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Basic problem: We want to understand elliptic analogues of

isomondromic deformations, which requires a good notion of

monodromy.

Original idea (Etingof, Krichever, Rains): if M(z) is a meromor-

phic fundamental matrix for the equation v(qz) = A(z)v(z) and

A(pz) = A(z) (so the equation is p-elliptic), then M(z)−1M(pz)

is q-elliptic. The resulting q-elliptic p-difference equation is not

unique, but any two such equations are equivalent by a q-elliptic

gauge xform.

Question: Can we make this more rigid?
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Under certain genericity conditions, Krichever gets a unique equa-

tion by insisting that M(z) be invertibly holomorphic (in a suit-

able annulus) and satisfy

M(qz) = A(z)M(z)∆

for a suitable diagonal matrix ∆. Equivalently, while a usual

fundamental matrix identifies a vector space of solutions, this

identifies a vector bundle of solutions.

Praagman uses a similar idea to construct a meromorphic fun-

damental matrix: construct a suitable vector bundle, then use

the fact that any vector bundle is meromorphically trivial.
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General approach∗

Let v(qz) = A(z)v(z) be any meromorphic q-difference equation

(i.e., A(z) ∈ GLn(Mer(C∗))). We would like to define a sheaf

of holomorphic solutions; since it’s unreasonable to hope for

any globally holomorphic solutions, we need to specify what this

means locally.

More convenience, let’s allow a general vector bundle; i.e., V is a

vector bundle on C∗, and A : V 99K q∗V an invertible meromorphic

map. (A (meromorphic) “discrete connection” on V .)

∗This is a generalized and (hopefully) simplified version of Section 13.2
of my “The noncommutative geometry of elliptic difference equations”,
arXiv:1607.08876. I’m leaning towards rewriting the section accordingly...
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Let V be a vector bundle on the Riemann surface X. A local
condition on V at a point x ∈ X is a space σx (“lattice”) of mero-
morphic germs of sections of V near x which has bounded poles
and forms a module over the ring of analytic germs. (Equiva-
lently, it’s a coset of GL(V mer

x )/GL(Vx), where Vx is the module
of germs of analytic sections, and V mer

x is the space of germs of
meromorphic sections). Call the local condition corresponding
to the lattice Vx “regular”, and otherwise “singular”.

A separated system of local conditions consists of an assignment
of a local condition to each point such that the set of points
where the local condition is singular is discrete in X.∗†

∗I’ll only ever deal with separated sytems of local conditions!
†Okounkov pointed out after my talk that when X is compact, the set of
separated systems of local conditions has been studied as the “Beilinson-
Drinfeld grassmannian” (of GLn).
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Observation: A system of local conditions on X is a global sec-

tion of the sheaf GL(V ⊗KX)/GL(V ) (where KX is the sheaf of

meromorphic functions), and thus determines (by the connecting

map on nonabelian cohomology) a class in H1(GL(V )).

In particular, a system of local conditions determines a vector

bundle. More precisely, the sections of this bundle on an open

set U consist of those meromorphic sections of V on U such that

every germ is contained in the appropriate lattice. (This con-

struction is shamelessly stolen from number theory, the “adèlic”

construction of vector bundles on projective curves.∗) Note that

since this sheaf is a subsheaf of V ⊗KX, it comes with an injective

meromorphic map to V .

∗Also called “Weil uniformization”. (comment added post-workshop)
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Proposition. This establishes an equivalence between the cate-
gory of vector bundles with separated systems of local conditions
and the category of invertible meromorphic maps W 99K V of
vector bundles.

Note that the morphisms (V, σ)→ (W, τ) consist of holomorphic
maps A : V → W such that Aσx ⊂ τx; and M : W 99K V induces
the system of local conditions MWx on V . Since the category of
meromorphic maps has well-behaved tensor products, this carries
over to the category of bundles with local conditions, including
symmetric powers, exterior powers, etc. The equivalence also
respects holomorphic families (appropriately defined).

Important observation: There’s an involution on the category
of invertible meromorphic maps: M 7→ M−1, which induces an
involution on the category of bundles with local conditions.

6



Given a q-difference equation A : V 99K q∗V on C∗, a (näıve)

meromorphic fundamental matrix corresponds to a meromorphic

map M : OnC∗ 99K V such that q∗M = AM . Any such matrix

determines a system of local conditions σ on V , which moreover

satisfies the consistency condition q∗σ = Aσ.

There’s an important source of such consistent systems of local

conditions: For each qZ-orbit of C∗, choose one point where we

assign the regular local condition. If those points are bounded

away from 0 and ∞, then the induced system of local conditions

will be separated. Note that the chosen point only matters on

those orbits where the equation is singular.
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Given a system of local conditions on V which is consistent with

A, we may construct the corresponding bundle W , and find that

A induces an isomorphism W ∼= q∗W . In particular, W is q-

equivariant. Conversely, given invertible M : W 99K V with W a

q-equivariant vector bundle, we may set A := M−1q∗M and thus

obtain a q-difference equation on V .

