7.4) is bounded on

compact subsets of � , for `-a.e. G ∈ � . This is the content of the following lemma.

Lemma 7.12. Under Assumption 7.3, there is an optimizing sequence (k=)=>1 ⊆ �q (R3)
of convex functions such that, for `-a.e. G ∈ � and for every compact set  ⊆ � , we have

that sup=>1,H∈ k
G
= (H) < +∞.

Proof. We rely on [20] and fix a De March–Touzi transport cDMT ∈ MT(`, a) satisfying

point (ii) of Definition 7.2, which exists by the irreducibility Assumption 7.3. Let (k=)=>1

and (kG= )=>1 be as in Definition 7.10 above. By Lemma 7.9, the sequence

Ψ= (G) ≔
∫

kG= (H) cDMT
G (3H) =

∫ (
k= (H) − k= (G)

)
cDMT
G (3H)
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is bounded in !1 (`). Applying Komlós’ theorem [34, Theorem 1], we can find a subse-

quence (=:):>1 ⊆ N, such that the Cesàro means

Ψ=: ≔
Ψ=1 + Ψ=2 + . . . + Ψ=:

:

converge `-a.s. to some random variable Ψ ∈ !1(`). If we define the Cesàro means

k̄G=: ≔
kG=1

+ kG=2
+ . . . + kG=:
:

,

we have

Ψ=: (G) =
∫

k̄G=: (H) c
DMT
G (3H), G ∈ R3 .

Note that passing to a subsequence (=:):>1 ⊆ N and formingCesàro means (k̄G=: ) preserves

the property of being an optimizing sequence of convex functions in �aff
q (R3) of the form

(7.4). Therefore we can replace the original sequences (Ψ=) and (kG= ) by (Ψ=: ) and (k̄G=: ),
respectively, and may again relabel them as (Ψ=) and (kG= ), respectively. With that said, as

a consequence of the `-a.s. convergence to a finite limit, we have that

<(G) ≔ sup
=>1

Ψ= (G) = sup
=>1

∫
kG= (H) cDMT

G (3H) < +∞, (7.5)

for `-a.e. G ∈ R3 .

Arguing by contradiction to the statement of Lemma 7.12, we assume that there is a

compact set  0 ⊆ � such that the set

�1 ≔

{
G ∈ R3 : sup

=>1,H∈ 0

kG= (H) = +∞
}

has positive `-measure. Furthermore, by Lemma 7.5, the set

�2 ≔

{
G ∈ R3 : ∃ X( 0, G) > 0 such that cDMT

G ((H∗) > X( 0, G) for every H∗ ∈ S3−1
}

has full `-measure. By (7.5) above, also the set

�3 ≔ {G ∈ R3 : <(G) < +∞}

has full `-measure, so that the intersection � ≔ �1 ∩ �2 ∩ �3 has positive `-measure. Pick

a point G0 ∈ �. As G0 ∈ �1, for arbitrarily large " > <(G0)/X( 0, G0), we can find =0 > 1

and H0 ∈  0 such that k
G0
=0
(H0) > " . The function

ℓ(H) ≔
〈
mk

G0
=0
(H0), H − H0

〉
+ ", H ∈ R3 ,

satisfies ℓ 6 k
G0
=0

and ℓ(H) > " , for all H ∈ (H∗ , with H∗ ≔ I
|I | and I ≔ mk

G0
=0
(H0). We

conclude with

<(G0) >
∫

kG= (H) cDMT
G0

(3H) >
∫

ℓ+(H) cDMT
G0

(3H) > " cDMT
G0

((H∗ ) > " X( 0, G0),

which is the desired contradiction. �

Proof of Proposition 7.8. By Lemma 7.12 we can fix some G0 ∈ � such that the sequence

of convex functions (kG0
= )=>1 is bounded on all compact subsets  ⊆ � . In particular,

the sequence (kG0
= )=>1 is pointwise bounded on � . By [41, Theorem 10.9] we can select

a subsequence, still denoted by (kG0
= )=>1, which converges uniformly on compact subsets

 ⊆ � to some convex function k
G0

lim
: � → [0, +∞). Dropping the superscript G0 to ease

notation, we arrive at a sequence (k=)=>1 with limit klim as required in the statement of

Proposition 7.8. �
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7.1.2. Step 2 of the proof of Theorem 7.6. We extend the function klim : � → [0, +∞) of

Proposition 7.8 to a lower semicontinuous convex function klim : R3 → [0, +∞] which

is equal to +∞ on R3 \ �. Since � ⊆ domklim, � is open and `(�) = 1, it follows that

`(int(domklim)) = 1.

Proposition 7.13. Under Assumption 7.3, the convex function klim : R3 → [0, +∞] is a

dual optimizer in the sense of Definition 6.1, i.e., satisfies �̃ (`, a) = D(klim).

Definition 7.14. For `-a.e. G ∈ � , we denote by {G
SBM

the Brenier map from W to cSBM
G , so

that ∇{G
SBM

(W) = cSBM
G and

MCov(cSBM
G , W) =

∫ 〈
∇{GSBM(I), I

〉
W(3I);

we write kG
SBM
≔ ({G

SBM
)∗ for its convex conjugate.

Remark 7.15. As W has full support, the convex function {G
SBM

is finite-valued and continu-

ous everywhere on R3 . In particular, {G
SBM

is unique, up to an additive constant. Therefore

also its convex conjugate kG
SBM

: R3 → (−∞, +∞] is unique, up to an additive constant.

Also note thatkG
SBM

is finite-valuedon � and takes the value+∞ onR3\�, with� = ŝupp(a)
and � = int�.

Our goal is to show that klim : R3 → [0, +∞] is a dual optimizer. For this purpose, we

will prove that, for `-a.e. G ∈ R3 , the function klim( · ) equals kG
SBM

( · ), modulo adding an

affine function; in short, klim ≡ kG
SBM

mod (aff), for `-a.e. G ∈ R3 . In Lemma 7.18 below

we will show that the set

� ≔
{
G ∈ � : klim . k

G
SBM mod (aff)

}
(7.6)

indeed has `-measure zero. It will then follow from Lemma 7.19 that klim is actually a

dual optimizer. First, we need some auxiliary results.

