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1. Preamble

Physical perspective: Systems of Calogero-Moser type are
integrable one-dimensional N-particle systems that come in
various versions: classical/quantum, nonrelativistic/relativistic,
with special interactions given by
rational/trigonometric/hyperbolic/elliptic functions.
Harmonic analysis perspective: The quantum systems amount to
commutative algebras of operators associated with root systems,
with the differential/difference operator case corresponding to Lie
groups/quantum groups; their symbols Poisson commute and
amount to the classical versions.
This talk focuses on the quantum elliptic systems associated with
the root systems AN−1 and BCN .
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2. The nr/PDO case

The nonrelativistic/AN−1 quantum Calogero-Moser (CM)
Hamiltonian is given by

Hnr = − ~2

2m

N∑
j=1

∂2
xj

+
g(g − ~)

m

∑
1≤j<k≤N

V (xj − xk ),

with ~ > 0 (Planck’s constant), m > 0 (particle mass), g ∈ R
(coupling constant), V (x) pair potential of four types:

I. 1/x2 (rational)
II. π2/α2 sinh2(πx/α), α > 0 (hyperbolic)

III. r2/ sin2(rx), r > 0 (trigonometric)
IV. ℘(x ;π/2r , iα/2), r , α > 0 (elliptic)
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Associated integrable system (N commuting PDOs):

H1 = −i~
N∑

j=1

∂xj , H2 = mHnr,

Hk =
(−i~)k

k

N∑
j=1

∂k
xj

+ l. o., k = 3, . . . ,N,

where l.o. = lower order in partials.
Physical picture:

Hnr, Pnr = H1, B = −m
N∑

j=1

xj ,

represent the Lie algebra of the Galilei group:

[Hnr,Pnr] = 0, [Hnr,B] = i~Pnr, [Pnr,B] = i~Nm.
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The ‘nonrelativistic’/BCN elliptic Hamiltonian is given by

Hnr = − ~2

2m

N∑
j=1

∂2
xj

+
g(g − ~)

m

∑
1≤j<k≤N
δ=+,−

℘(xj − δxk )

+
N∑

j=1

3∑
t=0

gt (gt − ~)

2m
℘(xj + ωt ).

It was introduced by Inozemtsev, who showed integrability of the
classical version. On the quantum level there also exist N − 1
additional pairwise commuting PDOs (Oshima/H. Sekiguchi) of
orders 4, . . . ,2N.
The N = 1 Schrödinger equation amounts to the Heun equation.
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3. The rel/A∆O case
3A. Root system AN−1

The elliptic relativistic/AN−1 systems are given by N commuting
A∆Os (analytic difference operators)

Hk (x) =
∑
|I|=k

∏
m∈I
n 6∈I

f−(xm − xn) ·
∏
m∈I

e−i~β∂xm ·
∏
m∈I
n 6∈I

f+(xm − xn),

where k = 1, . . . ,N, β > 0, and

f±(x)2 = σ(x ± iβg;π/2r , iα/2)/σ(x ;π/2r , iα/2).

Thus,
f+(x)2f−(x)2 = σ(iβg)2(℘(iβg)− ℘(x)).

Physical picture: β = 1/mc and c = light speed;

Hrel = mc2[H1(x) + H1(−x)], Prel = mc[H1(x)− H1(−x)],

and B yield the Lie algebra of the Poincaré group:

[Hrel,Prel] = 0, [Hrel,B] = i~Prel, [Prel,B] = i~c−2Hrel.
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The nonrelativistic limit c →∞ gives

Prel → Pnr, Hrel − Nmc2 → Hnr.

The hyperbolic and elliptic regimes have two length scales, namely

a+ ≡ α, (imaginary period/interaction length),

and
a− ≡ ~/mc, (shift step size/Compton wave length).

