ON WARNAAR'’S ELLIPTIC MATRIX INVERSION
AND KARLSSON-MINTON-TYPE
ELLIPTIC HYPERGEOMETRIC SERIES

HJALMAR ROSENGREN AND MICHAEL SCHLOSSER*

ABSTRACT. Using Krattenthaler’s operator method, we give a new proof
of Warnaar’s recent elliptic extension of Krattenthaler’s matrix inversion.
Further, using a theta function identity closely related to Warnaar’s in-
version, we derive summation and transformation formulas for elliptic
hypergeometric series of Karlsson-Minton-type. A special case yields a
particular summation that was used by Warnaar to derive quadratic, cu-
bic and quartic transformations for elliptic hypergeometric series. Start-
ing from another theta function identity, we derive yet different sum-
mation and transformation formulas for elliptic hypergeometric series of
Karlsson—Minton-type. These latter identities seem quite unusual and
appear to be new already in the trigonometric (i.e., p = 0) case.

1. INTRODUCTION

Matrix inversions provide a fundamental tool for studying hypergeometric
and basic hypergeometric (or ¢-) series. For instance, they underlie the
celebrated Bailey transform [1]. For multiple hypergeometric series, mul-
tidimensional matrix inversions have similarly proved a powerful tool, see
(2, 3, 14, 15, 16, 17, 18, 23, 24, 25].

Recently, a new class of generalized hypergeometric series was introduced,
the elliptic hypergeometric series of Frenkel and Turaev [6]. In [31], War-
naar found an elliptic matrix inversion and used it to obtain several new
quadratic, cubic and quartic summation and transformation formulas for
elliptic hypergeometric series.

Warnaar’s matrix inversion can be stated as follows [31, Lemma 3.2]. If

H?:_li 0(ajcr)b(a;/ck)
[Tk 0(cjck)0(ci/ck)

frk = (1.1a)
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and

_ C 9(&101)9(@1/01) H?:H—l g(ajck)e(aj/ck)
9kl Ck Q(akck)Q(ak/ck) Hkil 9<Cjck)9<0j/0k) ’

j=t
then the infinite lower-triangular matrices (fuk)nrez and (gu)kicz are in-
verses of each other, i.e., the orthogonality relations

(1.1b)

ankgkl = Ony, forall n,l € Z (1.2)
k=1
and (equivalently)
> garfu=0u,  forallnlez (1.3)
k=1
hold. In (1.1a) and (1.1b), O(x) is the theta function, defined by
0(x) = 0(z;p) == [ [(1 = 2p)(1 = p/* /),
j=0

for |p| < 1.

Note that 6(z) reduces to 1 — z for p = 0. In this case Warnaar’s matrix
inversion reduces to a result of Krattenthaler [13, Corollary|, which in turn
generalizes a large number of previously known explicit matrix inversions.

The present paper can be viewed as a spin-off of an attempt to obtain
multivariable extensions of Warnaar’s matrix inversion and use these to study
elliptic hypergeometric series related to classical root systems. This led us to
discover several aspects of Warnaar’s result which are interesting already in
the one-variable case. Multivariable extensions of these ideas are postponed
to future publications.

Warnaar’s proof of his inversion is based on the equation (1.3), which is
obtained as a special case of a more general identity, the latter being easily
proved by induction. This approach seems difficult (though interesting) to
generalize to the multivariable case. On the other hand, as was pointed out
in [21], the identity (1.2) for Warnaar’s inversion is equivalent to a partial
fraction-type expansion for theta functions due to Gustafson, (2.2) below.
This leads to a short proof of Warnaar’s (and thus also Krattenthaler’s)
matrix inversion, which is described in Section 2.

In another direction, Krattenthaler’s proof of the case p = 0 used a certain
“operator method”, ¢f. Lemma 3.1 below. In Section 3 we extend Kratten-
thaler’s proof to the elliptic case. This requires some non-obvious steps, es-
sentially because addition formulas for theta functions are more complicated
than those for trigonometric functions implicitly used by Krattenthaler.

