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Abstract. We establish Taylor series expansions in rational (and elliptic) func-
tion bases using E. Rains’ elliptic extension of the Askey–Wilson divided differ-
ence operator. The expansion theorem we consider extends M. E. H. Ismail’s
expansion for the Askey–Wilson monomial basis. Three immediate applications
(essentially already due to Rains) include simple proofs of Frenkel and Turaev’s
elliptic extensions of Jackson’s 8φ7 summation and of Bailey’s 10φ9 transforma-
tion, and the computation of the connection coefficients of Spiridonov’s elliptic
extension of Rahman’s biorthogonal rational functions. We adumbrate other
examples including the nonterminating extension of Jackson’s 8φ7 summation
and a quadratic expansion.

1. Introduction

Taylor series expansion is a powerful and well-known tool in analysis for studying
the local behaviour of a suitable function (being approximated by its partial Taylor
sums). The explicit expansion of a function in terms of another given basis of the
function space is on one hand an important concept in harmonic analysis, and on
the other hand, from a more algebraic point of view, it is simply a fundamental
technique for obtaining identities, which, for instance, is one of the main ideas of
umbral calculus [16].

In [6], Ismail gave a Taylor expansion theorem involving the Askey–Wilson
divided difference operator. He utilized it to give simple proofs of the q-Pfaff–
Saalschütz summation, and of the more general Sears transformation (relating
two Askey–Wilson polynomials). More q-Taylor expansions related to the Askey–
Wilson operator were given in [7] and later in [9]. As a matter of fact, none of
the expansions obtained in the aforementioned papers involved well-poised series.
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Such expansions and related difference operators were however considered (in more
generality, namely in the setting of multivariate elliptic hypergeometric series) by
Rains [11], [12], and were also investigated by Rosengren [13], [14].

The purpose of the present paper is two-fold. Although the elliptic Taylor
expansion in Theorem 4.2 has not been stated explicitly before (to the author’s
knowledge), it is implicit from the (more general) work of Rains [11] who ad-
hoc also gave corresponding applications. Regarding the much higher level of
generality and complexity of results in [11], it appears (to the present author) that
these results, even in their simplest noteworthiest cases can easily be missed by
non-specialists (who are maybe not so much interested in the multivariate theory
which requires a more elaborate setup). Therefore one of our intentions is to make
these results easy accessible. The other aim is to announce some new applications
concerning infinite Taylor expansions in the non-elliptic case involving well-poised
basic series; see the final section.

2. Preliminaries

For the following material, we refer to Gasper and Rahman’s text [5]. Through-
out this paper, we assume q to be a fixed complex number satisfying |q| < 1.

2.1. Basic hypergeometric series. For any complex number a and integer n
the q-shifted factorial is defined by

(a; q)n =
(a; q)∞

(aqn; q)∞
, where (a; q)∞ =

∏
j≥0

(1− aqj). (2.1)

For products of q-shifted factorials we use the short notation

(a1, a2, . . . , am; q)n =
m∏

k=1

(ak; q)n,

where n is an integer or infinity. A list of useful identities for manipulating the
q-shifted factorials is given in [5, Appendix I].

We use

s+1φs

[
a1, a2, . . . , as+1

b1, b2, . . . , bs
; q, z

]
:=

∞∑
k=0

(a1, a2, . . . , as+1; q)k

(q, b1, . . . , bs; q)k

zk (2.2)

to denote the basic hypergeometric s+1φs series. In (2.2), a1, . . . , as+1 are called
the upper parameters, b1, . . . , bs the lower parameters, z is the argument, and q the
base of the series. The s+1φs series terminates if one of the upper parameters, say
as+1, is of the form q−n for a nonnegative integer n. If the s+1φs series does not
terminate, it converges when |z| < 1.

The classical theory of basic hypergeometric series contains numerous summa-
tion and transformation formulae involving s+1φs series. Many of these summa-
tion theorems require that the parameters satisfy the condition of being either
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balanced and/or very-well-poised. An s+1φs basic hypergeometric series is called
balanced if b1 · · · bs = a1 · · · as+1q and z = q. An s+1φs series is well-poised if
a1q = a2b1 = · · · = as+1bs. An s+1φs basic hypergeometric series is called very-
well-poised if it is well-poised and if a2 = −a3 = q

√
a1. Note that the factor

1− a1q
2k

1− a1

appears in a very-well-poised series. The parameter a1 is usually referred to as
the special parameter of such a series.