The above family of A∆Os Hk with a+ and a− interchanged yields
a second family commuting with the first one. Hence,
eigenfunctions of one family that are symmetric under interchange
of a+ and a− (modular-invariant) are joint eigenfunctions of both
families. (In the hyperbolic case this can be tied in with the
modular quantum groups introduced by Faddeev.)
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To bring out modular symmetry and another Z2 symmetry, it is
crucial to reparametrize the commuting A∆Os H1, . . . ,HN . To this
end (and also for later purposes) we need the elliptic gamma
function G(r ,a+,a−; z) and allied functions. We have

G(z) :=
∞∏

m,n=0

1− q2m+1
+ q2n+1

− e−2irz

1− q2m+1
+ q2n+1

− e2irz
,

where q± := exp(−ra±). It corresponds to two elliptic curves with
real period π/r and imaginary periods ia+, ia−.
We also need the RHS functions in the A∆Es to which G is the
minimal solution:

G(z + iaδ/2)

G(z − iaδ/2)
= R−δ(z), δ = +,−,

Rδ(z) = R(r ,aδ; z) =
∞∏

l=0

(1− q2l+1
δ e2irz)(z → −z).

(Thus Rδ is even and π/r -periodic.)
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Crucial G-features are

G(r ,a+,a−; z) = G(r ,a−,a+; z), (modular invariance)

G(λ−1r , λa+, λa−;λz) = G(r ,a+,a−; z), (scale invariance)

G(−z) = 1/G(z), (reflection equation)

G(z) = exp
(

i
∞∑

n=1

sin(2nrz)

2n sinh(nra+) sinh(nra−)

)
, |=z| < (a+ +a−)/2.

lim
a−↓0

G(r ,a+,a−; z − ia−κ)

G(r ,a+,a−; z − ia−λ)
= exp((λ− κ) ln R(r ,a+; z)).

Relation to conventions for elliptic hypergeometric functions: Put
p = q2

+, q = q2
−, x = exp(2irz), to get

θp(x) = R(r ,a+; z + ia+/2), θq(x) = R(r ,a−; z + ia−/2),

Γp,q(x) = G(r ,a+,a−; z − i(a+ + a−)/2).
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Returning to the A∆Os, we need a Harish-Chandra function

c(z) := G(z + ia− ib)/G(z + ia), a := (a+ + a−)/2,

weight function w(z) := 1/c(z)c(−z) and scattering function

u(z) := c(z)/c(−z).

Their multi-variate versions are

F (x) :=
∏

1≤j<k≤N

f (xj − xk ), f = c,w ,u.

Setting

ρδ,±(z) := Rδ(z ± (iaδ/2− ib))/Rδ(z ± iaδ/2),

we introduce 2N commuting Hamiltonians

Hk ,δ(x) :=
∑
|I|=k

∏
m∈I
n 6∈I

(
ρδ,+(xm − xn)ρδ,−(xm − xn − ia−δ)

)1/2

×
∏
m∈I

e−ia−δ∂xm , k = 1, . . . ,N, δ = +,−.
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Now Hk ,+ amounts to the previous Hk up to a multiplicative
constant. The present normalization entails invariance under
b 7→ 2a− b.
We also need 2N A∆Os

Ak ,δ(x) := W (x)−1/2Hk ,δ(x)W (x)1/2.

Using the G-A∆Es they can be written as

Ak ,δ(x) =
∑
|I|=k

∏
m∈I
n 6∈I

ρδ,+(xm − xn) ·
∏
m∈I

e−ia−δ∂xm .

They are not invariant under b 7→ 2a− b, since W (x) is not. But
since U(x) is invariant, the A∆Os

Ak ,δ := U(x)−1/2Hk ,δU(x)1/2 = C(x)−1Ak ,δC(x),

are invariant. Each of these three A∆O-families is crucial for
further developments.
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3. The rel/A∆O case
3B. Root system BCN

A ‘relativistic’ Hamiltonian HvD for the BCN case is due to van
Diejen; the associated N − 1 commuting Hamiltonians were
shown to exist by Hikami/Komori, and will not be considered here.
As in the AN−1 case, we need A∆Os H±, A± and A±, with H+ of
the form

H+ = C1HvD + C2, C1,C2 ∈ C∗.