We hope that both the elementary proof of Warnaar’s inversion given in
Section 2 and the operator proof given in Section 3 will be useful for finding
multivariable extensions.
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Apart from the matrix inversion (1.1), another important tool in War-
naar’s paper is the identity [31, Theorem 4.1] (see (1.11) below for the no-
tation), which we write as

N —IVS S
3 0(ag®) — (a,a7™*,b,a/b;q" )k (cq™,aq/c;q)sk o
0(a) (¢°,aqN D2, aq®/b,bg% ¢*)x (aq' =N /¢, ¢; q)sk

_ (ag®, ¢ ¢%)n  (c/bbe/asq)n
(bg*,aq*/b;¢*)n (e, c/a;q)n
Here, s is a positive and N a non-negative integer. In [31], this was obtained
by combining (1.2) for the inverse pair (1.1) with a certain bibasic summa-
tion. The identity (1.4) was then applied, with s = 2, 3 and 4, to obtain
quadratic, cubic and quartic elliptic hypergeometric identities, respectively.
A characteristic property of (1.4) is that certain quotients of numerator
and denominator parameters (such as b over bg® and cg” over c) are integral
powers of g. Classical and basic hypergeometric series with the analogous
property have been called Karlsson-Minton-type and (g-)IPD-type (for Inte-
gral Parameter Differences) series. A seminal result for such series is Minton’s
summation formula [19]

k=0

(1.4)

T

—N,b,ci +my,...,c, +my N! (¢i — b)m;
. FT Y b ) ;1 — ’b’ 1.5
2 +1( b+1,61,...,CT ) (b+1)NH (Ci)mi ( )

where it is assumed that m; are non-negative integers with |m|:= 5", m; <

N. This has been extended to non-terminating, bilateral and well-poised
series [4, 5, 7, 8, 11, 27] and further to multiple series [20, 22, 26]. However,
for elliptic hypergeometric series, (1.4) has until now been an isolated result.

At first sight, (1.4) looks somewhat different, from known Karlsson-Minton-
type identities. However, writing

(xaQ)sk = (xaxQV"axqs_l;qs)ka (16)

it is not hard to check that it can be obtained as a special case of the more
conventional summation formula,

ﬁ:ﬂaq%) (a,q ¥, b,a/b; q)s kH (ciq™ , aq/cj; @)

0(a) (g, an“ aq/b, bg; q) (aq'=™i [cj, ¢j; )k

(aq, ¢; ) H Cg/b ¢ib/a; q)m, |
 (bg,aq/b;q)n 11 (¢5,¢/a;q)m;

k=0

m|=N (1.7)

(with ¢ replaced by ¢*). This result will be proved in Section 4. When p = 0,
(1.7) reduces to a special case of an identity of Gasper [8, Eq. (5.13)], which
in turn contains (1.5) as a degenerate case.

Gasper’s proof of (1.7) in the case p = 0 does not immediately extend to
the elliptic case. A different proof was given by Chu [5], who independently
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obtained and generalized Gasper’s identity by recognizing it as a special
case of a partial fraction expansion. In Section 4 we use Chu’s method to
generalize (1.7) in a different direction, namely, to a multiterm Karlsson—
Minton-type transformation, Theorem 4.1. It is obtained as a special case of
Gustafson’s identity (2.2), or equivalently of (1.2) for Warnaar’s inversion.
Theorem 4.1 may be viewed as an elliptic analogue of Sears’ transformation
for well-poised series, cf. Remark 4.4.

In Section 5, we repeat the analysis of Section 4, starting from a different
elliptic partial fraction identity, (5.1). This leads to some exotic summa-
tion and transformation formulas for Karlsson-Minton-type elliptic hyper-
geometric series, which appear to be new also when p = 0.

Finally, in the Appendix we give an alternative proof of (1.7), using induc-
tion on N. We hope that the two proofs we give of this identity will both be
useful for finding multivariable extensions of (1.7), and of related quadratic,
cubic and quartic identities from [31].

Notation: We have already introduced the theta function 6(z) = 0(x; p).
The nome p is fixed throughout and will be suppressed from the notation.
We sometimes write

O(x1,. .. xn) :=0(x1) - -0(xy) (1.8)

for brevity. We will frequently use the following two properties of theta
functions:

O(x) =—x6(1/2) (1.9)

and the addition formula
O(zy, x/y, uwv,u/v) — O(zv, z /v, uy, u/y) = v O(yv,y/v,zu,x/u)  (1.10)
)

(cf. [32, p. 451, Example 5]).
We denote elliptic shifted factorials by

(a;q)x = 0(a)f(aq) - - -0(ag"™"), (1.11a)
and write
(@1; s an; @) = (a15 )k -+ (@ns D (1.11b)