Lemma 7.16. Under Assumption 7.3, for `-a.e. G ∈ �, there exists a measure čG ∈ P G
2
(R3)

supported by � and there is a constant Ṽ(G) > 0 such that

MCov(čG , W) +
∫

klim 3 (cSBM
G − čG) − Ṽ(G) > MCov(cSBM

G , W). (7.7)

Proof. Recalling the representation (3.13) of the dual function D( · ) and the definition

(3.3) of the function G ↦→ ik (G), we consider for `-a.e. G ∈ � the functions

qk
G
SBM (G) ≔

∫
kGSBM(H) cSBM

G (3H) − ikG
SBM (G)

= sup
?∈PG

2 (R3 )

(
MCov(?, W) +

∫
kGSBM 3 (cSBM

G − ?)
) (7.8)

and

qklim (G) ≔
∫

klim(H) cSBM
G (3H) − iklim (G)

= sup
?∈PG

2 (R3 )

(
MCov(?, W) +

∫
klim 3 (cSBM

G − ?)
)
.

(7.9)

Recalling Definition 7.14, we have ∇(kG
SBM

)∗(W) = cSBM
G ∈ P G

2
(R3). Therefore we can

apply part (i) of Proposition 5.3, which yields that the supremum in (7.8) is attained by

cSBM
G , so that qk

G
SBM (G) = MCov(cSBM

G , W). By taking ? = cSBM
G in (7.9), we obtain the

inequality qklim (G) > qkG
SBM (G), for `-a.e. G ∈ � .

Now we define the sets

� ≔
{
G ∈ � : qklim (G) > qkG

SBM (G)
}
, - ≔

{
G ∈ � : qk

G
SBM (G) < +∞

}
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and claim that for the set � defined in (7.6) we have the relation �̃ ≔ � ∩ - = �. In other

words, since `(-) = 1, the sets � and � are equal, up to a set of `-measure zero.

Indeed, if G ∉ �̃, then klim ≡ kG
SBM

mod (aff) or qk
G
SBM (G) = +∞, so that in both

cases qklim (G) = qk
G
SBM (G). Conversely, if G ∉ �, then G ∉ - or we have the equality

qklim (G) = qkG
SBM (G) of real numbers and thus also the supremum in the definition (7.9) of

qklim (G) is attained by

cSBM
G = ∇(kGSBM)∗(W) ∈ P G

2 (R
3). (7.10)

Hence we can apply part (ii) of Proposition 5.3 to the lower semicontinuous convex function

klim : R3 → [0, +∞] satisfying `(int(domklim)) = 1, which tells us that the optimizer

(7.10) of the supremum in (7.9) is equal to

∇k∗
lim(Wb (G ) ),

for some b (G) ∈ R3. We conclude the W-a.s. equality

∇(kGSBM)∗ = ∇k∗
lim

(
· + b (G)

)
,

which is equivalent to the W-a.s. equality

(kGSBM)∗ = k∗
lim

(
· + b (G)

)
+ 2, (7.11)

for some constant 2 ∈ R. Since the convex function (kG
SBM

)∗ is finite-valued and continuous

everywhere on R3 , the equality (7.11) has to hold everywhere on R3 . This implies that

klim ≡ kG
SBM

mod (aff) and we deduce that G ∉ �. Altogether, we have seen that G ∉ �

implies that G ∉ �̃.

As a consequence of � = �, up to a set of `-measure zero, for `-a.e. G ∈ � we have

qklim (G) > qkG
SBM (G), so that we can measurably select some čG ∈ P G

2
(R3) with

MCov(čG , W) +
∫

klim 3 (cSBM
G − čG) > MCov(cSBM

G , W), (7.12)

which gives (7.7). As the right-hand side of (7.12) is finite, for `-a.e. G ∈ � , and since

klim(H) = +∞ for H ∈ R3 \ �, we see that čG is supported by �. �

Our next step is to modify the measures {čG}G∈� ⊆ P G
2
(R3) of Lemma 7.16, so that they

have compact support and still satisfy (7.7) for some V(G) > 0 instead of Ṽ(G). To this end,

we choose an increasing sequence ( 9 ) 9>1 of compact subsets of � such that
⋃
9>1  9 = � .

Denoting by" G the Bass martingale from XG to čG , and by gG
9

the first exit time of " G from

 9 (similarly as in Corollary 6.8), we define č
9
G ≔ Law(" G

gG
9
∧1
). By optional sampling,

č
9
G ∈ P G

2
(R3) and, by definition, č

9
G is supported by the compact set  9 .

Lemma 7.17. Under Assumption 7.3, for `-a.e. G ∈ �, there exists č
9 (G )
G ∈ P G

2
(R3)

supported by  9 (G ) for some 9 (G) ∈ N and there is a constant V(G) > 0 such that

MCov(č 9 (G )G , W) +
∫

klim 3 (cSBM
G − č 9 (G )G ) − V(G) > MCov(cSBM

G , W). (7.13)

Proof. From Lemma 7.16 we already have the inequality (7.7). In order to derive (7.13),

we have to show that

lim
9→+∞

MCov(č 9G, W) = MCov(čG , W) (7.14)

and

lim sup
9→+∞

∫
klim(H) 3č 9G (H) 6

∫
klim(H) 3čG (H). (7.15)

We begin with the proof of (7.14). First, observe that " G
gG
9
∧1

→ " G
gG∧1

in !2, where gG

is the first exit time of " G from � . Since gG ∧ 1 = 1 a.s. by Corollary 6.8, we conclude that
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" G
gG
9
∧1

→ " G
1

in !2. Consequently,

W2
2 (č

9
G , čG) ≔ inf

@∈Cpl( č 9
G , čG )

∫
|G1 − G2 |2 @(3G1, 3G2)

converges to zero as 9 → +∞, and the inequality

|MCov(č 9G , W) − MCov(čG , W) | 6W2(č 9G , čG)
√
3

yields (7.14).

Finally, we show (7.15). Note that by optional sampling, č
9
G ∈ P G

2
(R3). Since a

martingale composed with a convex function is a submartingale, it follows that

∀ 9 > 1:

∫
klim 3č

9
G 6

∫
klim 3čG

and we obtain (7.15). �

Lemma 7.18. Under Assumption 7.3, the set � ⊆ R3 defined in (7.6) has `-measure zero.

Proof. We assume for contradiction that `(�) > 0. Thanks to Lemma 7.17, the set � is

`-a.s. equal to the union

⋃

9∈N,
V∈Q+\{0}

{
G ∈ � : MCov(č 9G , W) +

∫
klim 3 (cSBM

G − č 9G) − V > MCov(cSBM
G , W)

}
.

