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Abstract. We use a q-series identity by Ramanujan to give a combinatorial interpre-
tation of Ramanujan’s tau function which involves t-cores and a new class of partitions
which we call (m, k)-capsids. The same method can be applied in conjunction with other
related identities yielding alternative combinatorial interpretations of the tau function.

1. Introduction

Ramanujan’s [25] tau function τ(n) is defined to be the coefficient of qn in the 24th

power of Dedekind’s eta function η(q) := q
1
24 (q; q)∞, i.e.,∑

n≥1

τ(n)qn = q(q; q)24∞.

Here we are using standard q-series notation (cf. [14])

(a; q)n :=
n−1∏
j=0

(1− aqj),

where a ∈ C, 0 < |q| < 1 and n is an nonnegative integer (for n = 0 the expression (a; q)0
reduces to an empty product which is defined to be 1) or infinity. For brevity, we also
frequently use the compact notation

(a1, . . . , am; q)n := (a1; q)n . . . (am; q)n.

The tau function possesses very nice arithmetic properties, see [27]. In particular, τ(n)
is a multiplicative function, as originally observed by Ramanujan and later proved by
Mordell [24]. Lehmer [19] conjectured that the tau function never vanishes, which is
still open. The tau function oscillates and assumes positive and negative integer values.
Dyson [7, Eq.(2), p.636] revealed a nice formula for τ(n) which is actually a special case
of one of the Macdonald identities [20]. Although the latter formula does have a strong
combinatorial flavour, as it involves an alternating multiple sum of rational numbers the
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formula is not easily seen to be related to a direct counting of special combinatorial
objects.

We are interested in finding combinatorial interpretations for τ(n). We succeed by em-
ploying q-series identities of a specific type, together with the use of generating functions
for t-cores and for a new class of partitions which we call (m, k)-capsids. The main idea
is to split the generating function of τ(n) using an identity of the type (3.9) in a non-
negative component and a nonpositive component, see (4.1), where all components admit
easy combinatorial interpretations in terms of t-cores and (m, k)-capsids.

2. Partitions, t-cores, and (m, k)-capsids

Let N denote the set of positive integers. A partition λ of a positive integer n (cf. [2])
is a nonincreasing sequence of positive integers (called the parts), λ = (λ1, λ2, . . . , λl),
such that λ1 + λ2 + · · · + λl = n. If λ is a partition of n, then we write λ ` n or
|λ| = n. We can identify a partition λ = (λ1, λ2, . . . , λl) with its Ferrers diagram, denoted
by [λ], defined to be the set of cells {(i, j) ∈ N2 : 1 ≤ i ≤ l, 1 ≤ j ≤ λi}. For a
cell (i, j) ∈ [λ], the hook Hλ(i, j) of λ is the following subset of the Ferrers diagram [λ]:
Hλ(i, j) = {(i, t) ∈ [λ] : t ≥ j}∪{(s, j) ∈ [λ] : s > i}. The cardinality of the hook Hλ(i, j)
is the hooklength hλ(i, j).

Sometimes it is convenient to write a partition λ not as a nonincreasing sequence of
positive integers but rather as a increasing sequence of integers with finitely many nonzero
multiplicities, formally written in the form λ = (1µ1 , 2µ2 , . . . ). Here, each positive integer
j ∈ N has an nonnegative multiplicity µj, corresponding to the number of times the part
j occurs in λ. If λ ` n, we must have

∑
j≥1 jµj = n.

For our combinatorial interpretations of Ramanujan’s tau function we will use two
special classes of partitions: t-cores and (m, k)-capsids1, the latter are introduced here for
the first time.
t-Cores have been introduced in [16, Sec. 2.7] where they have been shown to be useful

for the recursive evaluation of the irreducible characters of the symmetric group. A
partition λ is a t-core if, and only if, λ contains no hooks whose lengths are multiples of
t. Let c(t, n) denote the number of t-core partitions of n. The generating function for
t-cores was computed in [12]:

Tt(q) = 1 +
∞∑
n=1

c(t, n)qn =
(qt; qt)t∞
(q; q)∞

.

See also [16, Theorem 2.7.17, p.80]. t-Cores have attracted broad interest and were studied
from various points of view, in particular, with focus on some of their combinatorial [10]
or analytic [1, 15] properties.