One of the most important theorems in the theory of basic hypergeometric
series is Jackson’s [8] terminating very-well-poised balanced 8φ7 summation (cf.
[5, Eq. (2.6.2)]):

8φ7

[
a, q

√
a,−q

√
a, b, c, d, a2q1+n/bcd, q−n

√
a,−

√
a, aq/b, aq/c, aq/d, bcdq−n/a, aq1+n ; q, q

]
=

(aq, aq/bc, aq/bd, aq/cd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n

. (2.3)

This identity stands on the top of the classical hierarchy of summations for basic
hypergeometric series. Special cases include the terminating and nonterminating
very-well-poised 6φ5 summations, the q-Pfaff–Saalschütz summation, the q-Gauß
summation, the q-Chu–Vandermonde summation and the termininating and non-
terminating q-binomial theorem, see [5].

2.2. Elliptic hypergeometric series. Here, we refer to Chapter 11 of Gasper
and Rahman’s text [5]. Define a modified Jacobi theta function with argument x
and nome p by

θ(x; p) := (x; p)∞(p/x; p)∞ , θ(x1, . . . , xm; p) =
m∏

k=1

θ(xk; p), (2.4)

where x, x1, . . . , xm 6= 0, |p| < 1. We note the following useful properties of theta
functions:

θ(x; p) = −x θ(1/x; p), (2.5)

θ(px; p) = −1

x
θ(x; p), (2.6)

and Riemann’s addition formula

θ(xy, x/y, uv, u/v; p)− θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p) (2.7)

(cf. [20, p. 451, Example 5]).
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Further, define a theta shifted factorial analogue of the q-shifted factorial by

(a; q, p)n =


∏n−1

k=0 θ(aqk; p), n = 1, 2, . . . ,

1, n = 0,

1/
∏−n−1

k=0 θ(aqn+k; p), n = −1,−2, . . . ,

(2.8)

and let

(a1, a2, . . . , am; q, p)n =
m∏

k=1

(ak; q, p)n,

where a, a1, . . . , am 6= 0. Notice that θ(x; 0) = 1−x and, hence, (a; q, 0)n = (a; q)n

is a q-shifted factorial in base q. The parameters q and p in (a; q, p)n are called
the base and nome, respectively, and (a; q, p)n is called the q, p-shifted factorial.
Observe that

(pa; q, p)n = (−1)na−nq−(
n
2) (a; q, p)n, (2.9)

which follows from (2.6). A list of other useful identities for manipulating the
q, p-shifted factorials is given in [5, Sec. 11.2].

We call a series
∑

cn an elliptic hypergeometric series if g(n) = cn+1/cn is an
elliptic function of n with n considered as a complex variable; i.e., the function g(x)
is a doubly periodic meromorphic function of the complex variable x. Without
loss of generality, by the theory of theta functions, we may assume that

g(x) =
θ(a1q

x, a2q
x, . . . , as+1q

x; p)

θ(q1+x, b1qx, . . . , bsqx; p)
z,

where the elliptic balancing condition, namely

a1a2 · · · as+1 = qb1b2 · · · bs,

holds. If we write q = e2πiσ, p = e2πiτ , with complex σ, τ , then g(x) is indeed
periodic in x with periods σ−1 and τσ−1.

The general form of an elliptic hypergeometric series is thus

s+1Es

[
a1, . . . , as+1

b1, . . . , bs
; q, p; z

]
:=

∞∑
k=0

(a1, a2, . . . , as+1; q, p)k

(q, b1 . . . , bs; q, p)k

zk,

provided a1a2 · · · as+1 = qb1b2 · · · bs. Here a1, . . . , as+1 are the upper parameters,
b1, . . . , bs the lower parameters, q is the base, p the nome, and z is the argument
of the series. For convergence reasons, one usually requires as+1 = q−n (n being a
nonnegative integer), so that the sum is in fact finite.
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Very-well-poised elliptic hypergeometric series are defined as

s+1Vs(a1; a6, . . . , as+1; q, p; z)