Hence we can find a subset � ⊆ � with `(�) > 0, such that (7.13) holds with uniform

constants 9 ∈ N and V > 0 for all G ∈ �, i.e.,

∃ 9 ∃V ∀G ∈ � : MCov(č 9G, W) +
∫

klim 3 (cSBM
G − č 9G) − V > MCov(cSBM

G , W). (7.16)

Now we define a measurable collection of probability measures {c̃G}G∈R3 ⊆ P2(R3) with

bary(c̃G) = G by

c̃G ≔

{
č
9
G , G ∈ �,
cSBM
G , G ∈ R3 \ �.

(7.17)

From the inequality (7.16) and the definition (7.17) we deduce that∫ ∫
klim 3 (cSBM

G − c̃G) 3`(G) +
∫

MCov(c̃G, W) 3`(G) (7.18)

>

∫
MCov(cSBM

G , W) 3`(G) + V `(�) (7.19)

= %̃(`, a) + V `(�). (7.20)

Recall from Proposition 7.8that there is an optimizing sequence (k=)=>1 of convex functions

k= : R3 → [0, +∞) for the dual problem (3.2), which converges uniformly on compact

subsets  ⊆ � to klim. To find the desired contradiction, we want to replace klim in (7.18)

by lim=→∞ k= and write the limit outside of the integral. This is clearly no problem if

G ∉ �. For G ∈ �, note that the measure c̃G = č
9
G is supported by the compact set  9 . As

(k=)=>1 converges to klim uniformly on  9 , we have

lim
=→∞

∫

�

∫
k= (H) 3c̃G (H) 3`(G) =

∫

�

∫
klim(H) 3c̃G (H) 3`(G). (7.21)

On the other hand, Fatou’s lemma gives

lim inf
=→∞

∫

�

∫
k= (H) 3cSBM

G (H) 3`(G) >
∫

�

∫
klim(H) 3cSBM

G (H) 3`(G). (7.22)

Now combining (7.18) – (7.20) with (7.21), (7.22) yields the inequality

lim inf
=→∞

∫ ∫
k= 3 (cSBM

G − c̃G) 3`(G) +
∫

MCov(c̃G , W) 3`(G) > %̃(`, a) + V `(�).
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Recalling the definition (3.3) of the function G ↦→ ik (G) and the dual function (3.13), we

observe that the left-hand side of this inequality is less than or equal to

lim inf
=→∞

D(k=) = lim inf
=→∞

∫ ( ∫
k= (H) cSBM

G (3H) − ik= (G)
)
`(3G).

Since (k=)=>1 is an optimizing sequence for the dual problem, it follows that

�̃ (`, a) = lim
=→∞

D(k=) = lim inf
=→∞

D(k=) > %̃(`, a) + V `(�) > %̃(`, a).

But this is a contradiction to the fact that there is no duality gap by Theorem 3.1. �

Lemma 7.19. A lower semicontinuous convex function kopt : R
3 → (−∞, +∞] satisfying

`(int(domkopt)) = 1 is a dual optimizer in the sense of Definition 6.1 if and only if

`
({
G ∈ � : kopt ≡ kGSBM mod (aff)

})
= 1. (7.23)

Proof. “⇐”: As we have seen in the proof of Lemma 7.16, for `-a.e. G ∈ � , the supremum

in (7.8) is attained by ? = cSBM
G . Hence integrating with respect to `(3G) and recalling that

`(�) = 1 yields
∫

MCov(cSBM
G , W) `(3G) =

∫ ( ∫
kGSBM(H) cSBM

G (3H) − ikG
SBM (G)

)
`(3G).

By assumption (7.23) it follows that
∫

MCov(cSBM
G , W) `(3G) =

∫ ( ∫
kopt (H) cSBM

G (3H) − ikopt (G)
)
`(3G). (7.24)

Recalling the representation (3.13) of the dual function D( · ), we see that the expression

on the right-hand side of (7.24) equals D(kopt). On the other hand, the left-hand side is

equal to %̃(`, a) = �̃ (`, a) by Theorem 3.1, so that kopt is a dual optimizer.

“⇒”: Let kopt be a dual optimizer. As in the proof of the implication “⇒” in Theorem

6.6 we conclude that

cSBM
G = ∇k∗

opt

(
b (G) + ·

)
(W),

for `-a.e. G ∈ R3 , with b (G) ∈ R3 as in (6.5). On the other hand, by Definition 7.14 we

have cSBM
G = ∇(kG

SBM
)∗(W), for `-a.e. G ∈ R3 . Arguing as in the proof of Lemma 7.16 we

obtain (7.23). �

Let us summarize why the above arguments complete the proof of Proposition 7.13 and

thus also of Theorem 7.6.

Proof of Proposition 7.13. According to Lemma 7.18, the function klim : R3 → [0, +∞]
equals kG

SBM
mod (aff), for `-a.e. G ∈ � . By Lemma 7.19, this implies that klim is a dual

optimizer. �

Proof of Theorem 7.6. The existence of a dual optimizer follows from Proposition 7.8 and

Proposition 7.13. �

Let us have one more look at the structure of the proof of Theorem 7.6 and Corollary

7.7 above. We started with an arbitrary optimizing sequence (k=)=>1 ⊆ �q(R3) of convex

functions for the dual problem (3.2), which we normalized to obtain (kG= )=>1 as in (7.4).

Then we showed in Proposition 7.8 that under the irreducibility Assumption 7.3, which

guarantees the existence of a De March–Touzi transport cDMT ∈ MT(`, a), we could find

a limiting function klim. However, this was only possible after passing to a subsequence,

forming Cesàro means, and then choosing a further subsequence of (kG= )=>1. In Proposition

7.13 we argued that klim is a dual optimizer and hence, by Theorem 6.6, there is a Bass

martingale from ` to a.

In our follow-up paper, where we will treat the general case of a pair (`, a) which is

not irreducible, we need a variant of this line of reasoning. Suppose we already know

that an optimizing sequence (k=)=>1 is pointwise bounded on the relative interior � of
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� = ŝupp(a). Under this assumption, we will prove in Proposition 7.20 below (see the

limiting assertions (7.26) and (7.27)) that there is no need of passing to a subsequence or

of forming convex combinations of the optimizing sequence (k=)=>1. Rather already the

original sequence (k=)=>1 — modulo adding affine functions — converges.

Proposition 7.20. Let `, a ∈ P2(R3) with ` �c a. We denote � ≔ ŝupp(a), � ≔ ri�

and assume that `(�) = 1. Let (k=)=>1 be an optimizing sequence of non-negative convex

functions in �aff
q (R3) for the dual problem (3.2) such that

∀H ∈ � : sup
=>1

k= (H) < +∞. (7.25)

Then there is a lower semicontinuous convex function klim : R3 → [0, +∞] and a sequence

(k̃=)=>1 such that k= ≡ k̃= mod (aff), for each = > 1, and

∀H ∈ � : klim(H) = lim
=→∞

k̃= (H) < +∞, (7.26)

∀H ∈ R3 \ � : klim(H) = lim
=→∞

k̃= (H) = +∞. (7.27)

Moreover, the convergence in (7.26) is uniform on compact subsets of � and klim ≡ kG
SBM

mod (aff), for `-a.e. G ∈ � .