These symbols satisfy similar identities as in the case p = 0 [9, Appendix IJ.
In particular, we mention that

(@;@nk _ <b>k (a;9)n(q" " /b; )k (1.12)

i Q)nsr \a) 0;Q)n(g"/a;q)’

a

and

(a;q)n _ (a\™ (¢""/a;q)n
( ) (¢'"/bsq)n (1.13)
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2. WARNAAR’S MATRIX INVERSION AND ELLIPTIC PARTIAL FRACTIONS

In this section we give an easy proof of Warnaar’s matrix inversion. Since
the case n = [ is trivial, it is enough to prove that the left-hand side of (1.2)
vanishes for n > [. Writing this side out explicitly gives

"[T5z 0(ajen)f(ai/cr)  a0(ae)d(a/e) Tljmi 0(aser)0(as/ck)
P H;’L:k-f—l Q(Cjck)t?(cj/ck) Ck Q(akck)Q(ak/ck) H;?;ll 9<Cjck)0(0j/0k)
n T-L_H_lg a;Cy 0 Qj/Cg
:cl9(alcl)9(al/cl)z L HJ_ ( ) ( / )

P o [T1y o 0(cicn)0(ci o)

Thus, it is enough to prove that

1 Olasen)las/en) _
= o Ll s Olcici)0(ci/ )

where (as a matter of relabeling) we may assume [ = 1.
We are now reduced to a theta function identity of Gustafson [10, Lemma
4.14], which we write as

"L ax [T521 0(axb;)6(ax/b;)
— [Tiz1, s Oanay)0(an/ay)

The case p = 0 is equivalent to an elementary partial fraction expansion,
so we refer to (2.2) as an elliptic partial fraction identity. To identify (2.1)
with (2.2) it is enough to replace ¢; with a;, a; with b;_; and then use (1.9)
repeatedly.

Gustafson’s proof of (2.2) uses Liouville’s theorem and is thus analytic
in nature. We refer to [21] for an elementary proof (using only (1.9) and
(1.10)), as well as some further comments on this identity.

n >l (2.1)

=0, n>2 (2.2)

3. AN OPERATOR PROOF OF WARNAAR’S MATRIX INVERSION

In [12] Krattenthaler gave a method for solving Lagrange inversion prob-
lems, which are closely connected with the problem of inverting lower-tri-
angular matrices. In particular, Krattenthaler applied this method in [13] to
derive a very general matrix inversion, namely, the p = 0 case of (1.1). In
the following, we provide a proof of Warnaar’s elliptic matrix inversion us-
ing Krattenthaler’s operator method. Like in Warnaar’s proof, the essential
ingredient is the addition formula (1.10).

By a formal Laurent series we mean a series of the form ) ., a,z", for
some k € Z. Given the formal Laurent series a(z) and b(z), we introduce
the bilinear form (, ) by
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where [2°]¢(z) denotes the coefficient of 2 in ¢(z). Given any linear operator
L acting on formal Laurent series, L* denotes the adjoint of L with respect
to (, ); i.e. (La(z),b(z)) = (a(z),L*b(z)) for all formal Laurent series a(z)
and b(z). We need the following special case of [12, Theorem 1].

Lemma 3.1. Let F' = (fuk)nkez be an infinite lower-triangular matriz with
fiex #0 for allk € Z. For k € Z, define the formal Laurent series fy(z) and
gr(2) by fu(2) = D sp far2"™ and gi(2) = 3", gz, where (gr)x ez is the
uniquely determined inverse matriz of F. Suppose that for k € Z a system
of equations of the form

holds, where U, V are linear operators acting on formal Laurent series, V
being bijective, and (wy)rez 1S an arbitrary sequence of different non-zero
constants. Then, if hy(2) is a solution of the dual system

with hy(z) Z 0 for all k € Z, the series gr(z) is given by
1

gr(z) = D) V*hk(z))v*hk('z)' (3.3)

In order to prove Warnaar’s elliptic extension of Krattenthaler’s matrix
inversion (1.1), we set fr(z) = > o, furz® with fux given as in (1.1a). Ob-
viously, for n > k, -

O(cncr, cn/ck) frk = 0(an_1Ck; Gn_1/Ck) fr1k- (3.4)

We now introduce a “multiplier” after which we apply the addition formula
for theta functions and separate the variables depending on n and on k&
appearing in (3.4). Namely, we multiply both sides of (3.4) by O(uv,u/v)
where u, v are two new auxiliary independent variables, which gives

