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Abstract

Elliptic Painlevé equations head the list of the differential and
discrete Painlevé equations. The well known elliptic Painlevé
equation is given by a nearest neighbor vector on the Eél)

weight lattice.
|

In this poster, we present an elliptic Painlevé equation,
which is obtained by a next-nearest-neighbor vector. We
also show that its projectively-reduced equation is the
elliptic difference equation found by Ramani, Carstea and
Grammaticos in 2009 from the reduction of the discrete

analogue of the Krichever-Novikov equation.
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Painlevé equations

I
In the early 20th-century, in order to find a new class of special
functions, Painlevé and Gambier classified all rational ordinary
differential equations of second order of the form y” = F(y/,y,t),
where y = y(t) and ' = d/dt, with the Painlevé property (solutions do
not have movable branch points). As a result, they obtained six new
equations.

According to the classification by the rational surfaces (space of initial
values) by Okamoto [6], the Painlevé equations can be classified into 8
types. From the view point of this classification, Pyj; can be divided
into three types by the values of parameters. Therefore, we have the
following diagram of degeneration:

Dél) Dgl) Dél)
0 I I N
(D{") (DY) (D§") (DY) (D{Y)
N N +
PIV — PH — P[
(ESM) (EY) (ES)
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rete Painlevé equation

|
Discrete Painlevé equations are nonlinear ordinary difference equations of second
order, which can be reduced to the Painlevé equations through appropriate
limiting processes. It is well known that there are three difference types (elliptic-,
multiplicative- and additive-type)O

Originally, discrete Painlevé equations appeared in the model of 2D quantum
gravity and the theory of orthogonal polynomials [3, 5]. In 1991, Grammaticos et
al. introduced the singularity confinement criterion as the discrete version of the
Painlevé property [4]. Since then, many kinds of discrete Painlevé systems were
found.

In 2001, Sakai [8] showed the classification of discrete Painlevé equations by space
of initial valuesd Discrete Painlevé equations are characterized by their space of
initial values constructed by the blow up of P! x P! at eight base points (i.e.
points where the system is ill defined because it approaches 0/0). They are
classified into 19 types according to the configuration of the base points.

Discrete type | Type of surface

Elliptic AM

Multiplicative | A(D*, AW AWM AD a4 A0
Additive AL AW A p® T p gD g
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RCG equation

.
Ramani-Carstea-Grammaticos [7] obtained the following ordinary
difference equation (RCG equation) from the partial difference
equation called Lattice Krichever-Novikov (KN) system [1].

(1 — k2sz*)cede 7y — (c2 — cz?)czdz — (1 — k2s2s72)cz dz 22

A k2(c2 — cz?)ezdza?y — (1 — k2sz)cede ¢ + (1 — k282s22)czdzy
(1=K eod, g — (2 — &) endz — (1 — k2s262°) 6z dz 2
T = = ==
k2(c2 — &%)z dz e — (1 — k282" )cod, § + (1 — k28282° )Gz dz
where

sz=sn(z), Sz=sn(z4+7), Se=sn(7), So=s5n("%),
CZZCD(Z)’ &:Cn(z+’y)7 Ce:CIl(’ye), CO:CD(’YO),
dz = dn (2), &zdn(z—i—’y), de =dn(y.), do=dn(v),
y=y(2), z==z(2), Y=Y+ Y% iz z+2y,

sn, cn, dn are the Jacobian elliptic functions, and k is the modulus.
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Geometry of the RCG equation

|
In [2], the space of initial values of RCG equation was investigated.

The eight base points are given by

p1:(x,y) =
p2:(z,y) =
p3 (T, y) =
pa:(z,y) =
ps: (z,y) =
pe : (T, y) =
p7 i (x,y) =
ps : (z,y) =

(cd (vo + 2K +iK') ,cd (20 — Ve — Yo + 2K +iK') ),
cd (7o +1K') yed (20 = Ye — 70 +1K') ),

cd (70 + 2K) ,cd (20 — Ve — Yo —i—QI())7

cd () ;¢d (20 — Yo —¥0) ),

cd (20 + 2K +1K') ,cd (ve + 2K +iK') ),

cd (20 +1K') ,cd (e +1K') ),

cd (20 + 2K) ,cd (e + 2K) ),

(cd (20) ,ed (%) ),

N N e = = o=

where ed = en/dn and K = K(k), K/ = K'(k) are complete elliptic
integrals, which lie on the bi-degree (2, 2)-curve

® + 3% = sn (20 — %)* (1 + k*2”y%) + 2cn (20 — %) dn (20 — %) zy-

Elliptic Aél) type

= RCG equation is an elliptic Painlevé equation
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Moreover, the expression of the time evolution of the RCG equation
in the affine Weyl group of type Eél) were found in [2].
Let ¢ : (x,y) — (Z,7) be the time evolution of the RCG equation. Then,

it can be expressed by the element of W(Eél)) = (sg,...,ss) as the

following:

éf) = 55645348370675645234832156453483706756452348321706734830468 5

where Siy iy = Siy v+ Sipys 11 lm € {0, .. .,8}, m € Zso.

