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Abstract

Stirling numbers of the second kind and Bell numbers for graphs were defined by
Duncan and Peele in 2009. In a previous paper, one of us, jointly with Nyul, ex-
tended the known results for these special numbers by giving new identities, and
provided a list of explicit expressions for Stirling numbers of the second kind and
Bell numbers for particular graphs. In this work we introduce q-Stirling numbers
of the second kind and q-Bell numbers for graphs, and provide a number of ex-
plicit examples. Connections are made to q-binomial coefficients and q-Fibonacci
numbers.
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1 Introduction

The Stirling numbers of second kind S(n, k) are defined as the following con-
nection coefficients, where xk denotes the usual falling factorial of x:

xn =
n
∑

k=0

S(n, k) xk.

They count the number of ways to partition a set of n elements into k non-
empty subsets. The n-th Bell number Bn counts the number of different ways
to partition a set that has exactly n elements, hence

Bn =
n
∑

k=0

S(n, k).

Note that a partition of a set S is a collection {A1, A2, . . . , Ak} of nonempty
disjoint subsets of S such that

⋃k
i=1 Ai = S. The subsets Ai in a partition are

called blocks and without loss of generality we can assume that they are listed
in increasing order of their minimal elements, i.e. minA1 < . . . < minAk.

The Stirling numbers of the second kind satisfy the following recursion
formula

S(n+ 1, k) = S(n, k − 1) + kS(n, k),

with S(n, k) = 0 for k < 0 or n < k, and S(0, 0) := 1. They also satisfy an
explicit formula involving binomial coefficients.

S(n, k) =
1

k!

k
∑

j=0

(−1)j
(

k

j

)

(k − j)n.

Similarly, we have the following well known identity for Bell numbers:

Bn+1 =
n
∑

k=0

(

n

k

)

Bk.

Various generalizations of Stirling and Bell numbers exist. Particularly
attractive are their q-extensions by Carlitz [1]. These involve the q-numbers
as explicitly used by Jackson [3]. The classical case is recovered when q → 1.

Let q be a variable satisfying 0 < |q| < 1. For complex x, the q-number of
x is defined to be

[x]q :=
1− qx

1− q
.



Further, for n, k ∈ N0, the q-binomial coefficient is defined by

[n

k

]

q
:=

[n]q · · · [n− k + 1]q
[k]q · · · [1]q

.

Furthermore, we denote the q-falling factorials by

[x]nq := [x]q[x− 1]q · · · [x− n+ 1]q if n = 1, 2, . . . , and [x]0q := 1.

Using these notations, Carlitz’ q-Stirling numbers of the second kind are
defined as the following connection coefficients:

[x]nq =
n
∑

k=0

Sq(n, k) [x]
k
q .

They can be shown to satisfy the following recursion:

Sq(n+ 1, k) = qk−1Sq(n, k − 1) + [k]qSq(n, k),

which, together with Sq(n, k) = 0 for k < 0 or k > n, and Sq(0, 0) = 1,
determines them uniquely.

Carlitz [1, Equation (3.3)] gave the following explicit formula,

Sq(n, k) =
1

[k]q!

k
∑

j=0

(−1)jq(
j

2)
[

k

j

]

q

[k − j]nq .

Analogously, the q-Bell numbers are defined by

Bq,n =
n
∑

k=0

Sq(n, k).

The aforementioned q-analogues of special numbers can be interpreted
combinatorially similar to their classical versions where each element of the
set has a weight. The weights are given as certain powers of q.

Here we are interested in generalizations for graphs. Stirling numbers of the
second kind and Bell numbers for graphs (sometimes called “graphical Stirling
numbers”, etc.) were defined by Duncan and Peele [2]. They were further
investigated by Kereskényiné Balogh and Nyul [4] who explicitly determined
Stirling numbers of the second kind and Bell numbers for several well-known
graphs, such as the complete, path, star and cycle graph.



Let G be a simple (finite) graph. A partition of V (G) is called an in-
dependent partition if each block is an independent vertex set (i.e. adjacent
vertices belong to distinct blocks). Then for a positive integer k ≤ |V (G)|,
the Stirling number of the second kind S(G, k) for the graph G is defined to
be the number of independent partitions of V (G) into k subsets (where we set
S(G, 0) = 0). We further define the Bell number BG for graph G to be the
number of independent partitions of V (G), i.e.

BG =

|V (G)|
∑

k=0

S(G, k).

In case of the empty graph En with n vertices, there is no restriction on the
vertices belonging to a block of a partition and the corresponding graphical
Stirling and Bell numbers specialize to the ordinary Stirling and Bell numbers,
S(n, k) and Bn, respectivley.