O(cnCr, Cn/cks uv, u/V) frr, = 0(an—1Ck, An_1/C, w0, U/V) fr—1 - (3.5)

Next, we apply the addition formula (1.10) to each side of (3.5) and obtain
[Q(Cnv, Cn /U, uCk, U/ k) + 2 O(vek, ce /v, cpt, e/ u) | ok
Ck

U
= |:9<anflvaanfl/’va uck, u/cy) + o O(vey, cx /v, an 1, Gy 1 /u) Jn—1k-
k

If we define the linear operators A and C by Az* = a;2* and CzF = ¢;,2*, for
all k& € Z, this may be rewritten in the form

[Q(CU,C/U, uck, ufcy) + ;Q(Uck, ce/v,Cu,C/u)| fe(2)
k

= z|0(Av, A/v, ucg, u/cy) + CﬂQ(U% /v, Au, Afu) | fr(2),
k



ELLIPTIC MATRIX INVERSION AND ELLIPTIC HYPERGEOMETRIC SERIES 7

or, equivalently,

[6(Cv,CJv) — 2 0(Av, A/v)] fr(2)
_ub(veg, cp/v)
" cp O(uck, u/cy)

valid for all k£ € Z.
Equation (3.6) is a system of equations of type (3.1) with

U=0(Cv,C/v)—z0(Av, A/v),
V =2z0(Au, A/u) — 0(Cu,C/u),

[20(Au, A/u) — 0(Cu,C/u)] fr(z), (3.6)

and
_ub(veg, e /v)

Wk = cx O(uck, u/c)

The dual equations (3.2) for the auxiliary formal Laurent series hi(z) =
> j<p Pigz~" in this case read

[6(C*v,C* Jv) — O(A*v, A* Jv) 2] hi(2)
_ uB(ve, cp/v)
cr O(uck, u/cy)

Since A"z % = a2 % and C*2 % = ¢;,27*, by comparing coefficients of z ! in
(3.7) we obtain

[0(A*u, A* Ju) z — 0(C*u,C* Ju) | hy(2). (3.7)

Q(Cl’(}, Cl/U’ UCk, U/Ck) + ﬁ 9<Ucka Ck/'U, au, cl/u)i| hkl
Ck

u
= [G(alv,al/v, uck, u/ck) + o O(veg, e /v, apu, ar/u) | by i,
k
which, after application of the addition formula (1.10) and dividing both
sides by O(uv,u/v), reduces to
O(cick, cifce)hiy = O(aick, ai/cr) hi g1
If we set hgr, = 1, we get
H;:ll 0(ajcr, aj/ck)
Hf;zl O(cjc, cj/ck)
Taking into account (3.3), we compute

V*hi(z) = [0(A*u, A*Ju) z — 0(C*u, C* Ju)| hi(2)

CiCk, C1/ Ck 5;119 ajck, aj/ck) _,
- Z [ué(alu,al/u) — 0(qu, ¢ /u) Ll ( /er) z

= LOlack, ai/c) T15-) 0(cicr, ci/cx)

a; 0(aie;, ¢ /a 152 0(a ek, aj/cr)
= 3 fewv, o) O O ot 2O
= cr O(aick, ai/ck) [T;= O(cicr, cj/ck)

hi =

27t (3.8)
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where we again have used the addition formula (1.10). Now, since frx = 1,
the pairing (f(z), V*he(2)) is simply the coefficient of z=* in (3.8). Thus,
(3.3) reads

1

0(cxv, c/v)
where gi(z) = >, gz ~'. Hence, extracting coefficients of 2 in (3.9) we
obtain exactly (1.1b).

gr(z) = — V*hi(2) (3.9)

4. ELLiPpTIC KARLSSON—MINTON-TYPE IDENTITIES

As was mentioned in the introduction, we can obtain a generalization of
the Karlsson-Minton-type identities (1.4) and (1.7) as a special case of the
partial fraction identity (2.2). To this end, we make the substitutions

(a, ... an) = (a1, a1q,...,a1q", ..., ay, asq, - . ., asq"), (4.1a)

(byy ... by o)
= (by, bigvr b g™ I b bt b ™ D) (401D)
in (2.2), with m; and /; non-negative and y; positive integers satisfying
| +s=|m|+ 2. (4.2)
The resulting special case of (2.2) may be written
L aiq" [Ty T | 0(aig*b;q"", aigh /b;q!/%)
; kz:% TTio, 1o 0002054, =) TT- i TTilo Oaigbaat, aigh/ajqt)