1In medical microbiology, the core is the inner structure of a viral particle (which consists of structural
proteins and genom), such as a rotavirus; it is surrounded by an (inner and an outer) capsid, the protein
shell of a virus.
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Let m, k ∈ N, m ≥ 2. For 0 < k < m we say that a partition π is an (m, k)-capsid
if, and only if, the possible parts of π are m − k or are congruent to 0 or k mod m, and
satisfy the following two conditions:

(i) if µm−k = 0, i.e., m− k is not a part, then all parts are congruent to k mod m

(ii) if µm−k > 0, then m−k is the smallest part and the largest part congruent to 0 mod
m is ≤ m · µm−k and all parts congruent to k mod m (different from m− k, if k = m/2)
are > m · µm−k.

Let γ(m, k, n) be the number of (m, k)-capsid partitions of n. Then, from the combi-
natorial definition it is clear that we have the following generating function

Cm,k(q) = 1 +
∞∑
n=1

γ(m, k, n)qn =
∞∑
n=0

q(m−k)n

(qm; qm)n(qmn+k; qm)∞
. (2.1)

Example 1. Let m = 5 and k = 1. There are seven (5, 1)-capsid partitions of 16:

(116), (44), (110, 6), (14, 62), (4, 62), (15, 11), (16),

so that γ(5, 1, 16) = 7.

It turns out the generating function Cm,k(q) is also an infinite product. By [4, Eq. (4.1)]
we have

(at; q)∞
(a; q)∞(t; q)∞

=
∞∑
n=0

tn

(q)n(aqn; q)∞
, (2.2)

which is a generalization of [9, Eq. (5.7)]. This identity also follows immediately from
the q-binomial theorem [14, Eq. (II.3)]. Now the (q, a, t) 7→ (qm, qk, qm−k) case of (2.2),
together with (2.1), immediately establishes the following result:

Proposition 1. The generating function for (m, k)-capsids is

Cm,k(q) =
(qm; qm)∞

(qk; qm)∞(qm−k; qm)∞
.

Since Cm,k(q) = Cm,m−k(q), by inspection, we immediately deduce that the numbers of
(m, k)- and (m,m− k)-capsid partitions of n are equinumerous:

γ(m, k, n) = γ(m,m− k, n). (2.3)

This easy consequence of Proposition 1 appears to be not at all combinatorially obvious.
In Section 6 we give a bijection which explains (2.3) combinatorially.

Example 2. Let m = 5 and k = 4. There are seven (5, 4)-capsid partitions of 16:

(116), (44), (111, 5), (16, 52), (1, 53), (16, 10), (12, 14),

so that γ(5, 4, 16) = 7, thus (see Example 1) confirming γ(5, 4, 16) = γ(5, 1, 16).
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Apart from the concrete applications of (m, k)-capsids in this paper, we believe that
this new class of partitions is an object of interest worthy of independent study from
various (including combinatorial and analytic) points of view. In particular, it would be
interesting to establish asymptotic formulas for the number of (m, k)-capsid partitions of
n, as n goes to infinity. For t-core partitions, this has been established by Anderson [1].

3. Special q-Series identities involving congruences

The two Rogers–Ramanujan functions

G(q) :=
∞∑
k=0

qk
2

(q; q)k
and H(q) :=

∞∑
k=0

qk(k+1)

(q; q)k

satisfy a number of remarkable properties. First of all, they factorize in closed form,

G(q) =
1

(q, q4; q5)∞
and H(q) =

1

(q2, q3; q5)∞
,

which are the two Rogers–Ramanujan identities [29].
We will make essential use of the beautiful identity

1 = H(q)G(q11)− q2G(q)H(q11), (3.1)

which Ramanujan stated without proof in one of his letters to Hardy [26]. The first
published proof is due to Rogers [30]. Ramanujan also gave another remarkable identity
related to (3.1):

1 = H(q)G(q)11 − q2G(q)H(q)11 − 11qG(q)6H(q)6. (3.2)

Ramanujan’s pair of equations (3.1) and (3.2) can be compared with the similar pair
of identities

1 =
∼
H(q)

∼
G(q3)− q2

∼
G(q)

∼
H(q3), (3.3)

and

1 =
∼
H(q)

∼
G(q)3 − q2

∼
G(q)

