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Notation

The modified Jacobi theta function with argument x and nome p is
defined by

θ(x ; p) :=
∏
j≥0

((1− pjx)(1− pj+1/x)), θ(x1, . . . , xm; p) :=
m∏

k=1

θ(xk ; p),

where x , x1, . . . , xm 6= 0, |p| < 1.

For p = 0, we have θ(x ; 0) = 1− x .

The modified theta functions satisfy

θ(x ; p) = −xθ(1/x ; p),

θ(px ; p) = −1

x
θ(x ; p),

and Weierstraß’ addition formula

θ(xy , x/y , uv , u/v ; p)− θ(xv , x/v , uy , u/y ; p) =
u

y
θ(yv , y/v , xu, x/u; p).

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Notation

The modified Jacobi theta function with argument x and nome p is
defined by

θ(x ; p) :=
∏
j≥0

((1− pjx)(1− pj+1/x)), θ(x1, . . . , xm; p) :=
m∏

k=1

θ(xk ; p),

where x , x1, . . . , xm 6= 0, |p| < 1.

For p = 0, we have θ(x ; 0) = 1− x .

The modified theta functions satisfy

θ(x ; p) = −xθ(1/x ; p),

θ(px ; p) = −1

x
θ(x ; p),

and Weierstraß’ addition formula

θ(xy , x/y , uv , u/v ; p)− θ(xv , x/v , uy , u/y ; p) =
u

y
θ(yv , y/v , xu, x/u; p).

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Notation

The modified Jacobi theta function with argument x and nome p is
defined by

θ(x ; p) :=
∏
j≥0

((1− pjx)(1− pj+1/x)), θ(x1, . . . , xm; p) :=
m∏

k=1

θ(xk ; p),

where x , x1, . . . , xm 6= 0, |p| < 1.

For p = 0, we have θ(x ; 0) = 1− x .

The modified theta functions satisfy

θ(x ; p) = −xθ(1/x ; p),

θ(px ; p) = −1

x
θ(x ; p),

and Weierstraß’ addition formula

θ(xy , x/y , uv , u/v ; p)− θ(xv , x/v , uy , u/y ; p) =
u

y
θ(yv , y/v , xu, x/u; p).

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Notation

The modified Jacobi theta function with argument x and nome p is
defined by

θ(x ; p) :=
∏
j≥0

((1− pjx)(1− pj+1/x)), θ(x1, . . . , xm; p) :=
m∏

k=1

θ(xk ; p),

where x , x1, . . . , xm 6= 0, |p| < 1.

For p = 0, we have θ(x ; 0) = 1− x .

The modified theta functions satisfy

θ(x ; p) = −xθ(1/x ; p),

θ(px ; p) = −1

x
θ(x ; p),

and Weierstraß’ addition formula

θ(xy , x/y , uv , u/v ; p)− θ(xv , x/v , uy , u/y ; p) =
u

y
θ(yv , y/v , xu, x/u; p).

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

From rational to q- to elliptic

How to add numbers?

Ordinary case: n + (m − n) = m.

q-analogue: [n]q + qn [m − n]q = [m]q,

where [n]q = 1−qn

1−q .

We call [n]q the q-number of n,

and Wq(n) = qn the q-weight of n.
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Interpretation of [n]q as

area generating function

of lattice paths

(with positively directed
horizontal and vertical steps
of unit length)

from (0, 0) to (1, n − 1).

W (P((0, 0)→ (1, n − 1)))

= 1 + q + q2 + · · ·+ qn−1 = [n]q.
q

q

q

q

q

q

q

(0,0)

(1,n-1)

a

a

w1

w2

w3

w4

w5

w6

w7

The idea is to generalize this further by suitably modifying the weights.
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a; q-analogue: [n]a;q + Wa;q(n) [m − n]aq2n;q = [m]a;q,

where

[n]a;q =
(1− qn)(1− aqn)

(1− q)(1− aq)
q1−n and Wa;q(n) =

(1− aq1+2n)

(1− aq)
q−n.