The time iteration ¢ turns out not to be given by translation on the
Eé(;l) lattice. However, its square (i.e., composition with itself) is a
translation. The iteration ¢ corresponds to
next-nearest-neighbor-connecting vectors (NNVs) whose squared
length is 4 on the weight-lattice of Eél).

Therefore, in this sense the birational action of ¢? gives a different
elliptic Painlevé equation from the well known elliptic Painlevé
equation [8], which corresponds to nearest-neighbor-connecting
vectors (NVs) whose squared length is 2.
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Aim of this work

Although the geometry of the RCG equation has been

clarified, its realization from the birational action of the affine
Weyl group was missing since its base points are parametrized
by the Jacobian elliptic function, and birational actions of the

affine Weyl group on such setting were not explicitly known.

|
The present study fills this gap, that is, our main result
provides the realization of the RCG equation as a
half-translation of the affine Weyl group of type Eél).
Moreover, we explicitly show the generic version of the
RCG equation, which corresponds to NNVs.
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Generalized base points
|

Base points:

(2,2)-curve:

pi:(z,y) = (cd(ci+n),ed(n—ci)), i=1,...,8
22 +y% = sn (2n)% (1 + k222y?) + 2en (2n) dn (2n) 2y

Note that the following transformations do not change the base points:

t1: (e, .-

L2 (e,

w3 (e, ...

ta : (c1y- -

Specialization ﬂ 6

iK'’ iK'’ iK' 1
~,C8:7]7$7y) = <Cl - 77"'768_ 7777_ 77@79) ’

iK'’ iK'’ iK'’ 1
7087777x7y)’_>(61_77"'768_777] 77“‘-7@)7

7683777:0711))_)(Cl_Kv---708_K777_K7_$7y)7
’0877775&9)H(Cl—K7~-708—K7?7+Ka507—y)-

cao=c1+2K, c3=c1+iK', ca=c1+k
=c5+2K, cr=c5+iK', cg=c5+k
Zo=1nN+c+kK Ye=C—N+kK Yo=ntc1t+k

The base points and (2, 2)-curve for the RCG equation.

Here, k = 2K +iK’.
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Birational action of the affine Weyl group

|
Using the geometric approach investigated by Sakai [8], we obtain the

following birational action of W(Eél)) = (sg,...,Ss) on the
coordinates (x,y) and parameters ¢;, i = 1,...,8, and 7.

si(z) =y, si1(y) ==,

2) —ed (2= 252)\ o cdnten) (y-cdln—c)

<52(y)cd (2n+ Cl;”)) (w—cd(n+c;)) (y—cd(n—cj)>
cd(2'q7€1;C2

_ cd(n—ca) e\ [1- et
I i ) () cd(5°2)
T steey |\ e | | T aGegs) |

cd(n) cd(n) —_ =/
cd(iclgcz)
2n+c1 +c
so(er) = es, soles)=er, si(n) ==, san) =n— T2,
3(27)+61+02) _ 2n+c1 + c2

sa2(ci) = ¢ — i , =12, so(cj) =c¢j + 7 , F#L2,

sgp(ck—1) = cx, skler) =ck—1, k=3,...,7, ss(c1) =ca2, ss(c2)=c1.

Note that A = >>% | ¢; is invariant under the action of W (E").
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|
Moreover, by adding the transformations ¢;, i =1, ..., 4, W(Eél)) can

be extended to W(Eél)) = (11,2, 13,t4) ¥ W(Eél)).

The following fundamental relations hold:

(si85)"9 = (1ie)™9 =1,

tis; =sjti, ©=1,2,3,4, j# 1,2, 1{1234)51 = S1({2,1,4,3}»

L1182 = S2i1l2, 1282 = Sal2, (352 = S2l3l4, L4852 = Sal4,
where

, =7

lij: ’ i:jfl (j:2:~~-»7)» or if (Zv.j):(gvg)v(?vo)

, otherwise,

1

3

2
o=
&= 2, otherwise.
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Derivations of the elliptic Painlevé equations

Let

(b = 55645348370675645234832156453483706756452348321706734830468L4L3L2L1 .