It is now straight-forward to rewrite the products in ¢ in terms of elliptic
shifted factorials, giving

mj—1 ( m; /i« 1)y

. . L (agbjgmilVis gt Vi),
| | O(a; kb t/y; = (a:b; k; 1/y; e — ab, 1/y5 ms *J ’ Yi
s ( iq ]q ) ( ? ]q q ) J ( ? q ) ] (aibj;ql/yj)yjk

and similarly

mj—1

/Y [p .- g1/Yi
” 0(aiq® /b;q"¥1) = (aig ™'Y [by; g5, (a7 [by3 47 )y
b mJ
t=0

(aigtm)lvi [bj; 1% )y,

1 _ 1 0(aFe”)  (afq)k
H?’:O’#kﬁ(a?qkﬁ) (afg;q)i; 0(a?) (aiqt; )i
1 R R )
[Iig o 0 (@50 (0
1 — 1 (aiaj;CI)k

1, 0(aigha;qt)  (@iaz; @)y (aia;ghith; O’
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1 - 1 (aig Y /aj; @)k

1%, 0(a;q*/a;q") (wg7 ag @y (wg/ag; @k
We thus arrive at the following result.

Theorem 4.1. Let l1,...,l, and mq,...,m, be non-negative integers such
that |l|+s = |m|+2, and let y1, - . ., y» be positive integers. Then the following
wdentity holds:

i ai H;:l (aibja aiq(lfmj)/yj /bj’ ql/yj)mj
— (a7q.q % @) [T, juilaiag, aig™ agi @)y

b 1.
0(a7q*) kﬁ (azaj, ;07" /a5 q)x
= 0(a}) 7 i (aig/ag, aiaiqlit gy

= 0.

f[ (aiqumj/yj’ aiql/yj /b]a ql/yj)yjk

ey (aiq(l_mj)/yj /bj7 azbj’ ql/yj)yjk

Remark 4.2. Tt is clear from the proof that Theorem 4.1 is actually equivalent
to its special case when y; = 1. This may be checked directly using (1.6).
However, in view of the work of Warnaar [31], the form given above seems
more useful for potential application to quadratic and higher identities.

Remark 4.3. In principle, one can obtain an even more general identity by
replacing (4.1) with a substitution involving independent bases, that is,

(a1, ... an) = (Gl,--.,alqil,...,as,...,asqiﬁ),
<b1’ o .’bn72) = (bl’ o ’blpTl_la cee abv"a R b’rp:"nril)-

However, the inner sums in the resulting identity will not be elliptic hyper-
geometric.

Remark 4.4. In the basic case, p = 0, Theorem 4.1 may be obtained as a
special case of Sears’ transformation for well-poised series [28]. More pre-
cisely, if we start from the special case given in [9, Exercise 4.7], replace r
by 7 + s and choose the parameters (by,...,b.,s) there as

(q_ll/ala e aq_ls/asa qm1+1/as+1a ey qmr+1/a7"+s)a

we obtain an identity equivalent to the case p = 0 of Theorem 4.1. This is
exactly the case of Sears’ transformation when all series involved are termi-
nating, very-well-poised and balanced. Since these restrictions are natural
in the elliptic case [29], we may view Theorem 4.1 as an elliptic analogue of
Sears’ transformation.

For applications, the case s = 2 of Theorem 4.1 seems especially use-
ful, and we give it explicitly in the following corollary. We have made the
substitutions (ai, as, l1,1l2,b;) — (va,b/v/a, N, L,c;/+/a) and used (1.13) to
simplify some of the factors.
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Corollary 4.5. Let L, N and myq,...,m, be non-negative integers with
m| =L+ N, and let yi, .. .,y, be positive integers. Then,

i 9(@(] a q -N b aq L/b q kH C]q mj [yj aql/yJ/C q /y])yk
— 0(a) (g,aqV*1, aq/b, byt q (agt—ms /yj/cj ¢i1q /yj)y i
_ (g, q:9)n (ba,ba/a;q)r 1 (¢i/b,cib/as ¢/ )m,

(bg, aq/b; q)n (b%q/a,q;q)1L ey (¢jrci/a; Vi),

0 fa) _(Bfa gt b b ),
e 9(b?/a) (q,q"'0*/a,bq/a,bg"*"; q)
ﬁ (bejq™i/% fa, bg' /¥ [cj; q'/% )y
. (bq(l_mj)/yj/Cj,ij/CL;ql/yj)yjk )

If we let L = 0 in Corollary 4.5 we obtain the following summation formula.