Theorem. There is an equivalence between the category of

triples (V,A, σ) of q-difference equations with consistent systems

of local conditions and the category of pairs (W,σ) where W is

a q-equivariant vector bundle and σ is a local condition on W .

Any q-equivariant sheaf descends through πq : C∗ → C∗/〈q〉, so

we may replace this by pairs (W,σ) where W is a vector bundle

on C∗/〈q〉 and σ is a local condition on π∗qW .
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Theorem. If Sol(A, σ) is the vector bundle on C∗/〈q〉 constructed

in this way, then for any open subset U ⊂ C∗/〈q〉, Γ(U ; Sol(A, σ))

is naturally isomorphic to the space of solutions of the equation

in Γ(π−1
q U ;V ).

We again have holomorphicity and consistency with tensor prod-

ucts, Schur functors, etc. (Note in particular that detW arises

from a first-order equation on detV .)
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Proposition. There is a natural bijection between the space

Hom(Sol(A, σ),Sol(B, τ)) of vector bundle morphisms and the

space of maps C : VA 99K VB with q∗CA = BC and Cσ ⊂ τ .

Proof. Write the morphism as a global section of Sol(A, σ)∗ ⊗
Sol(B, τ) ∼= Sol(B⊗A−t, τ⊗σ∗), and observe that the condition to

be a global section of the latter is precisely the stated condition

on C.

In particular, two equations with local conditions are gauge equiv-

alent iff they have isomorphic sheaves of holomorphic solutions.

(I.e., gauge equivalence == isomonodromy)

10



Example. Suppose A(z) ∈ GLn(C(z)). There are two natural

systems of local conditions: σ0, in which every point in some

punctured neighborhood of 0 is regular, and analogously σ∞.

This induces a meromorphic map

Sol(A, σ0) 99K Sol(A, σ∞).

If A(0) = 1, then Sol(A, σ0) is trivial, and its global sections

are holomorphic at 0, and similarly if A(∞) = 1. If both hold,

then the above meromorphic map becomes a matrix of q-elliptic

functions, precisely Birkhoff’s notion of monodromy.∗

∗Post-workshop comment: The example on the next slide shows that without
these conditions, it may not be possible to recover the equation (up to
rational gauge equivalence) from the map.
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∗During the talk, I pointed out that this gauge equivalence is not

as strong as one might think, as it’s a gauge equivalence over

general meromorphic matrices, which need not imply rational

gauge equivalence. Consider the equation† v(qz) =

(
1 −z
−z 1 + z2

)
v(z),

with fundamental matrix (relative to σ0 = σ∞ = 1)

M(z) =
∏
k≥0

A(qkz)−1 =


∑

0≤k
qk(k−1)z2k

(q;q)2k

∑
0≤k

qk
2
z2k+1

(q;q)2k+1∑
0≤k

qk(k+1)z2k+1

(q;q)2k+1

∑
0≤k

qk
2
z2k

(q;q)2k

 .
This is the unique (up to GL2(C)) meromorphic gauge equiva-

lence between this equation and v(qz) = v(z), and is manifestly

not rational.

∗(Added post-workshop)
†This is a version of Ismail’s q-Airy equation.
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For first-order equations v(qz) = a(z)v(z), we can determine the
line bundle as follows.∗ The system of local conditions deter-
mines a divisor of a function on C∗, and Weierstrass tells us that
there exists a function f(z) with that divisor. Gauging by this
function gives a new equation

v̂(qz) = â(z)v̂(z), â(z) = f(qz)−1a(z)f(z)

with trivial local conditions. This implies â(z) is nonvanishing and
holomorphic, so â(z) = Czk exp(

∑
l 6=0 clz

l). Further gauging by
exp(

∑
l 6=0 clz

l/(ql − 1)) reduces our equation to v(qz) = Czkv(z),
which is the standard expression for a line bundle on C∗/〈q〉.

Another approach is to take any meromorphic solution of the
equation, and observe that its divisor differs from the desired
divisor by a q-periodic divisor, corresponding to a divisor on C∗/〈q〉
and thus a line bundle.
∗Corrected from the slide as presented
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Holomorphic fundamental matrices

The vector bundles on an elliptic curve have been classified, and
in each case there’s a fairly natural choice of multiplier. In other
words, every vector bundle can be expressed as Sol(µ,OnC∗) with
µ ∈ GLn(C[z,1/z]).∗

Given a choice of multiplier (and an equation on the trivial
bundle), an isomorphism Sol(A, σ) ∼= Sol(µ,1) corresponds to
a “holomorphic” fundamental matrix M such that (a) every col-
umn of M satisfies the local conditions σ, and (b) M(qz) =
A(z)M(z)µ(z)−1.

(Of course, the true (and canonical) holomorphic fundamental
matrix is simply the map M : π∗q Sol(A, σ) 99K V ...)