The a; q-analogue clearly reduces to the q-analogue when a→∞.

b; q-analogue: [n]b;q + Wb;q(n) [m − n]bqn;q = [m]b;q,

where

[n]b;q =
(1− qn)(1− bq2)

(1− q)(1− bq1+n)
and Wb;q(n) =

(1− bq)(1− bq2)

(1− bq1+n)(1− bq2+n)
qn.

The b; q-analogue clearly reduces to the q-analogue when b → 0.
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a, b; q-analogue (unification of the previous two):

[n]a,b;q + Wa,b;q(n) [m − n]aq2n,bqn;q = [m]a,b;q,

where

[n]a,b;q =
(1− qn)(1− aqn)(1− bq2)(1− a/b)

(1− q)(1− aq)(1− bq1+n)(1− aqn−1/b)

and

Wa,b;q(n)=
(1− aq1+2n)(1− bq)(1− bq2)(1− aq−1/b)(1− a/b)

(1− aq)(1− bq1+n)(1− bq2+n)(1− aqn−1/b)(1− aqn/b)
qn.

The a, b; q-analogue reduces to the a; q-analogue when b → 0 or b →∞.
It reduces to the b; q-analogue when a→ 0 or a→∞.
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Elliptic analogue:

[n]a,b;q,p + Wa,b;q,p(n) [m − n]aq2n,bqn;q,p = [m]a,b;q,p,

where

[n]a,b;q,p =
θ(qn, aqn, bq2, a/b; p)

θ(q, aq, bq1+n, aqn−1/b; p)

and

Wa,b;q,p(n) =
θ(aq1+2n, bq, bq2, a/b, a/bq; p)

θ(aq, bq1+n, bq2+n, aqn/b, aqn−1/b; p)
qn.

The elliptic (or a, b; q, p-)analogue reduces to the a, b; q-analogue when
p → 0.

The above expressions involve ratios of modified Jacobi theta functions.
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(Natural) hierarchy of hypergeometric series

Given a series S =
∑

k≥0 ck with c0 = 1, consider g(k) = ck+1

ck
.

S is hypergeometric ⇔ g(k) is a rational function of k,

S is q-hypergeometric ⇔ g(k) is a rational function of qk ,

S is elliptic hypergeometric ⇔ g(k) is an elliptic (i.e., meromorphic,

and doubly periodic) function of k.

Elliptic functions can be built from quotients of theta functions.

For convenience, we define the theta shifted (or a, b; q, p-shifted)
factorials:

(a; q, p)k :=
k−1∏
j=0

θ(aqj ; p),

and (a1, . . . , am; q, p)k = (a1; q, p)k . . . (am; q, p)k .
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History

Hypergeometric series and basic hypergeometric series have a rich
(and prominent) history.

Hypergeometric series: Newton, Gauß, . . .

binomial series expansions, differential equations, special functions, . . .

q-Hypergeometric series: Euler, Heine, . . .

number theoretic partition identities, q-analogues;

Elliptic hypergeometric series: Frenkel & Turaev [1997],

elliptic solutions of the Yang–Baxter equation.
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Frenkel and Turaev’s 10V9 summation [1997].

n∑
k=0

θ(aq2k ; p)

θ(a; p)

(a, b, c , d , e, q−n; q, p)k
(q, aq/b, aq/c , aq/d , aq/e, aqn+1; q, p)k

qk

=
(aq, aq/bc, aq/bd , aq/cd ; q, p)n

(aq/b, aq/c , aq/d , aq/bcd ; q, p)n
,

where a2qn+1 = bcde.

For p = 0 the 10V9 summation reduces to Jackson’s 8φ7 summation.

The 10V9 is the most fundamental identity in the theory of elliptic
hypergeometric series.
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Weighted lattice paths

Lattice paths in Z2:

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

• • • • • • • • • • • • • •

•

•

u = (k, l)

v = (n,m)

Given u, v ∈ Z2, denote the set of all lattice paths from u to v consisting
of unit horizontal and vertical steps in the positive direction by P(u → v).
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To each horizontal edge in Z2 that connects (n − 1,m) and (n,m) we
assign the weight W (n,m).

•• •
(n−1,m) (n,m)

W (n,m)

(All vertical edges shall have weight 1).

Most of the subsequent analysis works for general weights.