∼
H(q)3 − 3q

∼
G(q)2

∼
H(q)2,

where
∼
G(q) =

1

(q, q3, q4, q9, q10, q12; q13)∞
,

and

∼
H(q) =

1

(q2, q5, q6, q7, q8, q11; q13)∞
,

proved in S. Robins’ 1991 thesis [28].
We define

Pm,k(q) := (qk; qm)∞(qm−k; qm)∞. (3.4)

On one hand the symmetry
Pm,k(q) = Pm,m−k(q) (3.5)
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and the scaling of parameters

Psm,sk(q) = Pm,k(q
s)

are obvious. On the other hand, using (a; q)∞ = (a, aq; q2)∞ and (3.5), we also have

Pm,k(q) = P2m,k(q)P2m,m−k(q). (3.6)

Ramanujan’s identity (3.1) can be written as

1 =
1

P5,2(q)P55,11(q)
− q2

P5,1(q)P55,22(q)
, (3.7)

or, in view of (3.6), as

1 =
1

P10,2(q)P10,3(q)P110,11(q)P110,44(q)
− q2

P10,1(q)P10,4(q)P110,22(q)P110,33(q)
, (3.8)

which we will make use of.
Bressoud [5] gave an immediate combinatorial interpretation of (3.7), viewed as a mod

55 identity. From a combinatorial perspective, (3.7) is a “shifted partition identity”. Other
such identities (such as (3.3)), possibly related to other moduli, have been discussed and
established in [3, 18, 11, 13]. Most of the known shifted partition identities share the
feature that they can be written as some mod m identity in the form

1 = Am(q)− qdBm(q) (3.9a)

with

Am(q) =
1∏12

j=1 Pm,kj(q)
and Bm(q) =

1∏12
j=1 Pm,lj(q)

, (3.9b)

for some m, d ∈ N and 0 < kj, lj < m, for j = 1, . . . , 12.
It is clear that (3.7) has the form of (3.9), obtained by taking m = 55, d = 2, kj = 5j−3

and lj = 5j − 4 for j = 1 . . . , 11, k12 = 11, and l12 = 22. Similarly, (3.3) is a special case
of (3.9), obtained by taking m = 39, d = 2, kj = 13j−11 and lj = 13j−12 for j = 1, 2, 3,
kj = 13j − 47 and lj = 13j − 49 for j = 4, 5, 6, kj = 13j − 85 and lj = 13j − 87 for
j = 7, 8, 9, k10 = 3, k11 = 9, k12 = 12, l10 = 6, l11 = 15, and l12 = 18.

4. Combinatorial interpretations of the tau function

We are ready to collect the ingredients we prepared and apply them to obtain combi-
natorial interpretations of Ramanujan’s tau function.

First observe that by Proposition 1 and the notation (3.4), the generating function for
(m, k)-capsid partitions takes the form

Cm,k(q) =
(qm; qm)∞
Pm,k(q)

.
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Now, we multiply both sides of (3.8) by q110(q110; q110)24∞ and rewrite the resulting identity
in terms of (10, k)-capsid and 11-core generating functions:

∞∑
n=1

τ(n)q110n = q110
(q10; q10)2∞

P10,2(q)P10,3(q)

(q110; q110)2∞
P10,1(q11)P10,4(q11)

(q110; q110)22∞
(q10; q10)2∞

− q112 (q10; q10)2∞
P10,1(q)P10,4(q)

(q110; q110)2∞
P10,2(q11)P10,3(q11)

(q110; q110)22∞
(q10; q10)2∞

= q110C10,2(q)C10,3(q)C10,1(q
11)C10,4(q

11)T11(q
10)2

− q112C10,1(q)C10,4(q)C10,2(q
11)C10,3(q

11)T11(q
10)2. (4.1)

We let Cm,k be the set of (m, k)-capsids and Tt be the set of t-cores. We define two sets
of vector partitions:

A := C10,2 × C10,3 × C10,1 × C10,4 × T11 × T11,
B := C10,1 × C10,4 × C10,2 × C10,3 × T11 × T11.

For a partition π we let |π| denote the sum of parts. For ~π = (π1, π2, π3, π4, π5, π6) in A
or in B we define

|~π| := |π1|+ |π2|+ 11 · |π3|+ 11 · |π4|+ 10 · |π5|+ 10 · |π6|.
If |~π| = n we say that ~π is a vector partition of n. We let

a(n) := the number of vector partitions in A of n,

and

b(n) := the number of vector partitions in B of n.