Corollary 4.6. Let yi,...,y, be positive integers and mq,...,m, be non-
negative integers with my + - --+m, = N. Then the following identity holds:

i@(aq b, a/b;q)i kH qumj/y] aql/y’/cj q/y’)yk
6a) (4, anH aq/b, bq; q) (aqt=mi)lvi [c;, cj; gt /y”)yjk
_ (aq,q; O 1o (/b ciba; ¢ ),
(bq, aq/b; q)n o1 (¢j,¢i/a; MY )m,

k=0

Note that the case r = 1 of Corollary 4.6 is equivalent to (1.4), and that
the case y; = 1 is (1.7).

5. SOME EXOTIC KARLSSON—MINTON-TYPE IDENTITIES

Besides (2.2), we are aware of another elliptic partial fraction expansion,
namely,

Z Wi Oa/b) o (5.1)
, Loy, = by )
HJ 1,5#k 0(ax/a;) " "
which goes back at least to the 1898 treatise of Tannery and Molk [30, p. 34].
Again, we refer to [21] for an elementary proof and some further comments.
It does not seem possible to obtain a matrix inversion from (5.1) in a
similar way as Warnaar’s inversion was obtained from (2.2) in Section 2.
However, it is straight-forward to imitate the analysis of Section 4 and obtain
Karlsson-Minton-type summation and transformation formulas from (5.1).
The resulting identities seem quite exotic and appear to be new even in the
case p = 0.
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Thus, we make the substitutions (4.1) into (5.1). In place of (4.2), we now
have the two conditions |/| + s = |m| and
my

q<11;1)+---+(zs;1)a111+1 . 'aiSH _ qﬁ( o )+"'+y%("3’)brln1 s (5.2)

Clearly, the resulting transformation can be obtained from Theorem 4.1 by
deleting the factor a;q*, together with all factors involving products (rather
than quotients) of the parameters a;, b;. This gives the following result.

Theorem 5.1. Let [q,...,l; and mq,...,m, be non-negative integers and
Y1,---,Yr be positive integers. Assume that |l| + s = |m|, and that (5.2)
holds. Then,

zs: [T (g =™/ [bj; /%),

— (q7%5q)y H§:1 ieiaiq™h [ag; @)

azq ]/a]? q)k . aqu/yj /b] q L/vi )y k
X =0.
31| (oI T

a;q/a;
k=0 j=1 ,q/ g J:1

Next we write down the case s = 2 of Theorem 5.1 explicitly. For this we
make the substitutions

(ab a2, lla l?a b]) = (qua ]-a Na La bq(Lyjimj_Fl)/yj /C])

(Since we may multiply all a; and b; in (5.1) with a common factor, the
assumption as = 1 is no restriction.) This yields that if |m| = N+ L +2 and

q(L+1)bL+1 q(N+1)+ () ++3: (% )ch---CT’, (5.3)

then

LLoalesia ™, ZN: (™, b q)x H (ciq™i7%5; ¢ 1% )y
(@ @)n (b Qo =5 (000" 5 @)k 7 (€509
[Tj—i(a " e;/b;:"% ), *L,q*L N/b; q)
(@)@ N/ vn = (4,077 /b )
r m] Ly; /yJC /bq/yj) yjk

X
111 q=rc;/b; a9 )y

Mh

= 0.

To make this look nicer we replace k& by L — k in the second sum. After
repeated application of (1.12) and some further simplification, we arrive at
the following transformation formula.

Corollary 5.2. Let L, N and my,...,m, be non-negative integers with
Im| = N+ L+ 2, and let y,...,y, be positive integers. Then, assuming
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also (5.3), one has the identity

N " (eiq™ilVis gty

Z q’ qu—}-l’ q H

=0 G

bN+1 (q q bq, f[ C]/b q /y]

(bq, ]:1 C] q /ZIJ

XZ (=" b;q) ﬁ (bg*"¥ [ejs a1 )y,
= (a,ba™ 5 q) - (bgU =) i ojs g i)y

When L = 0, Corollary 5.2 reduces to the following summation formula.