Here we are interested in employing the elliptic weight

W (s, t) =
θ(aqs+2t , bq2s , bq2s−1, aq1−s/b, aq−s/b; p)

θ(aqs , bq2s+t , bq2s+t−1, aq1+t−s/b, aqt−s/b; p)
qt .

The weight W (P) of a path P is defined to be the product of the
weights of all its horizontal steps.
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Denote the weighted generating function of all paths from (0, 0) to
(k, n − k) by [

n
k

]
W

:= W (P((0, 0)→ (k , n − k))).

It is immediate that, for integers n, k, there holds[
n
0

]
W

= 1,

and [
n
k

]
W

= 0, whenever k = −1,−2, . . . , or k > n.
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Furthermore, since the last step of the path is either vertical or
horizontal, we have the recursion[

n + 1
k

]
W

=

[
n
k

]
W

+

[
n

k − 1

]
W

W (k , n + 1− k),

for nonnegative integers n and k .

For the elliptic weights W (s, t) = Wa,b;q,p(s, t) we have [M.S., 2007][
n
k

]
W

=

[
n
k

]
a,b;q,p

:=
(q1+k , aq1+k , bq1+k , aq1−k/b; q, p)n−k

(q, aq, bq1+2k , aq/b; q, p)n−k
,

due to Weierstraß’ addition formula for theta functions.
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More generally, we have

Theorem [M.S., 2007].
Let l , k, n,m be four integers with n − l + m − k ≥ 0.

The elliptic generating function of paths running from (l , k) to (n,m) is

W (P((l , k)→ (n,m)))

=
(q1+n−l , aq1+n+2k , bq1+n+k+l , aq1+k−n/b; q, p)m−k

(q, aq1+l+2k , bq1+2n+k , aq1+k−l/b; q, p)m−k

× (aq1+l+2k , aq1−n/b, aq−n/b; q, p)n−l
(aq1+l , aq1+k−n/b, aqk−n/b; q, p)n−l

(bq1+2l ; q, p)2n−2l
(bq1+k+2l ; q, p)2n−2l

q(n−l)k .
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Convolutions

We have the following convolution of (elliptic) generating functions:

W
(
P((0, 0)→ (n,m))

)
=

min(k,n)∑
l=0

W
(
P((0, 0)→ (l , k − l))

)
W
(
P((l , k − l)→ (n,m))

)
.

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

•.....
.....

..........

.....

..........

.....

.....

.....

...............•

(0, 0)

(n,m)

•(l,k−l)

@
@
@

@
@
@
@

(0, k)

(k, 0)
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We recover Frenkel and Turaev’s elliptic hypergeometric 10V9 summation
of 1997 in the following form (where the requirement of n and m being
nonnegative integers can be removed by analytic continuation):

Elliptic generalization of the q-Chu–Vandermonde identity.
Let n, m, and k be nonnegative integers, let a, b, q, and p be complex
numbers with |p| < 1. Then there holds:[

n + m
k

]
a,b;q,p

=
k∑

j=0

[
n
j

]
a,b;q,p

[
m

k − j

]
aq2n−j ,bqn+j ;q,p

k−j∏
i=1

Wa,b;q,p(i + j , n − j).
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We also have the following convolution of (elliptic) generating functions:

W
(
P((0, 0)→ (n,m))

)
=

m∑
k=0

W
(
P((0, 0)→ (l − 1, k))

)
W (l , k)W

(
P((l , k)→ (n,m))

)
.

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

• • • • • • • • • • • • •

•...............
.....

..........

.....

.....

.....

.....

...............•

(0, 0)

(n,m)

••
(l − 1, k)

(l , k)

x = l
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Further we have

W
(
P((0, 0)→ (n,m))

)
=

n∑
l=0

W
(
P((0, 0)→ (l , k − 1))

)
W
(
P((l , k)→ (n,m))

)
.

u
uu

u

(0, 0)

(l , k − 1)

(l , k)

(n,m)

y = k

r r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r r

p p p p p pppppp p p p p p p p p p p
ppppp p p p p p p p p p

p p p p p pppppp p p p p p
ppppp p p p p p p p p p p p p p p
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Eliptic-commuting variables

What are we after?