As before, these choices reveal non-manifest symmetries.
In order to detail the N = 1 A∆Os, we again need a
Harish-Chandra function

ce(z) :=
1

G(2z + ia)

7∏
µ=0

G(z − iγµ), γ0, . . . , γ7 ∈ C,

weight function we(z) := 1/ce(z)ce(−z) and scattering function
ue(z) := ce(z)/ce(−z).
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Once again, we have the relations

Aδ(z) = we(z)−1/2Hδ(z)we(z)1/2,

Aδ(z) = ue(z)−1/2Hδ(z)ue(z)1/2 = ce(z)−1Aδ(z)ce(z).

Here, Aδ is of the form

Aδ = Vδ(z) exp(−ia−δ∂z) + (z → −z) + Vb,δ(z),

with
Vδ(z) := ce(z)/ce(z − ia−δ).

Letting
Va,δ(z) := Vδ(−z)Vδ(z + ia−δ),

it follows that we have

Hδ = Va,δ(z)1/2 exp(ia−δ∂z) + (z → −z) + Vb,δ(z),

Aδ = exp(−ia−δ∂z) + Va,δ(z) exp(ia−δ∂z) + Vb,δ(z).

Simon Ruijsenaars (University of Leeds) Elliptic Calogero-Moser systems Vienna EIS Workshop 14 / 27



Using the G-A∆Es, the functions Vδ(z) and Va,δ(z) can be
expressed solely in terms of Rδ(z). In particular,

Va,δ(z) = Dδ(z)−1
7∏

µ=0

∏
τ=+,−

Rδ(z + τ iγµ + ia−δ/2),

with the denominator Dδ(z) a product of γ-independent
Rδ-functions. As a result, Va,δ(z) is elliptic in z and has
B8-symmetry in γ. (I. e., invariance under S8 and sign flips.)
The additive potential Vb,δ(z) is also elliptic and can be
characterized in terms of its residues at 4 simple poles in a period
cell. It admits an explicit formula from which D8-symmetry in γ can
be read off. (I. e., S8 and even sign flips.)
As a consequence, the A∆Os H± and A± are D8-invariant. (But
we(z) is not, so A± are not.)
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The generators S0,S1,S2,S3 of the Sklyanin algebra have
representations (labeled by ν ∈ C∗) as A∆Os acting on even
meromorphic functions. In these representations the quadratic
part of the algebra is 9-dimensional. It can be viewed as the linear
combinations of the van Diejen A∆Os A+(z) (with

∑
µ γµ fixed),

plus the constants. In fact, the generators themselves are
represented by A∆Os that can be regarded as special van Diejen
A∆Os. (See E. Rains/S. R., CMP 2013 for these results and other
ones.)
The 4-coupling Heun operator can be tied in with Painlevé VI (via
the so-called Painlevé-Calogero correspondence). The conjecture
(S. R., Bonn EIS Workshop 2008) that the 8-coupling ‘relativistic’
Heun (i. e., van Diejen) operator has a similar relation to the Sakai
elliptic difference Painlevé equation is still open, but Takemura has
recently shown that this relation holds true at lower levels in the
Sakai hierarchy.
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Turning finally to ‘relativistic’ BCN with N > 1, the commuting
modular pair H± of defining Hamiltonians is of the form

N∑
j=1

(
Vj,±(x)1/2e−ia∓∂xjVj,±(−x)1/2 + (x → −x)

)
+ V±(x).

Here, we have

Vj,δ(x) := Vδ(xj)
∏
k 6=j

τ=+,−

Rδ(xj − τxk − ib + iaδ/2)

Rδ(xj − τxk + iaδ/2)
,

with Vδ(z) the previous BC1 coefficient, and with Vδ(x) an elliptic
function whose definition we skip.
Next, we introduce the Harish-Chandra function

C(x) :=
N∏

j=1

ce(xj) ·
∏

1≤j<k≤N
τ=+,−

G(xj − τxk − ib + ia)

G(xj − τxk + ia)
,

weight function W (x) := 1/C(x)C(−x) and scattering function
U(x) := C(x)/C(−x).
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Then we get again the two Hδ-avatars

Aδ(x) := W (x)−1/2Hδ(x)W (x)1/2,

and

Aδ(x) := U(x)−1/2Hδ(x)U(x)1/2 = C(x)−1Aδ(x)C(x).

