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ABSTRACT. We derive summation formulas for a specific kind of multidimensional
basic hypergeometric series associated to root systems of classical type. We pro-
ceed by combining the classical (one-dimensional) summation formulas with certain
determinant evaluations. Our theorems include A, extensions of Ramanujan’s bi-
lateral 117 sum, C, extensions of Bailey’s very-well-poised g1 summation, and a
C, extension of Jackson’s very-well-poised g¢7 summation formula. We also derive
multidimensional extensions, associated to the classical root systems of type A,
B,, C,, and D,, respectively, of Chu’s bilateral transformation formula for basic
hypergeometric series of Gasper-Karlsson-Minton type. Limiting cases of our var-
ious series identities include multidimensional generalizations of many of the most
important summation theorems of the classical theory of basic hypergeometric se-
ries.

1. INTRODUCTION

The theory of basic hypergeometric series consists of many well known summation
and transformation theorems. In this paper, we derive multiple generalizations of
many of the classical basic hypergeometric summation formulas. These extensions
of a specific, natural, kind of multidimensional basic hypergeometric series are as-
sociated to root systems of classical type but are different from those studied by
Milne et al. [10], [20], [21], [22]. The type of series appearing in this paper were
first considered by Gustafson and Krattenthaler [11], [12] who showed how to obtain
multivariable summation and transformation formulas from determinant evaluations.
Our theorems include A, extensions of Ramanujan’s bilateral 1; sum, C, exten-
sions of Bailey’s very-well-poised g1 summation, and a C, extension of Jackson’s
very-well-poised balanced g¢; summation formula. We also derive multidimensional
extensions, associated to the classical root systems of type A,., B,, C,, and D,, re-
spectively, of Chu’s bilateral transformation formula for basic hypergeometric series
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of Gasper-Karlsson-Minton type. For explanations of the convention in naming the
series as A,, B,, C,, or D, series, the reader is referred to [3], [26], or also the re-
mark preceeding Lemma 6.4 in this paper. Limiting cases of our series identities
include multidimensional generalizations of many of the most important summation
theorems of the classical theory of basic hypergeometric series. As explicit examples
we provide C, terminating and nonterminating g¢s summation formulas, and an A,
extension of the ¢-Pfaff-Saalschiitz summation. This research is part of the author’s
Ph.D. thesis [26, Ch. VII], written under the supervision of C. Krattenthaler.

Recently, Gustafson and Krattenthaler [11, Theorem 1.15] discovered an A, (or
equivalently U(r+ 1)) extension of Ramanujan’s bilateral 17y sum. The work in their
paper involved A, series of a new kind. In particular, Gustafson and Krattenthaler’s
A, 191 sum is different from Milne’s [20].

Before we review Ramanujan’s 17; sum and Gustafson and Krattenthaler’s exten-
sion thereof we recall the standard definitions in basic hypergeometric series theory
(cf. [8]). Let g be a complex number such that |g| < 1. Define

(0; Q)0 := [ (1 — ag?),

7>0
and,
(a5 0)oo
a;q)p =~ 1.1
T (1)
k—1
= 1] -ad), (1.2)
j=0

where the equality (1.2) holds when k is a non-negative integer. We also find it
convenient to use the Gasper-Rahman notation

(@1, m; Ok = (a159)k (@25 @)k (@m; Ok

for simplifying our displays.
Ramanujan’s classical 11; summation formula (see [14] or [8, (5.2.1)]) reads

Theorem 1.3 (Ramanujan’s classical 19; sum). Let a, b and z be indeterminate,
and suppose that none of the denominators in (1.4) vanish. Then

00 (a; Q)k E_ (q, b/a, az,q/az;q)oo
Z (b;Q)kz — (b,q/a,z,b/az;q)0 (1.4)

provided the series terminates or |q| < 1 and |b/al < |z| < 1.

k=—o00

Remark 1.5. Ramanujan’s bilateral 17); summation formula is one of the most fun-
damental formulas of the theory of basic hypergeometric series. A simple and elegant
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proof was given by Ismail [15] who noted that Theorem 1.3 is an immediate con-
sequence of the g-binomial theorem (which is the b = ¢ case of Theorem 1.3), and
analytic continuation.