For motivation, we first recall the familiar q-case.

For nonnegative integers n and k with n ≥ k, the q-binomial coefficient
is defined as [

n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
.

Clearly,

lim
q→1

[
n
k

]
q

=

(
n
k

)
.
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For q ∈ C, let Cq[x , y ] be the associative algebra over C with 1
generated by x and y , satisfying the relation

yx = qxy .

Note that Cq[x , y ] is a q-deformation of the commutative algebra C[x , y ].

We refer to the variables x , y forming Cq[x , y ] as q-commuting (or
quasi-commuting) variables.

[Harold S.A. Potter (1950); M.P. Schützenberger (1953)]

Binomial theorem for q-commuting variables. The following identity is
valid in Cq[x , y ]:

(x + y)n =
n∑

k=0

[
n
k

]
q

xkyn−k .
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Writing, as before, q = e2πiσ, p = e2πiτ , we denote the space of elliptic
functions over C of the complex variable u, meromorphic in u with the
two periods σ−1 and τσ−1, by

Equ ;q,p.

More generally, we denote the space of totally elliptic multivariate
functions over C of the complex variables u1, . . . , un, meromorphic in
each variable with equal periods, σ−1 and τσ−1, of double periodicity, by

Equ1 ,...,qun ;q,p.
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Elliptic binomial coefficients

Let a and b be indeterminates, q and p complex numbers (with |p| < 1),
n and k nonnegative integers with n ≥ k.

We recall the definition of the elliptic binomial coefficient:[
n
k

]
a,b;q,p

:=
(q1+k , aq1+k , bq1+k , aq1−k/b; q, p)n−k

(q, aq, bq1+2k , aq/b; q, p)n−k
.

Note that

lim
b→0

(
lim
a→0

(
lim
p→0

[
n
k

]
a,b;q,p

))
=

[
n
k

]
q

.

This elliptic binomial coefficient is indeed totally elliptic; in particular,[
n
k

]
a,b;q,p

∈ Ea,b,qn,qk ;q,p.
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Recall, that using Weierstraß’ addition formula, one can verify the
following recursion for the elliptic binomial coefficients:[

n
0

]
a,b;q,p

=

[
n
n

]
a,b;q,p

= 1,

[
n + 1
k

]
a,b;q,p

=

[
n
k

]
a,b;q,p

+

[
n

k − 1

]
a,b;q,p

Wa,b;q,p(k, n + 1− k),

for positive integers n and k with n ≥ k , where

Wa,b;q,p(s, t) :=
θ(aqs+2t , bq2s , bq2s−1, aq1−s/b, aq−s/b; p)

θ(aqs , bq2s+t , bq2s+t−1, aq1+t−s/b, aqt−s/b; p)
qt .
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If we let p → 0, a→ 0, then b → 0 (in this order), the above relations
reduce to [

n
0

]
q

=

[
n
n

]
q

= 1,

[
n + 1
k

]
q

=

[
n
k

]
q

+

[
n

k − 1

]
q

qn+1−k ,

for positive integers n and k with n ≥ k , which is a well-known recursion
for the q-binomial coefficients.

(There exists a second recursion formula for the q-binomial coefficients;
that can also be generalized to the elliptic level.)
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Elliptic-commuting variables

For p, q ∈ C with |p| < 1, and two commuting variables a and b, let
Ea,b;q,p[x , y ] be the associative algebra over Ea,b;q,p with 1 generated by
x and y , satisfying the following relations:

yx =
θ(aq3, bq, a/bq; p)

θ(aq, bq3, aq/b; p)
qxy ,

x f (a, b) = f (aq, bq2)x ,

y f (a, b) = f (aq2, bq)y ,

for any f (a, b) ∈ Ea,b;q,p.

(Note that, in particular, θ(aq3,bq,a/bq;p)
θ(aq,bq3,aq/b;p)q ∈ Ea,b;q,p.)

We refer to the variables x , y , a, b forming Ea,b;q,p[x , y ] as
elliptic-commuting variables.