:= s+1Es

[
a1, qa

1
2
1 , −qa

1
2
1 , qa

1
2
1 /p

1
2 , −qa

1
2
1 p

1
2 , a6, . . . , as+1

a
1
2
1 , −a

1
2
1 , a

1
2
1 p

1
2 , −a

1
2
1 /p

1
2 , a1q/a6, . . . , a1q/as+1

; q, p;−z

]
=

∞∑
k=0

θ(a1q
2k; p)

θ(a1; p)

(a1, a6, . . . , as+1; q, p)k

(q, a1q/a6, . . . , a1q/as+1; q, p)k

(qz)k, (2.10)

where
q2a2

6a
2
7 · · · a2

s+1 = (a1q)
s−5.

It is convenient to abbreviate

s+1Vs(a1; a6, . . . , as+1; q, p) := s+1Vs(a1; a6, . . . , as+1; q, p; 1).

Note that in (2.10) we have used

θ(aq2k; p)

θ(a; p)
=

(qa
1
2 ,−qa

1
2 , qa

1
2 /p

1
2 ,−qa

1
2 p

1
2 ; q, p)k

(a
1
2 ,−a

1
2 , a

1
2 p

1
2 ,−a

1
2 /p

1
2 ; q, p)k

(−q)−k,

which shows that in the elliptic case the number of pairs of numerator and de-
nominator paramters involved in the construction of the very-well-poised term is
four (whereas in the basic case this number is two, in the ordinary case only one).

The above definitions for s+1Es and s+1Vs series are due to Spiridonov [17], see
[5, Ch. 11].

In their study of elliptic 6j symbols (which are elliptic solutions of the Yang–
Baxter equation found by Baxter [2] and Date et al. [3]), Frenkel and Turaev [4]
discovered the following 12V11 transformation:

12V11(a; b, c, d, e, f, λaqn+1/ef, q−n; q, p) =
(aq, aq/ef, λq/e, λq/f ; q, p)n

(aq/e, aq/f, λq/ef, λq; q, p)n

× 12V11(λ; λb/a, λc/a, λd/a, e, f, λaqn+1/ef, q−n; q, p), (2.11)

where λ = a2q/bcd. This is an extension of Bailey’s very-well-poised 10φ9 trans-
formation [5, Eq. (2.9.1)], to which it reduces when p = 0.

The 12V11 transformation in (2.11) appeared as a consequence of the tetrahedral
symmetry of the elliptic 6j symbols. Frenkel and Turaev’s transformation contains
as a special case the following summation formula,

10V9(a; b, c, d, e, q−n; q, p) =
(aq, aq/bc, aq/bd, aq/cd; q, p)n

(aq/b, aq/c, aq/d, aq/bcd; q, p)n

, (2.12)

where a2qn+1 = bcde. The 10V9 summation is an elliptic analogue of Jackson’s 8φ7

summation formula (2.3). A striking feature of elliptic hypergeometric series is
that already the simplest identities involve many parameters. The fundamental
identity at the “bottom” of the hierarchy of identities for elliptic hypergeometric
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series is the 10V9 summation. When keeping the nome p arbitrary (while |p| < 1)
there is no way to specialize (for the sake of obtaining lower order identities)
any of the free parameters of an elliptic hypergeometric series in form of a limit
tending to zero or infinity, due to the issue of convergence. For the same reason,
elliptic hypergeometric series are only well-defined as complex functions if they are
terminating (i.e., the sums are finite). See Gasper and Rahman’s text [5, Ch. 11]
for more details.

3. The Askey–Wilson operator

We will be considering meromorphic functions f(z) symmetric in z and 1/z.
Writing z = eiθ (note that θ need not be real), we may consider f to be a function
in x = cos θ = (z + 1/z)/2 and write f [x] := f(z).