The proof of Proposition 7.20 is delayed until Appendix C.

Corollary 7.21. Under the assumptions of Proposition 7.20, there exists a Bass martingale

("C )06C61 from ` to a. Moreover, Law("0, "1) = cSBM and, for `-a.e. G ∈ � , the measure

cSBM
G is equivalent to a. In particular, cSBM is a De March–Touzi transport and the pair

(`, a) is irreducible.

Proof. By Lemma 7.19, the limiting function klim of Proposition 7.20 is a dual optimizer.

Therefore, by analogy with Corollary 7.7 from Theorem 7.6, we deduce Corollary 7.21

from Proposition 7.20. To see that (`, a) is irreducible we refer to Theorem D.1. �

7.2. Proof of Theorem 1.3. We are now in the position to prove our first main result of

the introduction.

Proof of Theorem 1.3. The implication “(2) ⇒ (1)” is Theorem 1.10 of [3]. For the proof

of “(1) ⇒ (2)” we apply Corollary 7.7 and obtain the existence of a Bass martingale from

` to a. By the uniqueness results of Theorem 2.2 in [3], this Bass martingale has to agree

with the given stretched Brownian motion. �

7.3. Proof of the second part of Theorem 1.4. Finally, we complete the proof of Theorem

1.4. Recalling the results of Section 4, we can formulate the second part of Theorem 1.4

equivalently as follows.

Proposition 7.22. Let `, a ∈ P2(R3) with ` �c a. The value

�rel(`, a) = inf
` (dom k)=1,
k convex

E(k) (7.28)

is attained by a lower semicontinuous convex function kopt : R
3 → (−∞, +∞] satisfying

`(ri(domkopt)) = 1 if and only if (`, a) is irreducible. In this case the (unique) optimizer

to (MBB) is given by the Bass martingale

"C ≔ E[∇{(�1) | f(�B : B 6 C)] = E[∇{(�1) | �C ], 0 6 C 6 1,

where { = k∗
opt and �0 ∼ ∇(k∗

opt ∗ W)∗ (`).

Proof. We call a function kopt as in the statement of the proposition a dual optimizer

of (7.28) and first show that this notion is equivalent to a dual optimizer in the sense of

Definition 6.1. Indeed, if kopt is a dual optimizer of (7.28), it follows from the inequality

(k∗ ∗ W)∗ = (ik)∗∗ 6 ik that kopt is also a dual optimizer according to Definition 6.1.
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Conversely, suppose that kopt is an optimizer in the latter sense. Then it follows from

Lemma 7.19 that (7.23) is satisfied. Note that by the classical Kantorovich duality we have

MCov(cSBM
G , W) =

∫
kGSBM 3cSBM

G +
∫

(kGSBM)∗ 3W,

for `-a.e. G ∈ R3 . Thus, by (7.23), for `-a.e. G ∈ R3 there exists b (G) ∈ R3 such that

MCov(cSBM
G , W) =

∫ (
kopt ( · ) − 〈b (G), · 〉

)
3cSBM

G +
∫ (

kopt( · ) − 〈b (G), · 〉
)∗
3W.

Reading the proof of Proposition 4.2 backwards we conclude that
∫

MCov(cSBM
G , W) 3`(G) =

∫ ( ∫
kopt(H) cSBM

G (3H) − (k∗
opt ∗ W)∗(G)

)
`(3G),

i.e., �rel(`, a) = E(kopt). This shows that kopt is also a dual optimizer of (7.28).

Now that we know that both definitions of a dual optimizer are equivalent, we can

conclude the assertions of Proposition 7.22 from the results we have already established.

Indeed, by Theorem 6.6, the existence of a dual optimizer is equivalent to the existence of

a Bass martingale ("C )06C61 in the given form. Finally, by Theorem 1.3 and Theorem D.1,

the existence of a Bass martingale is equivalent to the irreducibility of (`, a). �

Appendix A. Proof of Theorem 3.1

Proof of Theorem 3.1. Existence and uniqueness of the optimizer cSBM ∈ MT(`, a) as well

as finiteness of %̃(`, a) were proved in [4, Theorem 1.3]. In order to show that there is no

duality gap, we apply [3, Theorem 2.2] with the cost function

� (G, ?) ≔
{
−MCov(?, W) + 1

2

∫
|H |2 3?, if bary(?) = G,

+∞, if bary(?) ≠ G,

for G ∈ R3 and ? ∈ P2(R3). This function is bounded from below and convex in the second

argument. If we equip P2(R3) with the topology induced by the quadratic Wasserstein

distance one verifies that � (G, ?) is also jointly lower semicontinuous with respect to the

product topology on R3 × P2(R3). We introduce the space of continuous functions which

are bounded from below and have at most quadratic growth

�b,q (R3) ≔
{
k̃ : R3 → R continuous s.t. ∃ 0, :, ℓ ∈ R with ℓ 6 k̃ ( · ) 6 0 + : | · |2

}
.

Then by [3, Theorem 2.2] the value %̃(`, a) of the primal problem equals

�̃b,q (`, a) ≔ inf
k̃∈�b,q (R3 )

( ∫ (
k̃ ( · ) + | · |2

2

)
3a −

∫
ĩk̃ 3`

)
,

where

ĩk̃ (G) ≔ inf
?∈PG

2 (R3 )

( ∫ (
k̃ ( · ) + | · |2

2

)
3? − MCov(?, W)

)
.