Then it is clear that

1 +
∞∑
n=1

a(n)qn = C10,2(q)C10,3(q)C10,1(q
11)C10,4(q

11)T11(q
10)2,

and

1 +
∞∑
n=1

b(n)qn = C10,1(q)C10,4(q)C10,2(q
11)C10,3(q

11)T11(q
10)2.

We define a(0) = 1, b(−2) = b(−1) = 0, and b(0) = 1. From (4.1) we readily obtain
the following result:

Theorem 2 (A combinatorial formula for Ramanujan’s tau function). For n ≥ 1, we
have

(i) τ(n) = a(110n− 110)− b(110n− 112),

and

(ii) 0 = a(n)− b(n− 2), if n 6≡ 0 mod 110.
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This formula for τ(n) has the advantage that it is compact and combinatorial, but the
numbers obtained when computing a(m) and b(m) get large.

Example 3.

τ(2) = a(110)− b(108) = 174780− 174804 = −24.

Let us look for another formula for τ(n) using a smaller modulus than 110, say 10. For
this we use Ramanujan’s (3.2) which we rewrite in the form

1 =
1

P10,2(q)P10,3(q)P10,1(q)11P10,4(q)11
− q2

P10,1(q)P10,4(q)P10,2(q)11P10,3(q)11

− 11 q

P10,1(q)6P10,4(q)6P10,2(q)6P10,3(q)6
.

We multiply both sides of this relation by q10(q10; q10)24∞ and rewrite the resulting identity
in terms of (10, k)-capsid generating functions:

∞∑
n=1

τ(n)q10n = q10C10,2(q)C10,3(q)C10,1(q)
11C10,4(q)

11

− q12C10,1(q)C10,4(q)C10,2(q)
11C10,3(q)

11

− 11 q11C10,1(q)
6C10,4(q)

6C10,2(q)
6C10,3(q)

6. (4.2)

We now define three sets of vector partitions, each defined by a twentyfour-fold Carte-
sian product:

U :=
24

j=1 Uj, V :=
24

j=1 Vj, W :=
24

j=1 Wj,

where

U1 = C10,2, U2 = C10,3, Uj = C10,1, Uj+11 = C10,4,
V1 = C10,1, V2 = C10,4, Vj = C10,2, Vj+11 = C10,3, for j = 3, . . . , 13,

Wl = C10,1, Wl+6 = C10,4, Wl+12 = C10,2, Wl+18 = C10,3, for l = 1, . . . , 6.

For ~π = (π1, π2, . . . , π24) in U , V , or in W we define

|~π| :=
24∑
j=1

|πj|.

If |~π| = n we say that ~π is a vector partition of n. We let

u(n) := the number of vector partitions in U of n,

v(n) := the number of vector partitions in V of n,

w(n) := the number of vector partitions in W of n.
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Then it is clear that

1 +
∞∑
n=1

u(n)qn = C10,2(q)C10,3(q)C10,1(q)
11C10,4(q)

11,

1 +
∞∑
n=1

v(n)qn = C10,1(q)C10,4(q)C10,2(q)
11C10,3(q)

11,

1 +
∞∑
n=1

w(n)qn = C10,1(q)
6C10,4(q)

6C10,2(q)
6C10,3(q)

6.

We shall define u(0) = 1, v(−2) = v(−1) = 0, v(0) = 1, w(−1) = 0 and w(0) = 1.
From (4.2) we readily obtain the following result:

Theorem 3 (Another combinatorial formula for Ramanujan’s tau function). For n ≥ 1,
we have

(i) τ(n) = u(10n− 10)− v(10n− 12)− 11w(10n− 11),

and

(ii) 0 = u(n)− v(n− 2)− 11w(n− 1), if n 6≡ 0 mod 10.

Computationally, this formula is not better than the one in Theorem 2, as the numbers
obtained when computing u(l), v(l), and w(l) get large as well. In particular (compare
with Example 3)

τ(2) = u(10)− v(8)− 11w(9) = 381405− 3139− 11 · 34390 = −24.