Let Dq denote the Askey–Wilson operator acting on x = cos θ. It is defined as
follows:

Dqf [x] =
f(q

1
2 z)− f(q−

1
2 z)

ι(q
1
2 z)− ι(q−

1
2 z)

, (3.1)

where ι[x] = x (i.e., ι(z) = (z + 1/z)/2). Equation (3.1) can be written as

Dqf [x] =
f(q

1
2 z)− f(q−

1
2 z)

i(q
1
2 − q−

1
2 ) sin θ

. (3.2)

The operator Dq was introduced in [1] and is a q-analogue of the differentiation
operator. In particular, since

DqTn[x] =
q

n
2 − q−

n
2

q
1
2 − q−

1
2

Un−1[x], (3.3)

where Tn[cos θ] = cos nθ and Un[cos θ] = sin(n + 1)θ/ sin θ are the Chebyshev
polynomials of the first and second kind, one easily sees that Dq maps polynomials
to polynomials, lowering the degree by one.

In the calculus of the Askey–Wilson operator the so-called “Askey–Wilson mono-
mials” φn(x; a) = (az, a/z; q)n form a natural basis for polynomials or power series
in x. One readily computes

Dq(az, a/z; q)n = −2a(1− qn)

(1− q)
(aq

1
2 z, aq

1
2 /z; q)n−1. (3.4)

We recall the following Taylor theorem for polynomials f [x], proved by Ismail [6]:

Theorem 3.1. If f [x] is a polynomial in x of degree n, then

f [x] =
n∑

k=0

fkφk(x; a),
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where

fk =
(q − 1)k

(2a)k(q; q)k

q−k(k−1)/4
[
Dk

q f [x]
]

x=xk

, xk :=
1

2
(aq

k
2 + q−

k
2 /a).

As was shown in [6], the application of Theorem 3.1 to f(z) = (bz, b/z; q)n

immediately gives the q-Pfaff–Saalschütz summation (cf. [5, Eq. (1.7.2)]), in the
form

(bz, b/z; q)n

(ba, b/a; q)n

= 3φ2

[
az, a/z, q−n

ab, q1−na/b
; q, q

]
,

while its application to the Askey–Wilson polynomials,

ωn(x; a, b, c, d; q) := 4φ3

[
az, a/z, abcdqn−1, q−n

ab, ac, ad
; q, q

]
,

gives a connection coefficient identity which, by specialization, can be reduced to
the Sears transformation (cf. [5, Eq. (3.2.1)]), in the form

ωn(x; a, b, c, d; q) =
an(bc, bd; q)n

bn(ac, ad; q)n

ωn(x; b, a, c, d; q).

Ismail and Stanton [7] extended the above polynomial Taylor theorem to hold
for entire functions of exponential growth, resulting in infinite Taylor expan-
sions. Marco and Parcet [9] extended this yet further to hold for arbitrary q-
differentiable functions, resulting in infinite Taylor expansions with explicit re-
mainder term. Among other results they were able to recover the nonterminating
q-Pfaff–Saalschütz summation (cf. [5, Appendix (II.24)]).

4. A well-poised and elliptic Askey–Wilson operator

Since

Dq
(az, a/z; q)n

(cz, c/z; q)n

=
2

(q
1
2 − q−

1
2 )(z − 1/z)

[
(aq

1
2 z, aq−

1
2 /z; q)n

(cq
1
2 z, cq−

1
2 /z; q)n

− (aq−
1
2 z, aq

1
2 /z; q)n

(cq−
1
2 z, cq

1
2 /z; q)n

]

=
2

(q
1
2 − q−

1
2 )(z − 1/z)

(aq
1
2 z, aq

1
2 /z; q)n−1

(cq
1
2 z, cq

1
2 /z; q)n−1

×

[
(1− azqn− 1

2 )(1− aq−
1
2 /z)

(1− czqn− 1
2 )(1− cq−

1
2 /z)

− (1− azq−
1
2 )(1− aqn− 1

2 /z)

(1− czq−
1
2 )(1− cqn− 1

2 /z)

]

=
(−1)2a(1− c/a)(1− acqn−1)(1− qn)

(1− czq−
1
2 )(1− czq

1
2 )(1− cq−

1
2 /z)(1− cq

1
2 /z)(1− q)

(aq
1
2 z, aq

1
2 /z; q)n−1

(cq
3
2 z, cq

3
2 /z; q)n−1

,
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it makes sense to define a c-generalized Askey–Wilson operator acting on x (or z)
by

Dc,q = (1− czq−
1
2 )(1− czq

1
2 )(1− cq−

1
2 /z)(1− cq

1
2 /z)Dq,

which acts “degree-lowering” on the “rational monomials”

(az, a/z; q)n

(cz, c/z; q)n

in the form

Dc,q
(az, a/z; q)n

(cz, c/z; q)n

=
(−1)2a(1− c/a)(1− acqn−1)(1− qn)

(1− q)

(aq
1
2 z, aq

1
2 /z; q)n−1

(cq
3
2 z, cq

3
2 /z; q)n−1

.