Finally, passing from the functions k̃ ∈ �b,q(R3) to k( · ) ≔ k̃( · ) + | · |2
2

∈ �q (R3), we see

that �̃b,q(`, a) = �̃ (`, a). �

Appendix B. Proofs of Lemmas 4.4, 5.1, 6.2, 6.4 and 6.5

Proof of Lemma 4.4. Using probabilistic notation, we rewrite the supremum in (4.5) as

rk = supE
[
〈., /〉 − k(. )

]
, (B.1)

where the supremum in (B.1) is taken over all probability spaces such that / ∼ W and .

is an R3-valued random variable with finite second moment. Replacing . by E[. | /], we
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observe that the maximization in (B.1) can be restricted to random variables . which are

measurable functions of / , and we obtain

rk = sup
. ∈!2 (W;R3 )

∫ (〈
. (I), I

〉
− k

(
. (I)

) )
W(3I), (B.2)

where !2(W;R3) denotes the space of R3-valued Borel measurable functions on R3 , which

are square-integrable under W. Clearly, for any . ∈ !2 (W;R3) we have
∫ (〈

. (I), I
〉
− k

(
. (I)

) )
W(3I) 6

∫
sup
H∈R3

(
〈H, I〉 − k(H)

)
W(3I) =

∫
k∗ (I) W(3I),

which shows the inequality rk 6
∫
k∗ 3W. In order to see the reverse inequality, we define

the auxiliary problem

r
k
∞ ≔ sup

. ∈!∞ (W;R3 )

∫ (〈
. (I), I

〉
− k

(
. (I)

) )
W(3I), (B.3)

where !∞ (W;R3) denotes the space ofR3-valued Borel measurable functions onR3 , which

are bounded W-a.e. Comparing (B.2) with (B.3), we obviously have rk > r
k
∞. Now we

claim that

r
k
∞ >

∫
sup
H∈R3

(
〈H, I〉 − k(H)

)
W(3I) =

∫
k∗ (I) W(3I), (B.4)

which will finish the proof of (4.7). To see this, we first write

r
k
∞ = lim

#→∞
sup

. ∈!∞ (W;R3 ) ,
|. |6#

∫ (〈
. (I), I

〉
− k

(
. (I)

) )
W(3I).

Using a measurable selection argument, we obtain

sup
. ∈!∞ (W;R3 ) ,

|. |6#

∫ (〈
. (I), I

〉
− k

(
. (I)

) )
W(3I) >

∫
sup
H∈R3 ,
|H |6#

(
〈H, I〉 − k(H)

)
W(3I).

Since k is proper we can choose H0 ∈ domk ≠ ∅. Then for # large enough we have

sup
H∈R3 ,
|H |6#

(
〈H, I〉 − k(H)

)
> 〈H0, I〉 − k(H0),

with the right-hand side being integrable with respect to W(3I). Hence we can apply the

monotone convergence theorem and deduce that

lim
#→∞

∫
sup
H∈R3 ,
|H |6#

(
〈H, I〉 − k(H)

)
W(3I) =

∫
sup
H∈R3

(
〈H, I〉 − k(H)

)
W(3I),

which completes the proof of (B.4). �

Proof of Lemma 5.1. To see that ik is convex on domk, we let G ≔ 2G1 + (1 − 2)G2

for G1, G2 ∈ domk and 2 ∈ (0, 1). If ik (G1) = −∞, then there are ?
(=)
G1

∈ P G1

2
(R3) with∫

k 3?
(=)
G1

−MCov(? (=)G1
, W) → −∞. We observe that ?

(=)
G ≔ 2?

(=)
G1

+ (1−2)XG2 ∈ P G
2
(R3),

and consequently

ik (G) 6 2
∫

k 3?
(=)
G1

+ (1 − 2)k(G2) − MCov(? (=)G , W)

6 2
( ∫

k 3?
(=)
G1

− MCov(? (=)G1
, W)

)
+ (1 − 2)k(G2),

where we have used the convexity of P2(R3) ∋ ? ↦→ −MCov(?, W). We conclude that

ik (G) = −∞. The case ik (G2) = −∞ is treated similarly. If, on the other hand, both
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ik (G1) > −∞ and ik (G2) > −∞, then ik (G) 6 2ik (G1) + (1 − 2)ik (G2) follows by

standard arguments. All in all we see that ik is convex on domk.

If ik (G) > −∞ for one G ∈ int(domk), then ik (G̃) > −∞ for all G̃ ∈ int(domk), as

can be seen directly by convexity.

Finally, given some G ∈ int(domk) with ik (G) > −∞, we show that k is co-finite.

Without loss of generality, we assume that G = 0 and k(0) = 0. Using probabilistic

notation, we rewrite the supremum in (4.4) as

−ik (0) = supE
[
〈., /〉 − k(. )

]
< +∞, (B.5)

where the supremum in (B.5) is taken over all probability spaces such that / ∼ W and . is

an R3-valued random variable with finite second moment and E[. ] = 0. By contradiction,

suppose there is 4 ∈ R3 \ {0} such that

lim
C→+∞

k(C4)
C

< +∞. (B.6)

We define the convex function k̄ : R → (−∞, +∞] by k̄(C) ≔ k(C4), for C ∈ R. By

assumption we have 0 ∈ int(domk), thus also 0 ∈ int(dom k̄). In particular, k̄ is continuous

in a neighbourhood of 0. By (B.6), there is a constant  such that k̄ (C) 6  C, for all C large

enough. As k̄(0) = 0 and k̄ is convex, we conclude that k̄(C) 6  C, for all C > 0. Next we

introduce four parameters, � < 0 and X, ",� > 0, and define the R3-valued function

R3 ∋ I ↦−→ 5
",�

X,�
(I) ≔




"4, if 〈4, I〉 > �,
−X4, if 〈4, I〉 ∈ (�, 0),
0, else.

Given / ∼ W, this induces a random variable .
",�

X,�
≔ 5

",�

X,�
(/). We impose the relation

" P
[
〈4, /〉 > �

]
= X P

[
〈4, /〉 ∈ (�, 0)

]
(B.7)

between " and X, so that E[.",�
X,�

] = 0. Now we fix � < 0 and some Y > 0. Then we

choose X > 0 small enough such that

|k̄ (−X) | ∨ X E
[
|〈4, /〉|

]
6

Y
2
,

which we achieve by continuity of k̄ and the fact that k̄(0) = 0. We leave � as a free

parameter, which fixes " via (B.7). We compute

E
[
〈.",�
X,�

, /〉 − k(.",�
X,�

)
]

=E
[
1〈4,/ 〉>�

(
" 〈4, /〉 − k̄ (")

)
+ 1〈4,/ 〉∈ (�,0)

(
− X〈4, /〉 − k̄ (−X)

)]

>" E
[
1〈4,/ 〉>�

(
〈4, /〉 −  

) ]
− X E

[
1〈4,/ 〉∈ (�,0) 〈4, /〉

]
− k̄(−X) P

[
〈4, /〉 ∈ (�, 0)

]

>" (� −  ) P
[
〈4, /〉 > �

]
− Y

= X(� −  ) P
[
〈4, /〉 ∈ (�, 0)

]
− Y.