Ea,b;q,p[x , y ] formally reduces to Cq[x , y ] if one lets p → 0, a→ 0, then
b → 0 (in this order), and drops the conditions of ellipticity.
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A binomial theorem for elliptic-commuting variables

We have the following result (2011):

Binomial theorem for elliptic-commuting variables.
The following identity is valid in Ea,b;q,p[x , y ]:

(x + y)n =
n∑

k=0

[
n
k

]
a,b;q,p

xkyn−k .

Proof.
We proceed by induction on n. For n = 0 the formula is trivial.

Now let n > 0 (n being fixed) and assume that we have already shown
the formula for all nonnegative integers ≤ n. We need to show

(x + y)n+1 =
n+1∑
k=0

[
n + 1
k

]
a,b;q,p

xkyn+1−k .
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By the recursion formula for the elliptic binomial coefficients, the
right-hand side is

n+1∑
k=0

[
n
k

]
a,b;q,p

xkyn+1−k

+
n+1∑
k=0

[
n

k − 1

]
a,b;q,p

Wa,b;q,p(k , n + 1− k) xkyn+1−k

=
n∑

k=0

[
n
k

]
a,b;q,p

xkyn−ky

+
n∑

k=0

[
n
k

]
a,b;q,p

Wa,b;q,p(k + 1, n − k) xk+1yn−k ,

with Wa,b;q,p(k + 1, n − k) defined earlier.
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It remains to be shown that

Wa,b;q,p(k + 1, n − k) xk+1yn−k = xkyn−kx .

However, using the defining relations of the algebra Ea,b;q,p[x , y ] it is
straightforward to show by induction with respect to k and l (we omit
the details here) that

xkWa,b;q,p(s, t) = Wa,b;q,p(s + k, t)xk

y lWa,b;q,p(s, t) =
Wa,b;q,p(s, t + l)

Wa,b;q,p(s, l)
y l ,

from which, together with the first defining relation of the algebra
Ea,b;q,p[x , y ] that can be written in the form

yx = Wa,b;q,p(1, 1) xy ,

one readily establishes the formula, as stated.
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This elliptic binomial theorem can be used to recover Frenkel and
Turaev’s 10V9 summation in the following form (where the requirement of
n and m being nonnegative integers can be removed by analytic
continuation):

Frenkel and Turaev’s 10V9 summation. Let n, m, and k be nonnegative
integers, let a, b, q, and p be complex numbers with |p| < 1. Then there
holds the following convolution formula:

[
n + m
k

]
a,b;q,p

=
k∑

j=0

[
n
j

]
a,b;q,p

[
m

k − j

]
aq2n−j ,bqn+j ;q,p

k−j∏
i=1

Wa,b;q,p(i + j , n − j).
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Proof. (Working in Ea,b;q,p[x , y ]) we expand (x + y)n+m in two different
ways and then suitably extract coefficients. On the one hand, we have

(x + y)n+m =
n+m∑
k=0

[
n + m
k

]
a,b;q,p

xkyn+m−k .

On the other hand, we have

(x + y)n+m = (x + y)n(x + y)m

=
n∑

j=0

[
n
j

]
a,b;q,p

x jyn−j
m∑
l=0

[
m
l

]
a,b;q,p

x lym−l

=
n∑

j=0

m∑
l=0

[
n
j

]
a,b;q,p

[
m
l

]
aq2n−j ,bqn+j ;q,p

x jyn−jx lym−l .
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We now apply

x jyn−jx lym−l = x j
( l∏

i=1

Wa,b;q,p(i , n − j)

)
x lyn+m−j−l

=

( l∏
i=1

Wa,b;q,p(i + j , n − j)

)
x j+lyn+m−j−l

and after extracting and equating (left) coefficients of xkyn+m−k on the
two right-hand sides of the equations on the previous page, we
immediately obtain the convolution formula as stated.

Elliptic commuting variables can also be used to prove other
combinatorial identities.
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One may also consider elliptic weights in other algebras.

The (classical) Weyl algebra is the algebra generated by x and y , with
the commutation relation

yx = xy + 1.

For an element α in the Weyl algebra, the sum

α =
∑
i,j

ci,jx
iy j

is called the normally ordered form of α.
The coefficients ci,j are called the normal order coefficients of α.