Clearly,

D0,q = Dq.

More generally, for parameters c, q, p with |q|, |p| < 1, we define an elliptic
extension of the Askey–Wilson operator, acting on functions symmetric in z±1, by

Dc,q,pf(z) = 2q
1
2 z

θ(czq−
1
2 , czq

1
2 , cq−

1
2 /z, cq

1
2 /z; p)

θ(q, z2; p)

(
f(q

1
2 z)− f(q−

1
2 z)

)
. (4.1)

Note that

Dc,q,0 = Dc,q.

In particular, using (2.7), we have

Dc,q,p
(az, a/z; q, p)n

(cz, c/z; q, p)n

=
(−1)2a θ(c/a, acqn−1, qn; p)

θ(q; p)

(aq
1
2 z, aq

1
2 /z; q, p)n−1

(cq
3
2 z, cq

3
2 /z; q, p)n−1

. (4.2)

The operator Dc,q,p is a special case of a multivariable difference operator in-
troduced by Rains in [11]. Already in the single variable case Rains’ operator
involves two more parameters than Dc,q,p. (Rains’ difference operators generate a
representation of the Sklyanin algebra, as observed in [11] and made explicit in [13]
and [14, Sec. 6].) Rains’ operator can be specialized to act degree-lowering (as the
above Dc,q,p does), degree-preserving or degree-raising on abelian functions. Rains
used his multivariable difference operators in [11] to construct BCn-symmetric
biorthogonal abelian functions that generalize Koornwinder’s orthogonal polyno-
mials. He further used his operator in [12] to derive BCn-symmetric extensions of
Frenkel and Turaev’s 10V9 summation and 12V11 transformation.

For the current presentation, as we are mainly concerned with Taylor expan-
sions, we find it indeed sufficient to consider the above operator Dc,q,p (which
exhibits a very nice degree-lowering action in (4.2)) rather than the more general
operator considered by Rains (in one dimension).
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We describe the spaces of functions we will be dealing with. For a complex
number c we define

Wm
c := span

{
gn(z)

(cz, c/z; q, p)n

, 0 ≤ n ≤ m

}
,

where gn(z) runs over all functions being holomorphic for z 6= 0 with gn(z) =
gn(1/z) and

gn(pz) =
1

pnz2n
gn(z).

In classical terminology, gn(z) is an even theta function of order 2n and zero
characteristics. Rains [12] refers to such functions as BC1 theta functions of degree
n, whereas in [15] we referred to them as Dn theta functions. It is well-known
that the space V n of even theta functions of order 2n and zero characteristics has
dimension n + 1 (see e.g. Weber [19, p. 49]).

Note that Wm
c consists of certain abelian functions. (For p → 0 these degenerate

to certain rational functions we may call “well-poised”.)

Lemma 4.1. For any arbitrary but fixed complex number a (satisfying a 6= cqjpk,
for j = 0, . . . ,m− 1, and k ∈ Z, and a 6= qjpk/c, for j = 2− 2m, . . . , 1−m, and
k ∈ Z), the set {

(az, a/z; q, p)n

(cz, c/z; q, p)n

, 0 ≤ n ≤ m

}
forms a basis for Wm

c .

Proof. This is equivalent to the fact that the set

{(az, a/z; q, p)n(cqnz, cqn/z; q, p)m−n, 0 ≤ n ≤ m} (4.3)

forms a basis for V m, the space of even theta functions of order 2m and zero
characteristics, a fact easily proved by induction on m. For m = 0 the statement
is trivial. Now assume that it holds for a fixed m ≥ 0. Since the m + 1 products
in (4.3) are linearly independent, it follows (by multiplication with the common
factor θ(cqmz, cqm/z; p)) that the m + 1 products

(az, a/z; q, p)n(cqnz, cqn/z; q, p)m+1−n, 0 ≤ n ≤ m,

are also linearly independent. It thus remains to be shown that (az, a/z; q, p)m+1 is
not a linear combination of {(az, a/z; q, p)n(cqnz, cqn/z; q, p)m+1−n, 0 ≤ n ≤ m}.
Suppose

(az, a/z; q, p)m+1 =
m∑

n=0

αn(az, a/z; q, p)n(cqnz, cqn/z; q, p)m+1−n.