Stirling and Bell numbers for special graphs often appear in applications.
In particular, consider the “path graph” Pn to be the simple graph having n
labeled vertices with its vertices being connected if and only if the difference
of their labels is at most one. Indepedent partitions of path graphs appear im-
plicitly in the literature under several names, e.g., nonconsecutive partitions,
Fibonacci, reduced or restricted partitions.

In [4] various new results have been derived for Stirling and Bell numbers
for graphs. For instance, we have the following reduction relations:

S(G, k) = S(G− e, k)− S(G/e, k) and BG = BG−e −BG/e,

where e ∈ E(G), G−e and G/e are the simplified graphs obtained by deleting
and contracting edge e from G, respectively.

The graphical Stirling numbers of the second kind satisfy the following
explicit formula (derivable by using the inclusion-exclusion principle),

S(G, k) =
1

k!

k
∑

j=0

(−1)j
(

k

j

)

pG(k − j)

(where pG denotes the chromatic polynomial of the graph G), while the Bell
numbers for graphs satisfy a Dobiński type formula,

BG =
1

e

∞
∑

j=0

pG(j)

j!
.



2 q-Stirling numbers of the second kind for graphs

Consider a simple (finite) labeled graph G with n vertices. As before the ver-
tices are partitioned into k ≤ |V (G)| independent blocks, Π = (A1, A2, . . . , Ak)
and they are listed in increasing order of their minimal elements. To each such
partition we assign the following q-weight

wq(Π) = q
∑k

i=1
(i−1)|Ai|, (1)

where |A| denotes the cardinality of the set A. Then the q-Stirling num-
ber of the second kind Sq(G, k) for the graph G is the sum of all weights of
independent partitions into k blocks (while we set Sq(G, 0) = 0), i.e.

Sq(G, k) =
∑

independent partitions Π of V (G)

wq(Π). (2)

Further, we define the q-Bell number Bq(G) of G as follows:

Bq(G) =

|V (G)|
∑

k=0

Sq(G, k). (3)

For G = En being the empty graph, the above defined q-Stirling numbers
of the second kind and q-Bell numbers for G specialize to the aforementioned
q-Stirling and q-Bell numbers of Carlitz, respectively.

Example 2.1 Consider the dual path graph P n, which has labeled vertices
being connected if and only if the difference of their labels is at least two.

P 4 has the following independent partitions into 3 blocks:

Π1 = ({1, 2}, {3}, {4}), Π2 = ({1}, {2, 3}, {4}), Π3 = ({1}, {2}, {3, 4}),

with q-weights wq(Π1) = q3, wq(Π2) = q4, and wq(Π3) = q5. Summing up
these weights we get

Sq(P 4, 3) = q3 + q4 + q5 = q3(1 + q + q2) = q3
(1− q3)

(1− q)
= q3

[

3

1

]

q

.

The following result generalizes this specific example to general n and k.

Theorem 2.2 For n, k ∈ N0

Sq(P n, k) = q(
k

2)+(
n−k

2 )
[

k

n− k

]

q

.



Proof. We prove the theorem by induction on n. It is true for n = 0 as

Sq(P 0, 0) = 1 and q(
0

2)+(
0

2)
[

0
0

]

q
= 1. Let n ≥ 1 and assume the statement

holds for P l where 0 ≤ l ≤ n. In case of l = n + 1 there are two different
cases. The last, (n+ 1)-st, element of V (P n+1) can either form a block alone
or can be part of the block where the n-th element is. This gives

Sq(P n+1, k) = qk−1Sq(P n, k − 1) + q2(k−1)Sq(P n−1, k − 1)

= q(
k

2)+(
n+1−k

2 )

(

[

k − 1

n+ 1− k

]

q

+ q2k−n−1

[

k − 1

n− k

]

q

)

= q(
k

2)+(
n+1−k

2 )
[

k

n+ 1− k

]

q

,

by the recursion for the q-binomial coefficients. ✷

The q-Bell numbers for the dual path graph G = P n turn out to be a
variant of the q-Fibonacci numbers:

Bq(P n) =
n
∑

k=0

Sq(P n+1, k) =
n
∑

k=0

q(
k

2)+(
n−k

2 )
[

k

n− k

]

q

= Fq,n+1. (4)

The above example even extends to elliptic weights. In the expanded
version of this extended abstract we provide explicit expressions for q-Stirling
numbers of the second kind and q-Bell numbers for various particular graphs.
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