Now taking� ր +∞we conclude that−ik (0) = +∞, which is a contradiction to (B.5). �

Proof of Lemma 6.2. By contradiction, we suppose that dim(domkopt) < dim(supp a).
Defining �ℓ ≔ {G ∈ R3 : kopt (G) 6 ℓ} for ℓ > 1, we clearly have `(�ℓ ) ր 1 and

furthermore

sup
ℓ>1

cSBM
(
�ℓ × (R3 \ domkopt)

)
> 0.

Indeed, otherwise a would be concentrated on domkopt, contradicting the assumption that

dim(domkopt) < dim(supp a). As a consequence,
∫

�ℓ×R3
kopt (H) cSBM(3G, 3H) = +∞
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for all ℓ > 1 large enough. We now show that kopt could not have been optimal, by

establishing that

D(kopt) =
∫ (

sup
?∈PG

2 (R3 )

(
MCov(?, W)−

∫
kopt 3?

)
+
∫

kopt (H) cSBM
G (3H)

)
`(3G) = +∞.

To wit, selecting ?G = c
SBM
G for G ∈ R3 \ �ℓ and ?G = XG for G ∈ �ℓ we find

D(kopt) >
∫

R3\�ℓ

MCov(cSBM
G , W) `(3G) −

∫

�ℓ

(
kopt(G) −

∫
kopt (H) cSBM

G (3H)
)
`(3G)

> 2 − ℓ +
∫

�ℓ×R3
kopt (H) cSBM(3G, 3H),

for a finite constant 2. We conclude by taking ℓ > 1 large enough. �

Proof of Lemma 6.4. We first prove the identity (i). We denote � ≔ ∇ 5 , which is well-

defined Lebesgue-a.e. For b, I ∈ R3 we have to compute

( 5 ∗ W) (b + ℎI) − ( 5 ∗ W) (b)
ℎ

=

∫
5 (b + ℎI + H) − 5 (b + H)

ℎ
3W(H),

as ℎ → 0. For all b, I and for W-a.e. H ∈ R3 , we have

lim
ℎ→0

5 (b + ℎI + H) − 5 (b + H)
ℎ

= 〈� (b + H), I〉,

so we only need to justify the exchange of limit and integral. To this end, it suffices to show

the uniform integrability, with respect to the reference measure W, of the family

� ≔

{
5 (b + ℎI + · ) − 5 (b + · )

ℎ
: 0 6 ℎ 6 1

}
. (B.8)

Using twice the above-tangent characterization of convexity, we obtain

〈� (b + H), I〉 6 5 (b + ℎI + H) − 5 (b + H)
ℎ

6 〈� (b + ℎI + H), I〉. (B.9)

We take A ∈ (1, 2), ? ≔ 2/A, and @ ≔ ?/(? − 1) its Hölder conjugate, and compute
∫

|� (b + ℎI + H) |A 3W(H) =
∫

|� (Z + H) |A 3Wb+ℎI−Z (H)

=

∫
|� (Z + H) |A exp

(
− |b − Z + ℎI|2/2 + 〈H, b − Z + ℎI〉

)
3W(H)

6 ?

√
‖�‖2

!2 (WZ ;R3 )
@

√∫
exp

(
− @ |b − Z + ℎI|2/2 + @〈H, b − Z + ℎI〉

)
3W(H)

6 ?

√
‖�‖2

!2 (WZ ;R3 )
@

√∫
exp

(
@〈H, b − Z + ℎI〉

)
3W(H)

= ?

√
‖�‖2

!2 (WZ ;R3 )
@

√
exp

(
@2 |b − Z + ℎI|2/2

)
. (B.10)

We see that the first factor in (B.10) is finite (and independent of ℎ) by assumption, while

the second factor is uniformly bounded for 0 6 ℎ 6 1. Hence both the upper and lower

bounds in (B.9) are uniformly integrable for 0 6 ℎ 6 1, implying the same property for the

family � of (B.8).

We now turn to (ii) and (iii). The arguments given at the end of the proof of Proposition

5.2 show that, under the assumptions made here (but with 5 instead of k∗), the function

5 ∗ W is strictly convex. We already know that this function is differentiable, and that the

interior of its domain is R3 . Hence by [41, Theorem 26.5] we deduce the stated properties.
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The only thing that merits an explanation is the inclusion int(dom( 5 ∗ W)∗) ⊇ int(dom 5 ∗).
To this end, observe that

( 5 ∗ W)∗ (G) = sup
H∈R3

{
〈H, G〉 −

∫
5 (H + I) 3W(I)

}
6

∫
sup
H∈R3

{〈H, G〉 − 5 (H + I)} 3W(I)

=

∫
sup
H∈R3

{
〈H − I, G〉 − 5 (H)

}
3W(I) =

∫ (
5 ∗(G) − 〈I, G〉

)
3W(I) = 5 ∗(G),

so dom( 5 ∗ W)∗ ⊇ dom 5 ∗. �

Proof of Lemma 6.5. The first equality in (6.3) follows from

int(domk) ⊆ dom mk ⊆ domk

and dom mk = (mk∗) (R3). We also note that

int
(
(mk∗) (R3)

)
= int conv

(
(mk∗) (R3)

)
, (B.11)

where conv denotes the convex hull. Indeed, as a consequence of a result by Minty [37],

we have that int conv((mk∗) (R3)) ⊆ (mk∗) (R3), since the subdifferential (multi-valued)

mapping of any lower semicontinuous proper convex function is also a maximal monotone

mapping by [41, Corollary 31.5.2].

Let us turn to the proof of the second equality in (6.3). Without loss of generality we

can assume that [ = 0 and C = 1. Since we already verified the first equality and by virtue

of (B.11), it suffices to show the inclusions

(∇k∗ ∗ W) (R3) ⊆ int conv((mk∗) (R3)) (B.12)

and

int(domk) ⊆ (∇k∗ ∗ W) (R3). (B.13)

Note that we have (∇k∗ ∗ W) (R3) ⊆ conv((mk∗) (R3)) and therefore

int(∇k∗ ∗ W) (R3) ⊆ int conv((mk∗) (R3)) = int conv((mk∗) (R3)). (B.14)

Under the assumptions of Lemma 6.5, the functionk is co-finite by Lemma 5.1and therefore

we can apply Lemma 6.4 to its convex conjugate 5 = k∗. In particular, by (iii), the set

(∇k∗ ∗ W) (R3) is open and hence the inclusion (B.12) follows from (B.14).