Letting z = cqm gives (acqm, aq−m/c; q, p)m+1 = 0, which is a contradiction. �
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Note that, in view of (4.2), the elliptic Askey–Wilson operator maps functions
in Wm

c to functions in Wm−1

cq
3
2

.

We now define
D(k)

c,q,p = D(k−1)

cq
3
2 ,q,p

Dc,q,p, (4.4)

with D(0)
c,q,p = ε, the identity operator. We have the following elliptic expansion

theorem which extends Theorem 3.1:

Theorem 4.2. If f is in W n
c , then

f(z) =
n∑

k=0

fk
(az, a/z; q, p)k

(cz, c/z; q, p)k

, (4.5)

where

fk =
(−1)kq−k(k−1)/4 θ(q; p)k

(2a)k(q, c/a, acqk−1; q, p)k

[
D(k)

c,q,pf(z)
]

z=aq
k
2
.

Proof. First of all, due to Lemma 4.1 it is clear that the expansion (4.5) exists, so
we just need to compute the coefficients fk. Formula (4.2) yields (together with
(4.4))[

D(k)
c,q,p

(az, a/z; q, p)n

(cz, c/z; q, p)n

]
z=aq

k
2

= (−1)k(2a)kqk(k−1)/4 (q; q, p)n(c/a, acqn−1; q, p)k

(q; q, p)n−k θ(q; p)k

[
(aq

k
2 z, aq

k
2 /z; q, p)n−k

(cq
3k
2 z, cq

3k
2 /z; q, p)n−k

]
z=aq

k
2

= (−1)k(2a)kqk(k−1)/4 (q, c/a, acqk−1; q, p)k

θ(q; p)k
δnk.

The theorem now follows by applying D(j)
c,q,p to both sides of (4.5) and then setting

z = aq
j
2 . �

Example 4.3. Let

f(z) =
(bz, b/z; q, p)n

(cz, c/z; q, p)n

.

Application of Theorem 4.2 in conjuction with (4.2) gives

fk =
(−1)kq−k(k−1)/4 θ(q; p)k

(2a)k(q, c/a, acqk−1; q, p)k

× (−1)k(2b)kqk(k−1)/4 (q; q, p)n(c/b, bcqn−1; q, p)k

(q; q, p)n−k θ(q; p)k

(abqk, b/a; q, p)n−k

(acq2k, cqk/a; q, p)n−k

=
(ab, b/a; q, p)n

(ac, c/a; q, p)n

θ(acq2k−1; p)

θ(acq−1; p)

(acq−1, c/b, bcqn−1, q−n; q, p)k

(q, ab, aq1−n/b, acqn; q, p)k

qk,
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thus yielding Frenkel and Turaev’s 10V9 summation (2.12), in the form

(ac, c/a, bz, b/z; q, p)n

(ab, b/a, cz, c/z; q, p)n

= 10V9(acq−1; az, a/z, c/b, bcqn−1, q−n; q, p).

Example 4.4. Let

Rn(z; b, c, d, e, f ; q, p) = 12V11(bcq
−1; bz, b/z, d, e, f, bc3qn−1/def, q−n; q, p),

which is Spiridonov’s [18] elliptic extension of Rahman’s family of biorthogonal
rational functions. We have

D(k)
c,q,pRn(z; b, c, d, e, f ; q, p)

=
(−1)k(2b)kqk(k+3)/4 (bc; q, p)2k(c/b, d, e, f, bc3qn−1/def, q−n; q, p)k

θ(q; p)k (bc/d, bc/e, bc/f, bcqn, defq1−n/c2; q, p)k

×Rn−k(z; bq
k
2 , cq

3k
2 , dqk, eqk, fqk; q, p).