5. Other combinatorial interpretations

It is clear that one can also employ other shifted partition identities (which are listed
in [13]) to obtain combinatorial interpretations of Ramanujan’s tau function which are
similar to those in Theorems 2 and 3. Also, one can in principle use those shifted partition
identities to obtain combinatorial interpretations for powers other than 24 of Dedekind’s
eta function. On the contrary, our method can also be used to establish that certain sets
of Cartesian products involving (restricted) partitions, (m, k)-capsid partitions and t-core
partitions have the same cardinality.

For example, Jacobi showed that

(q; q)3∞ =
∞∑
n=0

(−1)n(2n+ 1)q(
n+1
2 ). (5.1)

Joichi and Stanton [17] have found a combinatorial proof of (5.1). Combining the q 7→ q13

case of this identity with (3.3), we have
∞∑
n=0

(−1)n(2n+ 1)q13(
n+1
2 ) =

C13,2(q)C13,5(q)C13,6(q)

P13,1(q3)P13,3(q3)P13,4(q3)
− q2 C13,1(q)C13,3(q)C13,4(q)

P13,2(q3)P13,5(q3)P13,6(q3)
,
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which leads to the following combinatorial interpretation:
Let D and E be two sets of vector partitions, defined by

D := C13,2 × C13,5 × C13,6 ×X,
E := C13,1 × C13,3 × C13,4 × Y,

where X is the set of partitions with parts ±1, ±3, ±4 mod 13, and Y is the set of
partitions with parts ±2, ±5, ±6 mod 13. For ~π = (π1, π2, π3, π4) in D or in E we define

|~π| := |π1|+ |π2|+ |π3|+ 3 · |π4|.
If |~π| = n we say that ~π is a vector partition of n. We let

d(n) := the number of vector partitions in D of n,

and
e(n) := the number of vector partitions in E of n.

Then, with e(−1) = 0 and e(0) = 1, we have the following result involving triangular
numbers:

Theorem 4. For m ≥ 1, we have

(i) d(m)− e(m− 2) = (−1)n(2n+ 1), if m =
13n(n+ 1)

2

and

(ii) d(m)− e(m− 2) = 0, otherwise.

6. Capsid symmetries

In this section we explain (2.3) combinatorially. In Section 2 we defined (m, k)-capsids.
Now we define more general capsids. Suppose m, r1, r2 ∈ N, m ≥ 2 and 0 < r1 6= r2 < m.
We say that a partition π is an (m, r1, r2)-capsid if, and only if, the possible parts of π
are r1 or are congruent to 0 or r2 mod m, and satisfy the following two conditions:

(i) if µr1 = 0, i.e., r1 is not a part, then all parts are congruent to r2 mod m;
(ii) If µr1 > 0, then r1 is the smallest part and the largest part congruent to 0 mod m

is ≤ m · µr1 and all parts congruent to r2 mod m are > m · µr1 .
Thus (for k 6= m/2) a (m, k)-capsid is a (m,m− k, k)-capsid.

Let γ(m, r1, r2, n) be the number of (m, r1, r2)-capsid partitions of n. We have the
following generating function

Cm,r1,r2(q) = 1 +
∞∑
n=1

γ(m, r1, r2, n)qn =
∞∑
n=0

qr1n

(qm; qm)n(qmn+r2 ; qm)∞
. (6.1)

For an (m, r1, r2)-capsid π we define two statistics:

(i) We let α(π) = µr1 .
(ii) We let β(π) be the number of parts of π that are congruent to r2 mod m.
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Let γ(m, r1, r2, a, b, n) be the number of (m, r1, r2)-capsid partitions λ of n with α(λ) =
a and β(λ) = b.

Let Cm,r1,r2 be the set of (m, r1, r2)-capsids. It is clear that we have the following
generating function

Cm,r1,r2(x, y, q) =
∑

λ∈Cm,r1,r2

xα(λ)yβ(λ)q|λ| =
∞∑
n=0

xnqr1n

(qm; qm)n(yqmn+r2 ; qm)∞
. (6.2)

By (2.2) we have the following result:

Proposition 5. The generating function for (m, r1, r2)-capsids is

Cm,r1,r2(x, y, q) =
(xyqr1+r2 ; qm)∞

(xqr1 ; qm)∞(yqr2 ; qm)∞
.