∗This representation is far from unique, but we can mostly rigidify by insisting
that it be an extension of suitable “hypergeometric” equations.
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Elliptic equations

Suppose now that we’re also given |p| < 1, and A : V 99K q∗V
starts out on the Riemann surface C∗/〈p〉. Equivalently, we may

take V to be a p-equivariant vector bundle and A : V 99K q∗V an

equivariant meromorphic map. Call such an object a “p-elliptic

q-difference equation”. If we forget the equivariant structure, we

obtain a q-difference equation on C∗ and thus a notion of consis-

tent system of local conditions. Denote the resulting category

by E llDiff p,q.

Theorem. There is a natural equivalence between the category

E llDiff p,q and the category of triples (V,W,M) where M : π∗qW 99K

π∗pV satisfies p∗(q∗MM−1) = q∗MM−1.
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Inverting M gives the following. (There’s also a contravariant

version in which we transpose M instead.)

Corollary. There is an equivalence of categories (the “elliptic

Riemann-Hilbert correspondence”) Solp,q : E llDiff p,q
∼= E llDiff q,p,

with a natural isomorphism Solq,pSolp,q ∼= id.

Note that we could also take p∗(q∗MM−1) = Czkq∗MM−1, cor-

responding to a twisted equation A : V 99K q∗V ⊗L for a suitable

line bundle.∗ This gives E llDiff p,q,Czk
∼= E llDiff q,p,C−1z−k.

∗This is twisting by a p, q-equivariant gerbe. . .
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∗ I was asked during the talk what constraints I needed to impose

on p and q, so naturally replied that I was assuming that p and q

must be independent elements of C∗. On further reflection, this

constraint isn’t actually used in the above construction! The

only real constraint is that p and q must not lie on the unit

circle (since then the quotient is not a Riemann surface). For

the algebraic subcategories considered below, we further need

that p and q lie on the same side of the unit circle, so that the

singularities of the corresponding elliptic Gamma function are

not dense.

∗(Added post-workshop)
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Symmetric equations

Suppose A(η/qz)A(z) = 1 and we’re looking for solutions v(η/z) =

v(z). Everything above carries over at the level of equivariant

bundles (make everything z 7→ η/z-equivariant). Since the group

no longer acts freely, not every equivariant bundle is a pullback,

but this reduces to a fairly simple constraint at the ramified

points (i.e., with nontrivial stabilizer).

In particular, we obtain an equivalence between the category

of symmetric p-elliptic q-difference equations with suitable local

conditions and the same category with p and q swapped.∗

∗We can also twist by a z 7→ η/z-invariant gerbe: Czk with k = 0.
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Applying this to the Lax pair for elliptic Painlevé∗ gives biholo-
morphic maps between various spaces of initial conditions for
elliptic Painlevé, “integrating” elliptic Painlevé.

More generally, as long as the local conditions are determined
in a sufficiently rigid way, we get maps from algebraic cate-
gories of elliptic difference equations into the holomorphic cat-
egory E llDiff p,q,Czk (or its symmetric analogue). The algebraic
categories have a further source of holomorphic equivalences:
replace the curve C∗/〈p〉 by a modular transform. This interacts
nicely with the elliptic RH correspondence, giving a family of
holomorphic equivalences corresponding to the action of SL3(Z)
on (log q, log p, log 1). (Caveat: Every element of SL3(Z) has a
holomorphic equivalence over it, but I don’t know if this is an
actual action of SL3(Z). . . )
∗Technicality: with certain nearly-canonical choices of local conditions that I
only understand for parameters in general position. . .
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Possible application: Hypergeometric equations are rigid (deter-

mined by their singularities), so we can arrange for their mon-

odromy to be hypergeometric, and thus explicitly computable.

E.g., the monodromy of the equation satisfied by the order m

elliptic beta integral is essentially the same, just with p and q

swapped; the fundamental matrix is just a matrix of elliptic beta

integrals with shifted parameters.∗

Rigidity implies that every relation in SL3(Z) preserves the origi-

nal equation, and thus should induce a relation between the cor-

responding fundamental matrices: a nonabelian generalization

of the results of Felder and Varchenko on elliptic Gamma.

∗The existence of such an integral representation follows from the general
theory: the only tricky part is controlling certain generalized Fourier trans-
forms, but that’s easy since we understand the singularities of the input. . .
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Further open questions

(1) For singularities in general position, there’s a natural way

to associate local conditions to a choice for each singularity of

a preimage in C∗, giving a discrete set of ways to embed the

algebraic category in E llDiff (and a family of isomonodromy de-

formations on the algebraic image under RH). What’s the right

way to extend this to more general singularities?

(2) What’s the right version of this correspondence in the hy-

perbolic limit p, q → 1? There’s no difficulty using this approach

to produce analytic bundles on C/2πiZ associated to ordinary

difference equations, but we need to somehow force the bundles

and maps to be algebraic on C∗. . . (Sectors without singularities

+ growth conditions?)
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