Application of Theorem 4.2 now yields, after some computation, the connection
coefficient identity

Rn(z; b, c, d, e, f ; q, p)

=
n∑

k=0

(az, a/z; q, p)k

(cz, c/z; q, p)k

bkqk(bc; q, p)2k(c/b, d, e, f, bc3qn−1/def, q−n; q, p)k

ak (q, bc/d, bc/e, bc/f, bcqn, defq1−n/c2; q, p)k

×Rn−k(aq
k
2 ; bq

k
2 , cq

3k
2 , dqk, eqk, fqk; q, p). (4.6)

(Observe that the left-hand side of (4.6) is independent of a.)
Now note that

Rm(c/f ; b, c, d, e, f ; q, p) =
(bc, bc/de, c2/df, c2/ef ; q, p)m

(bc/d, bc/e, c2/f, c2/def ; q, p)m

, (4.7)

due to Frenkel and Turaev’s 10V9 summation. Letting a → c/f in (4.6) gives, after
some simplification,

Rn(z; b, c, d, e, f ; q, p)

=
(bc, bc/de, c2/df, c2/ef ; q, p)n

(bc/d, bc/e, c2/f, c2/def ; q, p)n

Rn(z; c/f, c, d, e, c/b; q, p), (4.8)

which is equivalent to Frenkel and Turaev’s 12V11 transformation in (2.11).

5. Outlook: Well-poised basic expansions

As an outlook we sketch some details of our further investigations. These con-
cern infinite convergent expansions in the basic p = 0 case.
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For instance, using an extension of the well-poised basic Taylor expansion the-
orem involving a remainder term, we obtain, by using a symmetry argument, the
following expansion:

(cz/d, c/dz, cz/e, c/ez; q)∞
(cz, c/z, c2z/bde, c2/bdez; q)∞

=
(cz/de, c/dez; q)∞

(c2z/bde, c2/bdez; q)∞

∑
k≥0

fk
(bz, b/z; q)k

(cz, c/z; q)k

+
(bz, b/z; q)∞
(cz, c/z; q)∞

∑
k≥0

gk
(cz/de, c/dez; q)k

(c2z/bde, c2/bdez; q)k

.

After the explicit computation of the coefficients fk and gk one recovers the non-
terminating 8φ7 summation (cf. [5, Appendix (II.25)]), in the form

(cz/d, c/dz, cz/e, c/ez; q)∞
(cz, c/z, c2z/bde, c2/bdez; q)∞

=
(cz/de, c/dez; q)∞

(c2z/bde, c2/bdez; q)∞

∑
k≥0

(1− bcq2k−1)

(1− bcq−1)

(bcq−1, d, e, c2/deq, bz, b/z; q)k

(q, bc/d, bc/e, bdeq/c, cz, c/z; q)k

qk

+
(bz, b/z; q)∞
(cz, c/z; q)∞

∑
k≥0

(1− c3q2k−1/bd2e2)

(1− c3/bd2e2q)

× (c3/bd2e2q, c/bd, c/be, c2/deq, cz/de, c/dez; q)k

(q, c2/de2, c2/d2e, cq/bde, c2z/bde, c2/bdez; q)k

qk.

To give another example, by expanding the “quadratic” infinite product

f(z) =
(azq, aq/z, b2z/a, b2/az; q2)∞

(bz, b/z; q)∞

in terms of the “well-poised monomials”

(az, a/z; q)k

(bz, b/z; q)k

,

we recover a particular nonterminating 8φ7 summation, namely Bailey’s q-analogue
of Watson’s 3F2 summation (cf. [5, Ex. 2.17(i)]), in the form

(azq, aq/z, b2z/a, b2/az; q2)∞
(bz, b/z; q)∞

=
(q, a2q, b2, b2/a2; q2)∞

(−ab,−b/a; q)∞

×
∑
k≥0

(1 + abq2k−1)

(1 + abq−1)

(−abq−1, bq−
1
2 ,−bq−

1
2 ,−aq/b, az, a/z; q)k

(q,−aq
1
2 , aq

1
2 , b2q−1, bz, b/z; q)k

(
b

a

)k

.

A paper featuring these well-poised basic expansions is under preparation.
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