A.M. Navon (1973) showed that the normal order coefficients of a word
in the Weyl algebra are rook numbers.
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An elliptic extension of the Weyl algebra can be defined as follows (M.S.
and Meesue Yoo, 2016):

For p, q ∈ C with |p| < 1, and two commuting variables a and b, the
elliptic Weyl algebra Wa,b;q,p[x , y ] is defined to be the associative algebra
over Ea,b;q,p with 1 generated by x and y , satisfying the following
relations:

yx =
θ(aq3, bq, a/bq; p)

θ(aq, bq3, aq/b; p)
qxy + 1,

x f (a, b) = f (aq, bq2)x ,

y f (a, b) = f (aq2, bq)y ,

for any f (a, b) ∈ Ea,b;q,p.

It can be shown that the normal order coefficients of a word in the
elliptic Weyl algebra Wa,b;q,p[x , y ] are elliptic rook numbers.
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Special combinatorial numbers

.Many special combinatorial numbers closely related to hypergeometric series.

The Fibonacci numbers Fn, defined by

F0 = F1 = 1, Fn = Fn−1 + Fn−2, for n ≥ 2,

satisfy
Fn+1 =

n∑
k=0

(
n − k

k

)
.

I. Schur’s q-analogue of the Fibonacci numbers, Fn(q),

F0(q) = F1(q) = 1, Fn(q) = Fn−1(q) + qa+n−2Fn−2(q), for n ≥ 2,

satisfy
Fn+1(q) =

n∑
k=0

[
n − k
k

]
q

qk(k−1)+ak ,

where

[
n
k

]
q

=
∏k
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The Stirling numbers of the second kind S(n, k) count the number of
partitions of an n-element set into exactly k blocks.

They satisfy the following recursion:

S(n, k) = 0 for k < 0 or k > n,

S(0, 0) = 1,

S(n + 1, k) = S(n, k − 1) + kS(n, k), for k ≥ 0.

Explict formula:

S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn.
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Carlitz’ q-Stirling numbers of the second kind Sq(n, k):

Recursion:

Sq(n, k) = 0 for k < 0 or k > n,

Sq(0, 0) = 1,

Sq(n + 1, k) = qk−1Sq(n, k − 1) + [k]qSq(n, k), for k ≥ 0.

Explicit formula:

Sq(n, k) =
1

[k]q!

k∑
j=0

(−1)k−jq(k−j
2 )
[
k
j

]
q

[j ]nq,

where [k]q! =
∏k

j=1[j ]q.
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Weighted Stirling numbers of the second kind
[de Médicis & Leroux, 1995; Kereskényiné Balogh & M.S.]

Combinatorial interpretation:

Consider a partition of [n+ 1] = {1, 2, . . . , n+ 1} into k nonempty blocks,

ordered by their minima from left-to-right.

If the element n + 1 forms a separate block,
that block must be the k-th one and n + 1 the minimum of that block.
−→ Assign weight Vk to the element n + 1.

Otherwise, n + 1 is in the j-th block for some 1 ≤ j ≤ k,
but not a minimal element of any block
−→ Assign weight Wj to the element n + 1.

This immediately yields the recurrence

VSW (n + 1, k) = Vk VSW (n, k − 1) + (W1 + · · ·+ Wk) VSW (n, k).

Carlitz’ q-case is obtained when Vj = Wj = qj−1 for all j .

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Weighted Stirling numbers of the second kind
[de Médicis & Leroux, 1995; Kereskényiné Balogh & M.S.]
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Taking Vj = Wj = Wa,b;q,p(j − 1), where

Wa,b;q,p(j − 1) =
θ(aq−1+2j , bq, bq2, a/b, a/bq; p)

θ(aq, bqj , bq1+j , aqj−2/b, aqj−1/b; p)
qj−1,

and using

k∑
j=1

Wa,b;q,p(j − 1) = [k]a,b;q,p =
θ(qk , aqk , bq2, a/b; p)

θ(q, aq, bq1+k , aqk−1/b; p)
,

which telescopes due to the n = k − 1 case of

[n]a,b;q,p + Wa,b;q,p(n) [k − n]aq2n,bqn;q,p = [k]a,b;q,p,

we obtain the following elliptic extension of the Stirling numbers of the
second kind:

Sa,b;q,p(n+1, k) = Wa,b;q,p(k−1)Sa,b;q,p(n, k−1)+[k]a,b;q,pSa,b;q,p(n, k).
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Weighted unsigned Stirling numbers of the first kind
[de Médicis & Leroux, 1995; Kereskényiné Balogh & M.S.]