Corollary 5.3. Let my,...,m, and N be non-negative integers with |m| =
N 4+ 2, and let yq, . ..,y, be positive integers. Then, assuming also

b (AT g o

I

one has the identity

ﬁ: b ) 7 (G )k _ v (@) H (cj/b; q"v
= (0060, 1 (e q )y (bg; v 57 (ciiq /yﬂ

The evaluation in Corollary 5.3 looks so unusual that it is worth pointing
out that we believe it is free from misprints. In particular, the factor ¢~
is not missing from the left-hand side. Like for other results in the paper,
special cases have been confirmed by numerical calculations.

Using the results of [29] it is easy to check that the sum in Corollary 5.3 is
modular (that is, invariant under a natural action of SL(2,Z) on (p, ¢)-space)
and, in particular, balanced in the sense of Spiridonov. However, the special
case p = 0 is not balanced in the usual sense of basic hypergeometric series
[9]. This is another indication of the importance of modular invariance and
Spiridonov’s balancing condition for elliptic hypergeometric series.

APPENDIX. AN ALTERNATIVE PROOF OF (1.7)

Gasper’s proof of the case p = 0 of (1.7) uses induction on r. As was
remarked in the introduction, this proof does not immediately extend to the
general case. However, we were able to find a proof by induction on N, which
is different in details from Gasper’s proof, but closer to standard methods for
basic hypergeometric series [9] than the proof given in Section 4. We include
this proof here both since it may have independent interest and since it may
be useful for generalizations, for instance, to multiple series. For brevity, we
will write (a)r = (a;q)y for the elliptic shifted factorials in (1.11a).
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To start our inductive proof of (1.7), we assume that it holds for fixed N
and consider the sum
N+1 g

g Z aq (a,q N1 b,a/b); kH (c;jq™,aq/ci)k

9(a) (q,aqN+*2, aq/b bq) g™ fej, ¢5)k

where m; 4+ -- -+ m, = N + 1. By symmetry, we may assume m, > 1.
We multiply the sum S termwise by

1
0(agN+1, g~ N1, g th=1 agl—metk /c,)
% [e(aqk—i—N—l—l,qk—N—l’CTqmr—l’aql—mT/CT)

— ¢ N 0(ad", ¢*, crg™ N ag® TN [ey)],

1=

which is equivalent to (1.10) with the replacements

(u,v,2,9) = (Va,d™ e /va, " Va, ¢" Va).
Since the factors (¢*~"V~!) and 6(¢*) vanish at the end-points k = N + 1
and k = 0, respectively, this gives an identity of the form

N N+1

S = +Z

k:O

Replacing £ by k£ + 1 in the last sum and simplifying gives

5= EN: 0(ag™) (a,q7",b a/bc,q™ " ag/c)s kﬁ (™, aq/c;)n
0(a) (g,ag"*", aq/b,bg,aq®™™ [cr e = 25 (ag' ™™ [ 5, ¢5)x

mp+N 2—mT+N/CT

—1 .
_~ 0lag,aq’,b,a/b,c,q™ N ag/c,, aq 0(c;q™ , aq/c;)
0(aq/b, bg, ag™*t, agh*?, aqt = [er, ag? T [en, ¢p) o 0(agt T [ej ¢5)

N _
29(@2’”2) (ag®, ¢ N, bg,aq/b,c,q™ , aq®/cr )k

= 0(aq®) (g,aq"*? aq?/b,bg®, aq> " [cr, crq)i

14+m; 2
XH (g™, ag”/cj)

(aq®>~™i [ ¢k

Both sums are now evaluated by the induction hypothesis, giving

(ag, @)n  (cr/b, e;b/a)m,—1 T (¢3/b, cib/a@)m,

N (bQ7 aCI/b)N (C'r; C’I‘/a)mr—l =1 (Cj, cj/a)mj

% 41 0(b, a/b, c,gN T agNtE™ [e,)
O(bgN+, agNt1/b, c.qm L agtmr fe,) |
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Using again (1.10), this time with
(u,v,2,9) = (Va,q™ e, /Va,¢" ' Va, b/ V),
we find that the factor within brackets equals

OV agV T, g™ e, /b, g™ e b/ a)
0(bgN+1, agN+t1 /b, g ~1e,, g™ =1, [a)’

and thus
S = (aq, Q)N-I-l - (C]/b7 Cjb/a)m]'
(bg, aq/b)nir 527 (€55 ¢j/a)m,

This completes our alternative proof of (1.7).
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