The A∆Os A± and H± are BCN -invariant, whereas A± are not
invariant under sign changes of xj (since C(x) is not). The A∆Os
A± and H± are D8-invariant, whereas A± are not invariant under
even sign changes of γµ (since C(x) is not).
This 9-coupling family admits a great many degenerations and
limits. In particular, the trigonometric specialization of A+ is the
5-coupling Koornwinder A∆O, which has Koornwinder-Macdonald
polynomials as eigenfunctions, and the ‘nonrelativistic’ limit of H+

yields the previous 5-coupling Inozemtsev PDO.
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4. Eigenfunctions

Given a set of commuting operators, the obvious first problem is to
show or rule out the existence of joint eigenfunctions. In case joint
eigenfunctions exist, the next problem is to obtain explicit
information about them. Finally, with sufficient information
available, the problem of finding a Hilbert space reinterpretation of
the commuting operators can be addressed.
For the Hilbert space joint eigenfunction problem, the spectral
theorem is of little use, since it assumes the existence of
commuting self-adjoint operators. The PDOs/A∆Os are only
formally self-adjoint, however.
Especially in the A∆O case, there are hardly any ‘useful’ existence
results available. In fact, already for the 1-variable case there are
simple examples of commuting A∆Os without joint eigenfunctions.
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To explain this in more detail, we first look at

A = exp(−ia∂z), B = exp(−ib∂z), a,b > 0, a/b /∈ Q.

The A∆Os A and B commute, but the only solutions to the joint
eigenvalue equation AF = F , BF = F , are the constant functions.
Now consider the A∆O pair

C = (1 + exp(2πz/b))A, D = (1 + exp(2πz/a))B.

Clearly, C and D still commute. Even so, no joint solutions to

CF = λF , DF = µF ,

exist for any λ, µ ∈ C. (This can be proved by first solving each
equation via the hyperbolic gamma function, and then requiring
equality to arrive at a contradiction.)
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Abundant results on eigenfunctions exist for the Lamé/Heun cases
(equivalently, the nonrelativistic A1/BC1 cases). Far less is known
about their relativistic counterparts (more on this in my Thursday
seminar).
For AN−1 with N > 2 there are results of ‘Bethe Ansatz’ type. They
are restricted to certain discrete couplings and to the defining
Hamiltonian (Felder/Varchenko for the PDO case, Billey for the
A∆O case); likewise, under these restrictions finite-dimensional
invariant subspaces have been shown to exist (Hasegawa,
Hikami/Komori).
Results by Komori/Takemura on the AN−1 nr/PDO case yield
existence of joint Hilbert space eigenfunctions reducing to
(basically) the Jack-Sutherland polynomials in the trigonometric
limit. Since perturbation theory is used, restrictions on the
imaginary period and the coupling are present.
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5. Kernel functions

Given a pair of operators H1(x) and H2(y), a kernel function is a
function K (x , y) satisfying

H1(x)K (x , y) = H2(y)K (x , y).

Here, x and y may vary over spaces of different dimension.
Reinterpreting K (x , y) as the kernel of an integral operator I, the
operator I can be used (in "favorable" cases, as explained later)
to connect eigenfunctions of H2 to those of H1.
For the above elliptic N-variable Hamiltonians, kernel functions
with both x and y varying over CN are known, imposing one
coupling constraint for the BCN case with N > 1. Probably the
earliest result (with H1,H2 Lamé operators) is due to Whittaker
(1915).
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The first multi-variate kernel function result was obtained by
Langmann (2000). It pertains to the defining AN−1 PDO.
Specifically, H1 and H2 equal (with m = ~ = 1)

Hnr = −1
2

N∑
j=1

∂2
xj

+ g(g − 1)
∑

1≤j<k≤N

℘(xj − xk ),

and his kernel function amounts to

Wnr (x)1/2Wnr (y)1/2
N∏

j,k=1

R(xj − yk + ξ)−g ,

Wnr (x) :=
( ∏

1≤j<k≤N

R(xj − xk + iα/2)R(xj − xk − iα/2)
)g
.