Since Cm,r1,r2(x, y, q) = Cm,r2,r1(y, x, q) and

γ(m, r1, r2, a, b, n) = the coefficient of xaybqn in Cm,r1,r2(x, y, q),

we deduce that
γ(m, r1, r2, a, b, n) = γ(m, r2, r1, b, a, n) (6.3)

for all n. By summing over a, b this implies that

γ(m, r1, r2, n) = γ(m, r2, r1, n) (6.4)

for all n, which generalizes (2.3).
In this section we give a combinatorial proof of (6.3) by constructing a bijection

J : C(m, r1, r2, a, b, n) −→ C(m, r2, r1, b, a, n),

where
C(m, r1, r2, a, b, n) := {λ ∈ Cm,r1,r2 : α(λ) = a, β(λ) = b, |λ| = n}.

For a given λ ∈ C(m, r1, r2, a, b, n) we divide each part of λ congruent to 0 mod m by
m to form a partition π1, and form a partition π2 by subtracting r2 from each part of λ
congruent to r2 mod m and dividing by m. Then we form the diagram given below in
Figure 1.
Note:

(i) The partition π2 has b parts each ≥ a.
(ii) The parts of π1 are ≤ a.

(iii) a is the number of smallest parts of λ.
(iv) If b = 0 then π2 = ( ) is empty.
(v) It is possible that π1 = ( ) is empty.

Next we form the partition
π = π2 ∪ π1,

and take the conjugate π′. Then we form partitions
∼
π1,

∼
π2, where π′ =

∼
π2 ∪

∼
π1 and given

in the diagram below in Figure 2.
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a

π1

π2b

Figure 1. The partition π = π2 ∪ π1

a
∼
π2

∼
π1

b

Figure 2. The partition π′ =
∼
π2 ∪

∼
π1

We form the partition
∼
λ with b smallest parts r2, with parts from

∼
π1 multiplied by

m, and with adding r1 to each part of
∼
π2 after multiplying by m. We see that

∼
λ ∈

C(m, r2, r1, b, a, n). We define J (λ) =
∼
λ and J is a bijection.
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Example 4. λ = (13, 51, 152, 221, 27), m = 5, r1 = 1, r2 = 2, a = 3, b = 2 and n = 87.

From Figure 3 below we see that J (λ) =
∼
λ = (22, 51, 101, 212, 26) ∈ C(5, 2, 1, 2, 3, 87).

1

π2

π1

π

a = 3

b = 2

=⇒

⇓

26

10

21

21

5

2

2

=⇒

a = 3

b = 2

22

15

15

5

1

1

27

Figure 3. Example of bijection J

7. Concluding remarks

The main goal of this paper was to give a combinatorial interpretation of the Ramanujan
tau function τ(n) in terms of partitions. In Theorems 2 and 3 we were able to write τ(n)
as the difference of two, resp. three partition functions with nonnegative coefficients. We
do not claim that this should be used to calculate τ(n) or to find improved asymptotics.



INTERPRETATIONS OF RAMANUJAN’S TAU FUNCTION 13

Charles [6] and Edixhoven [8] have found efficient algorithms for computing τ(n). We note
that there are other ways to express τ(n) in terms of nonnegative arithmetic functions.
For example it is well known that there are many identities for τ(n) in terms of divisor
functions. Following Ramanujan [25, p.163] we define

Φj(q) =
∞∑
n=1

njqn

1− qn
=
∑
m,n≥1

njqnm =
∞∑
n=1

σj(n)qn,

for j ≥ 1 odd and where σj(n) =
∑

d|n d
j. For n ≥ 2 even we define the Eisenstein series

En(q) = 1− 2n

Bn

Φn−1(q), (7.1)

where Bn is the n-th Bernoulli number. Then it is well-known that
∞∑
n=1

τ(n)qn =
1

1728

(
E4(q)

3 − E6(q)
2
)
.

See [22, p.172] for a history of this identity. Thus τ(n) can be written in terms of the
divisor sums σ3(n) and σ5(n). A nicer identity is

∞∑
n=1

τ(n)qn =
691

762048

(
E12(q)− E6(q)

2
)
,

which implies that

τ(n) =
65

756
σ11(n) +

691

756
σ5(n)− 691

3

n−1∑
m=1

σ5(m)σ5(n−m). (7.2)

See [23, Eq.(1.15)]. (Similar identities are given in [21].) It is not clear how to interpret the
right side of (7.2) combinatorially, although it does express τ(n) in terms of nonnegative
arithmetic functions.
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