In order to prove (B.13), we first observe that int(domk) ⊆ int(dom(k∗∗W)∗) by Lemma

6.4, (ii). Since int(dom(k∗∗W)∗) = (∇k∗∗W) (R3) by Lemma 6.4, (iii), the inclusion (B.13)

follows. �

Appendix C. Proof of Proposition 7.20

Lemma C.1. For every sequence (k=)=>1 of lower semicontinuous convex functions

k= : R3 → [0, +∞) there is a closed convex set �lim ⊆ R3 with relative interior �lim
and a subsequence (k=: ):>1 such that the limits

klim(H) ≔ lim
:→∞

k=: (H) < +∞, H ∈ �lim (C.1)

klim(H) ≔ lim
:→∞

k=: (H) = +∞, H ∈ R3 \ �lim (C.2)

exist. Moreover, the convergence in (C.1) is uniform on compact subsets of �lim.

Proof. Step 1. We denote by N the collection of increasing subsequences  = (=:):>1 of

N. For two subsequences ,′ ∈ N we call ′ finer than , denoted by 
′
< , if


′ ⊆ , up to finitely many elements.

We write I for the collection of relatively open convex sets � ⊆ R3 . For two pairs

(�,), (� ′,′) ∈ I × N we say that (� ′,′) is finer than (�,), again denoted by

(� ′,′) < (�,), if � ′ ) � and 
′
< .
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We call a pair (�,) ∈ I × N admissible if it satisfies

∀H ∈ � : sup
=: ∈

k=: (H) < +∞. (C.3)

Step 2. Let (�,) be admissible. Write  = (=:):>1 ∈ N and denote by � the closure of

� . Then one of the following two alternatives hold: either

lim
:→∞

k=: (H) = +∞, H ∈ R3 \ �, (C.4)

in which case we call (�,) maximal; or there is some H0 ∈ R3 \ � and a subsequence


′ = (=′

:
):>1 ∈ N finer than  such that

sup
=′
:
∈′

k=′
:
(H0) < +∞.

Now we define the relatively open convex set � ′ ≔ ri conv(H0, �) and note that � ′ ) � . Then

the pair (� ′,′) is admissible and finer than (�,). In this second case we say that (�,)
is refinable.

Step 3. Assume that (�,) is maximal, so that both (C.3) and (C.4) are satisfied. In

particular, the sequence (k=: ):>1, with  = (=:):>1, is pointwise bounded on � . By [41,

Theorem 10.9] we can select a further subsequence, still denoted by (k=: ):>1, such that

(C.1) holds for all H ∈ �lim ≔ � and the convergence is uniform on compact subsets of �lim.

Furthermore, condition (C.2) is still satisfied for this further subsequence thanks to (C.4).

Step 4. In light of Step 3, in order to prove Lemma C.1, it suffices to show the existence

of a maximal pair (�,), which we will denote by (�lim,lim). The construction of

the maximal pair (�lim,lim) is done via transfinite recursion along the countable ordinal

numbers U < l1, where l1 is the first uncountable ordinal.

We start the construction as follows. If sup=∈N k= (H) = +∞ holds for all H ∈ R3 , the

pair (�0,0) = (∅,N) is admissible. Otherwise, we can find some H0 ∈ R3 such that

sup=∈N k= (H0) < +∞ and then the pair (�0,0) = ({H0},N) is admissible.

Now let U < l1 be an ordinal number and suppose that the transfinite family (�V ,V)V<U
in I × N is such that

(i) the pair (�V ,V) is admissible, for all V < U,

(ii) the pair (�V2 ,V2 ) is finer than (�V1 ,V1 ), for all V1 < V2 < U.

We first assume that U is a successor ordinal, i.e., there is an ordinal V such that U = V+1.

Since (�V ,V) is admissible, by Step 2 only two cases are possible. If (�V ,V) is maximal,

we set (�lim,lim) ≔ (�V ,V) and finish the construction. If (�V ,V) is refinable, we can

find a pair (�U,U) which is finer than (�V ,V).
Suppose that U is a limit ordinal, i.e., it can be written as U = {V : V < U}. Since

U < l1, the ordinal U is countable and can be enumerated as U = {U: : : < l}, where

l is the first infinite ordinal. Letting V0 ≔ 0 and defining inductively V<+1 ≔ Uℓ , where

ℓ ≔ min{: : V< < U:}, we obtain a strictly increasing cofinal sequence (V<)<<l in U.

Now we define �U ≔
⋃
<<l �V< . By (ii), (�V< )<<l is a strictly increasing sequence of

relatively open convex sets, therefore also �U ∈ I. Again by (ii), the sequence (V< )<<l
satisfies V<1

< V<2
, for all <1 < <2 < l. Thus we can find a diagonal subsequence

U ∈ N of (V< )<<l , meaning that U < V< , for all < < l. Since by (i) the pair

(�V< ,V< ) is admissible, for all < < l, by construction also (�U,U) is admissible.

Furthermore, (�U,U) satisfies (�U,U) < (�V< ,V< ), for all < < l. Since (V<)<<l is

cofinal, it follows that (�U,U) < (�V ,V), for all V < U.

After countably many steps, this transfinite recursion must stop, which happens when

U < l1 is such that (�U,U) is maximal and we can then set (�lim,lim) ≔ (�U,U).
Indeed, otherwise we would have a transfinite sequence (�V)V<l1 of strictly increasing

relatively open convex sets, indexed by the countable ordinals, which is impossible. �
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Proof of Proposition 7.20:

Step 1. By Lemma C.1, there is a closed convex set �lim ⊆ R3 with relative interior �lim
and a subsequence (k=: ):>1 such that the limits

klim(H) ≔ lim
:→∞

k=: (H) < +∞, H ∈ �lim (C.5)

klim(H) ≔ lim
:→∞

k=: (H) = +∞, H ∈ R3 \ �lim (C.6)

exist, where the convergence in (C.5) is uniform on compact subsets of �lim. Via (C.5) and

(C.6) we define a lower semicontinuous convex function klim : R3 → [0, +∞] on all of R3 .

Step 2. By the hypothesis (7.25) and the construction of �lim, we clearly have � ⊆ �lim. Our

goal is to show that �lim = � . To this end, we define the set � ⊆ R3 as in (7.6), now with �

replaced by �lim, i.e.,

� =
{
G ∈ �lim : klim . k

G
SBM mod (aff)

}
.

Again, we will show that `(�) = 0. Repeating the reasoning of Lemma 7.16 we obtain,

for `-a.e. G ∈ �, measures čG ∈ P G
2
(R3) satisfying (7.7), which now are supported by

�lim. Then we choose an increasing sequence ( 9 ) 9>1 of relatively compact subsets of

�lim such that
⋃
9>1  9 = �lim. As in Lemma 7.17, for `-a.e. G ∈ �, we find measures

č
9 (G )
G ∈ P G

2
(R3) satisfying (7.13) and supported by  9 (G ) , for some 9 (G) ∈ N. Arguing as

in Lemma 7.18 we conclude that `(�) = 0, i.e., klim ≡ kG
SBM

mod (aff), for `-a.e. G ∈ �lim.