He has used this as a starting point to derive perturbative
formulas for Hnr -eigenfunctions.
In later work (partly joint with Takemura), he obtains so-called
source identities. They can be specialized to obtain various kernel
identities for elliptic PDOs with more than one mass.
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Kernel functions for the 2N commuting AN−1 A∆Os were first
presented at the Kyoto EIS Workshop (S. R., 2004). For Ak ,δ one
can take in particular

Kξ(x , y) =
N∏

j,k=1

G(xj − yk − ib/2 + ξ)

G(xj − yk + ib/2 + ξ)
, ξ ∈ C.

Taking the nonrelativistic limit of the Hk ,δ-kernel function

W (x)1/2W (y)1/2Kξ(x , y),

we get Langmann’s kernel function, together with the kernel
function property for the higher-order commuting PDOs.
At the 2004 Kyoto EIS Workshop I also introduced similar kernel
functions for the defining BCN A∆O and PDO. (For N > 1 one
balancing condition occurs.)
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The concept of a kernel function is still unfamiliar to many
colleagues. Once it is understood, a natural question is:
What are kernel functions good for?
Indeed, given an operator H(x) with eigenfunctions

H(x)ψm(x) = Emψm(x), m = 0,1,2, ...,M ≤ ∞,
any function K (x , y) of the form

K (x , y) =
M∑

m=0

λmψm(x)ψm(y),

satisfies the kernel identity

H(x)K (x , y) = H(y)K (x , y)

(formally in case M =∞). As a consequence, kernel functions
exist in profusion.
Key point: Once one has found such a kernel identity for a given
Hamiltonian H, one can use K (x , y) in "favorable" cases as the
kernel of an integral operator I whose eigenfunctions are also
H-eigenfunctions.
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To explain why the qualifier "favorable" is needed, consider e. g. a
finite-rank kernel of the form

K (x , y) =
M∑

m=0

λmψm(x)ψm(y), 0 < λ0 < · · · < λM ,

with ψm(x) real-valued smooth functions such that∫ 1

0
ψm(x)ψn(x)dx = δnm.

Thus I is a self-adjoint operator on L2((0,1),dx) with
eigenfunctions ψ0, . . . , ψM and infinite-dimensional null space.
Snag: A kernel identity (H(x)− H(y))K (x , y) does not imply that
H(x) has eigenfunctions ψm(x). For instance, take M = 1 and
define H to be zero on {ψ0, ψ1}⊥, and

(Hψ0)(x) := E0ψ0(x)+cλ1ψ1(x), (Hψ1)(x) := E1ψ1(x)+cλ0ψ0(x),

with E0,E1, c > 0 (say). Then the kernel identity easily follows, yet
it is plain that ψ0 and ψ1 are not eigenfunctions of H.
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Worse yet, for the above elliptic commuting Hamiltonians, it is not
at all clear that the explicit kernel functions just surveyed have a
bearing on eigenfunctions. Indeed, to begin with, the existence
and features of joint eigenfunctions are unknown in most cases.
Crux: It can be shown that the (very special) kernel functions at
hand do give rise to "favorable" cases, provided suitable Hilbert
spaces are chosen and the couplings are restricted to suitable
polytopes.
More specifically, for the relativistic cases the kernel functions
furnish the only tool (to date) to solve the long-standing problem of
promoting the commuting A∆Os to bona fide self-adjoint
commuting Hilbert space operators, with an orthonormal base of
eigenfunctions arising from the integral operators associated to
the kernel functions.
In my Thursday talk I shall explain this in more detail.
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