Combinatorial interpretation:

Consider a permutation of [n + 1], deomposed into to exactly k cycles,

ordered by their minima from left-to-right.

If the element n + 1 forms a separate cycle,
that cycle must be the k-th one and n + 1 the minimum of that cycle.
−→ Assign weight vn+1 to the element n + 1.

Otherwise, n + 1 is in one of the k cycles,
appearing after the j-th element for some 1 ≤ j ≤ n.
−→ Assign weight wj to the element n + 1.

This immediately yields the recurrence

vcw (n + 1, k) = vn+1 vcw (n, k − 1) + (w1 + · · ·+ wn) vcw (n, k).

A relevant q-case is obtained when vj = wj = q1−j for all j .

Likewise, we can assign elliptic weights to give an
elliptic extension of the unsigned Stirling numbers of the first kind.
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Basis transitions

Several (doubly indexed) special combinatorial numbers appear as
transition coefficients connecting two (polynomial) bases.

Binomial coefficients

(1 + z)n =
n∑

k=0

(
n

k

)
zk .

We denote the falling factorials by

zn :=

{
z(z − 1) . . . (z − n + 1) if n = 1, 2, . . . ,

1 if n = 0,

and denote the raising factorials by

zn :=

{
z(z + 1) . . . (z + n − 1) if n = 1, 2, . . . ,

1 if n = 0.

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Basis transitions

Several (doubly indexed) special combinatorial numbers appear as
transition coefficients connecting two (polynomial) bases.

Binomial coefficients

(1 + z)n =
n∑

k=0

(
n

k

)
zk .

We denote the falling factorials by

zn :=

{
z(z − 1) . . . (z − n + 1) if n = 1, 2, . . . ,

1 if n = 0,

and denote the raising factorials by

zn :=

{
z(z + 1) . . . (z + n − 1) if n = 1, 2, . . . ,

1 if n = 0.

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Basis transitions

Several (doubly indexed) special combinatorial numbers appear as
transition coefficients connecting two (polynomial) bases.

Binomial coefficients

(1 + z)n =
n∑

k=0

(
n

k

)
zk .

We denote the falling factorials by

zn :=

{
z(z − 1) . . . (z − n + 1) if n = 1, 2, . . . ,

1 if n = 0,

and denote the raising factorials by

zn :=

{
z(z + 1) . . . (z + n − 1) if n = 1, 2, . . . ,

1 if n = 0.

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Basis transitions

Several (doubly indexed) special combinatorial numbers appear as
transition coefficients connecting two (polynomial) bases.

Binomial coefficients

(1 + z)n =
n∑

k=0

(
n

k

)
zk .

We denote the falling factorials by

zn :=

{
z(z − 1) . . . (z − n + 1) if n = 1, 2, . . . ,

1 if n = 0,

and denote the raising factorials by

zn :=

{
z(z + 1) . . . (z + n − 1) if n = 1, 2, . . . ,

1 if n = 0.

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Stirling numbers of the second kind

These satisfy

zn =
n∑

k=0

S(n, k) zk .

This is easily seen (use z = (z − k) + k) to be equivalent to the
recursion

S(n, 0) = δn,0,

S(n, k) = 0 for k > n,

S(n + 1, k) = S(n, k − 1) + k S(n, k).
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Stirling numbers of the first kind

These are defined as the following connection coefficients:

zn =
n∑

k=0

s(n, k) zk .

This is easily seen (use (z − n) = z − n) to be equivalent to the
recursion

s(n, 0) = δn,0,

s(n, k) = 0 for k > n,

s(n + 1, k) = s(n, k − 1)− n s(n, k).