In particular, since �lim = ri(domklim) and � = ri(domkG
SBM

), we conclude that �lim = � .

Together with Step 1, this proves the statement of Proposition 7.20 for the subsequence

(k=: ):>1.

Step 3. Applying Step 1 and Step 2 to an arbitrary subsequence (k<ℓ
)ℓ>1 instead of

the original sequence (k=)=>1, we obtain a further subsequence (k<ℓ 9
) 9>1 and a lower

semicontinuous convex function k̃lim : R3 → [0, +∞] such that

∀H ∈ � : k̃lim(H) = lim
9→∞

k<ℓ 9
(H) < +∞,

∀H ∈ R3 \ � : k̃lim(H) = lim
9→∞

k<ℓ 9
(H) = +∞,

and k̃lim ≡ kG
SBM

mod (aff), for `-a.e. G ∈ � . We conclude that there is an affine function

aff depending on the subsequence (<ℓ 9 ) 9>1 such that klim = k̃lim + aff. In particular,

∀H ∈ � ∪ (R3 \ �) : lim
9→∞

(
k<ℓ 9

(H) + aff(H)
)
= klim(H). (C.7)

Step 4. Let G0, . . . , G3 be affinely independent points in � ∪ (R3 \�). For each = > 1 there

is a unique affine function aff= such that

∀8 ∈ {0, . . . , 3} : k= (G8) + aff= (G8) = klim(G8). (C.8)

We claim that

∀H ∈ � ∪ (R3 \ �) : lim
=→∞

(
k= (H) + aff= (H)

)
= klim(H). (C.9)

Indeed, if this were not the case, there would be some H0 ∈ � ∪ (R3 \�) and a subsequence

(<ℓ)ℓ>1 such that

lim
ℓ→∞

(
k<ℓ

(H0) + aff<ℓ
(H0)

)
≠ klim(H0). (C.10)

By Step 3 there is a further subsequence (<ℓ 9 ) 9>1 and an affine function aff such that (C.7)

holds. In particular,

∀8 ∈ {0, . . . , 3} : lim
9→∞

(
k<ℓ 9

(G8) + aff(G8)
)
= klim(G8), (C.11)

lim
9→∞

(
k<ℓ 9

(H0) + aff(H0)
)
= klim(H0). (C.12)
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From (C.8) and (C.11) we obtain that

∀8 ∈ {0, . . . , 3} : lim
9→∞

aff<ℓ 9
(G8) = aff(G8). (C.13)

Since the points G0, . . . , G3 are affinely independent, the convergence in (C.13) holds for

every H ∈ � ∪ (R3 \�). Then (C.12) leads to a contradiction to (C.10), which proves claim

(C.9). Defining k̃= ≔ k= + aff=, for = > 1, we derive from (C.9) the limiting assertions

(7.26) and (7.27). Finally, by [41, Theorem 10.8] the convergence in (7.26) is uniform on

compact subsets of � and we have already seen in Step 2 that klim ≡ kG
SBM

mod (aff), for

`-a.e. G ∈ � . �

Appendix D. Characterization of irreducibility

Theorem D.1. Let `, a in P2(R3) with ` �c a. Then the following are equivalent.

(1) The pair (`, a) is De March–Touzi irreducible in the sense of Definition 7.2.

(2) There exists c ∈ MT(`, a) such that cG ∼ a, for `-a.e. G ∈ R3 .

(3) The pair (`, a) is irreducible in the sense of Definition 1.2, i.e., for all Borel sets

�, � ⊆ R3 with `(�), a(�) > 0 there is a martingale (-C )06C61 with -0 ∼ `,

-1 ∼ a such that P(-0 ∈ �, -1 ∈ �) > 0.

(4) For all Borel sets �, � ⊆ R3 with `(�), a(�) > 0 there exists c ∈ MT(`, a) such

that c(� × �) > 0.

(5) For all compact sets � ⊆ R3 and open halfspaces � with `(�), a(�) > 0 there

exists c ∈ MT(`, a) such that c(� × �) > 0.

Proof. For the proof of “(1) ⇒ (2)” we can take c = cSBM in (2) by Corollary 7.7. We

turn to the proof of the implication “(2) ⇒ (3)”: Clearly condition (2) implies (4). Thus,

in order to show (3), it suffices to construct a continuous-time martingale (-C )06C61 with

Law(-0, -1) = c. This can be achieved as in the proof of [3, Theorem 2.2]. For the proof

of “(3) ⇒ (4)” we can take c = Law(-0, -1) in (4). The implication “(4) ⇒ (5)” is trivial.

It remains to show that “(5) ⇒ (1)”: We fix an open halfspace � satisfying a(�) > 0 and

set

< ≔ sup
c∈MT(`,a)

{
`
(
{G ∈ R3 : cG (�) > 0}

)}
.

Considering countable convex combinations of elements of MT(`, a) it follows that the

supremum is attained by some c̄ ∈ MT(`, a). If the set

{G ∈ R3 : c̄G (�) = 0}
had positive `-measure, it would contain a compact set � with positive `-measure in

contradiction to condition (5). Hence < = 1.

Observe that there is a countable family of open halfspaces {�=}=>1 with a(�=) > 0
such that, for every open halfspace � with a(�) > 0, there is some = > 1 satisfying

�= ⊆ �.

Next, for each = > 1, we pick c (=) ∈ MT(`, a) such that c
(=)
G (�=) > 0, for `-a.e.

G ∈ R3 . Set ĉ ≔
∑
=>1 2−=c (=) ∈ MT(`, a). Then by Lemma D.2 below it follows that

ŝupp(a) ⊆ ŝupp(ĉG), for `-a.e. G ∈ R3 . �

Lemma D.2. Let d ∈ P(R3). Then H ∈ ŝupp(d) if and only if d(�) > 0 for every open

halfspace � such that H ∈ �.

Proof. This is a simple consequence of Hahn–Banach. �

Remark D.3. We note that irreducibility is not only a sufficient assumption for the existence

of a Bass martingale from ` to a, but in fact also necessary. Indeed, as in the proof of

Corollary 7.7 one sees that the Bass martingale does the job of connecting any two sets

which are charged by ` and a, implying the irreducibility of (`, a) by Theorem D.1.
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