The action of ¢ on the parameter space is not translational, but when
the parameters take special values
co=c1+2K, cs=c1+iK', cy=c +2K +iK’,
cg = c5 + 2K, C7:C5+iK/, 88:C5+2K—|—iK,,
the action of ¢ becomes the translational motion in the parameter
subspace:
¢ (Ye, Y05 2) = (Ve Yor 2 + 2(7e + 7)),

where

z=nN+c+K, Ye=C—N+K TYo=nN+cC1+K

|
Then, the action of ¢ on the coordinates ¢ : (z,y) — (Z,7) gives the
RCG equation.
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The action of d>2 :(ciymyxz,y) — (¢5,m+ X — 2k, T, Y) gives the generic version of the RCG equation:
- cs
(kcd(n—cg+n)§+l> & —cd(n—cr+ 5418 4 X+ k)
ked(n—c7+r)y+1 i—cd(n—cg-‘-c‘s‘%-&-)\-&-ﬁ)

=G

c5678 —2¢5+A c5678 —2¢6+A cser8 —2¢7+A c5678 —2¢8+A Py
5 s 5 ) 5 s 5 mt5te

Peggrs—2c5+2 csers—2c6+) csgrs—2c7+A Aa (&, 9)
~ 5 , 5 s 5 nt+5 R
—,
Pesgr —22C5+)‘755678—2206+/\’C567 _22CS+)\=T/+%+N (&, 9)
kcd(n+ca+r)T+1 kcd(n—c3+2X+r)y+1
ked(n+cs+r)T+1 ked(n—ca+2Xx+r)y+1
T e 1284 N g 1234 (5 g4 1234 43 o, 4 91234 4y CRETETIN
1 _)
T, T
n—61+C—lﬁﬂ+%m—62+n—lﬁﬂ+%m—63+n—lﬁﬂ+%,g’f’lﬁﬁ%—n(ky’

42X (
— ©123 — ©123 — ©1234 5678 T<A | o
B 141284 {5 4 €1284 5 oo, 1284 1y caorat2r | (F

L
S]]

)
wherec; =c; — A, Cixa =cipa+ A +4dr,i=1,...,4,¢j,...5, = > cj; and Z, § are given by
5678 \
kcd (U+CS - =3 )y+1 (z—cd(n«kcﬂ) B Peg,cg,c7,m (€5 9)
C5,C6,C7,C8:1
kcd(n+C77°56‘%)g+1 @ —cd(n+ cg) 8:96:67:8:7 P,

<|

5
cgreg,m (%5 Y)

k:cd(n—04+c1%34)5c+1 kcd(n+03+csg7s)g]+1
ked (n—ca+ 1334 ) 5+ 1) \kod (n+ca+ 5§78 ) g 41

=G o o o o o
nber+ SBGTR oy} CAOTR ooy CAOTR ., | CSOTR CHGTR

4

1
77+CI+LS§%7/’7+CZ+ E5678 g+ L59178 , 5278 R
1

Potoy+ 5678 oyt SBET8 4oy 4 S56T8  C56T8 (kyz) ,
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Here,

cd(a4+a1;a2) cd(b+a4 “1*“2*"3*‘14)
1— —— < 7 il =
co(ear ) | (1 ez | 17 ooy erEengenen)
Gq b L
1,02,a3,04, T cd(b—a a)+aptaztay
cd(a2+“1+a2) Cd(b+a2+a1+a2+a3+a4)
. cd(ag-%—"'l;az)
cd(2b+a2—$)
X T )
L cd(a4+7a12a2)

cd (2b+a2 - %)

Qaq,a0,a3,a4,a5,b (X)

2a5,

as as as
=(cd(b+a3—?>—cd(b+a2+—) ( (b+a1+?)—cd(b+a4+?>>
+

)

D+ (b 2) oo r )
X(cd<b+a4+a§)fcd<b+a2 a2 )) cd(b+u.4)cd(b+u.2)+cd(b+a1)X)

)(

)

(cd(b+a4)cd(b+a1)+cd (b+a2)

as as as
— (cd b+a3—? —cd b+ aq + 7 cd b+a1+— —cd b+a2+?

x (cd (b+a1) od (b + az) + od (b + aq) X
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Paiag,ag,b (X, Y) = C1XY + C2X + C3Y + Cy,
where

C1 :(Cd (b—as) —cd(b— ag))cd(b+a1) + (Cd (b—a1) —cd(b— ag))cd (b+ az)

+ (cd(b— as) —cd(b—al))cd(b+a3),

Ca =(cd (b—as) —cd(b— ag))cd(b— a1)cd (b + a1)
+ (cd (b—a3) —cd(b— al))cd (b — as)cd (b+ az)

+ (cd(b— a) —cd(b—az))cd(b—a3)cd(b+a3),

Cs :(cd (b+a3) —cd (b+a2))cd (b—aj)cd(b+aq)
+ (cd (b+ay)—cd (b+a3))cd (b—ag)cd (b+ az)

+ (cd(b+a2) 7cd(b+a1))cd(b7a3)cd(b+a3),

@ :(cd (b4 az2)cd (b — az) — cd (b — ag) cd (b+a3))cd (b—a1)cd(b+a1)
+ (cd (b+a3z)ed(b—ay) —cd(b—a3z)cd (b+a1))cd (b—ag)cd(b+ az)

+ (cd(b+a1)cd(b—a2) 7cd(b—a1)cd(b+a2))cd(b— az)cd (b + a3).
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