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Stirling numbers of the first kind

These are defined as the following connection coefficients:

zn =
n∑

k=0

s(n, k) zk .

This is easily seen (use (z − n) = z − n) to be equivalent to the
recursion

s(n, 0) = δn,0,

s(n, k) = 0 for k > n,

s(n + 1, k) = s(n, k − 1)− n s(n, k).

Elliptic hypergeometric combinatorics



From rational to q- to elliptic Weighted lattice paths Elliptic-commuting variables Special combinatorial numbers Basis transitions Summary

Lah numbers

These are defined as the following connection coefficients:

zn =
n∑

k=0

L(n, k) zk .

Since (
x + y

n

)
=

n∑
k=0

(
x

k

)(
y

n − k

)
,

it follows from the x = z and y = n − 1 case immediately that

L(n, k) =
n!

k!

(
n − 1

k − 1

)
.

The Lah numbers count the number of placements of 1, 2, . . . , n
into exactly k nonempty tubes with linear order on its elements.
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Abel numbers

These are defined, for c ∈ N, as the following connection
coefficients:

z(z + cn)n−1 =
n∑

k=0

Ac(n, k) zk .

By the binomial theorem, it follows that

Ac(n, k) =

(
n − 1

k − 1

)
(cn)n−k .

The Abel numbers A(n, k) count the number of forests of n labelled
vertices composed of k rooted trees where each of the vertices can
have one of c colors but the k roots must all have the first color.
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We denote the elliptic falling factorials by

[z ]
n
a,b;q,p :={

[z ]a,b;q,p[z − 1]aq2,bq;q,p . . . [z − n + 1]aq2n−2,bqn−1;q,p if n = 1, 2, . . . ,

1 if n = 0.

Similarly, we denote the elliptic raising factorials by

[z ]na,b;q,p :={
[z ]a,b;q,p[z + 1]aq−2,bq−1;q,p . . . [z + n − 1]aq2−2n,bq1−n;q,p if n = 1, 2, . . . ,

1 if n = 0.
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The elliptic Stirling numbers of the second kind Sa,b;q,p(n, k) satisfy the
following connection identity.

[z ]na,b;q,p =
n∑

k=0

Sa,b;q,p(n, k) [z ]
k
a,b;q,p.

Using [z ]a,b;q,p = Wa,b;q,p(k)[z − k]aq2k ,bqk ;q,p + [k]a,b;q,p,

this can be easily deduced from the recurrence relation

Sa,b;q,p(n+1, k) = Wa,b;q,p(k−1)Sa,b;q,p(n, k−1)+[k]a,b;q,p Sa,b;q,p(n, k).

On the contrary, the above connection identity can be used to define the
sequence Sa,b;q,p(n, k).
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The elliptic Stirling numbers of the first kind sa,b;q,p(n, k) are defined as
the following connection coefficients:

[z ]
n
a,b;q,p =

n∑
k=0

sa,b;q,p(n, k) [z ]ka,b;q,p.

As one can verify, the sa,b;q,p(n, k) satisfy the following recursion:

sa,b;q,p(n, 0) = δn,0,

sa,b;q,p(n, k) = 0 for k > n,

sa,b;q,p(n + 1, k) = W−1a,b;q,p(n)
(
sa,b;q,p(n, k − 1)− [n]a,b;q,p sa,b;q,p(n, k)

)
.

Clearly,
n∑

k=l

Sa,b;q,p(n, k) sa,b;q,p(k, l) = δn,l ,

or
(
Sa,b;q,p(n, k)

)−1
n,k∈N0

=
(
sa,b;q,p(k, l)

)
k,l∈N0

.
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Summary

Various elliptic extensions of combinatorial special numbers
(a lot of these have been obtained in joint work with Meesue Yoo,
and with Zsófia R. Kereskényiné Balogh):

Elliptic binomial coefficients

Elliptic Fibonacci and Lucas numbers

Elliptic Stirling numbers of the second kind,

Elliptic Stirling numbers of the first kind,

Elliptic Lah numbers,

Elliptic Abel numbers,

r -Restricted versions and other generalizations of the above,

Elliptic rook numbers (in different models: see talk of Meesue Yoo).
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