Gustafson and Krattenthaler’s A, 14; summation formula [11, Theorem 1.15] can
be stated as follows. Here and in the following we use the notation |k| = ky + k2 +
cet k.

Theorem 1.6 (Gustafson and Krattenthaler). Let zy,...,z,, a, b and z be indeter-
minate, let r > 1, and suppose that none of the denominators in (1.7) vanish. Then

00 H (1 — qkz—k]l'z/xj> f[ (a, Q)kz Z|k| Z;'ﬂzl(ifr) ks
E : q
1-— Jii/Ij i1 ;

k1,.-.;kp=—00 \ 1<i<j<r (b; Q)Iﬁ

— ﬁ (q’ b/a’ aqu—i, ql/aza Q)OO (1 7)
i=1 (ba Q/a, quii) bqiil/az; q)oo ’

provided the series terminates or |b/a| < |z| < |q|"! < 1.

Gustafson and Krattenthaler proved Theorem 1.6 by a combination of the classical
r =1 case (1.4) and the Vandermonde determinant evaluation.

One of the main purposes of this paper is to provide some more A, extensions
of Ramanujan’s 19; summation formula, see section 2. But we are also able to de-
rive C, extensions of Bailey’s bilateral very-well-poised g1 summation, and Jackson’s
balanced very-well-poised g¢7 summation formula, see section 3 and section 4, respec-
tively. Some important specializations of these summations are given in section 5.
Furthermore, in section 6, we combine determinant evaluations with Chu’s [5] re-
markable bilateral transformation formula of Gasper-Karlsson-Minton type [7], [18],
[23], [8, sec. 1.9] to deduce multiple versions of Chu’s identity. It is suprising that we
obtain identities associated to various root systems of classical type, and we may also
employ different bases, ¢, ..., ., in our series (see Theorem 6.5). It is also possible
to obtain other multiple extensions of Chu’s transformation formula by using other
determinants in our derivation.

Proceeding by essentially the same method as Gustafson and Krattenthaler in the
proof of their A, 17 summation theorem our derivations require certain determi-
nant evaluations which are more general than the classical Vandermonde determi-
nant evaluation. One of the determinant evaluations we utilize, Lemma A.1, comes
from a determinant lemma [19, Lemma 34| (see Lemma A.3) which has been suc-
cessfully used by Krattenthaler in the computation of generating functions for plane
partitions and tableaux. This determinant lemma has also been used by Gessel and
Krattenthaler [9] for deriving several A, basic hypergeometric series identities. Inde-
pendently, a special case of Lemma A.1 was involved in [28] in the computation of
biorthogonal rational functions.
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The particular technique in this paper has already been used in [12] to provide
new proofs and generalizations of the A, extensions of Heine’s 5¢; transformations
which have been discovered in [11]. In fact, the reading of [12] was the starting point
of the author’s investigations for identities of this kind of series. We believe that the
method of this paper, which is entirely elementary, will be useful for proving other
multidimensional series identities as well.

2. 191 SUMMATION FORMULAS
Our A, extensions of Ramanujan’s 11, summation formula, (1.4), are the following.

Theorem 2.1 (A, 19, summations). Let 1, ..., T, Q1. 0p, b1 ... bp, 20, -0, 2y,
a, b and z be indeterminate, let r > 1, and suppose that none of the denominators in
(2.2), (2.3), or (2.4) vanish. Then

oo ki—k; . . r L.
Z H (1 —q sz/x3> H (azi;q)k, ey qz;zl(i_r) ki
1 —x;/z; (bi;

1, kr=—o00 \ 1<i<j<r i=1

_ @) bi/xi — b /x;\ 11 (9,bi/azs, aiz, ¢/ aziz; @)oo 59
—1 H 1/x; —1/z; (bi, q/azxi, 2 74, b;/aziz; Q) s (22)
1<i<j<r % j 1 iy q iy 2q s Ui i%74) o
provided the series terminates or |b;/ax;| < |z| < |q|" ' <1 fori=1,...,r,
i < H (1_qki—iji/xj> ﬁ (@i @rs Y quzl(ir)ki>
kit ek =—00 \ 1<i<j<r 1= ai/z; i (0265 @),

_ H (1 — ajmz/az%) . Qabxz/auazzq ,qi/aiz;q)oo (2 3)
=1

\isier 1—z;/z; (bxi,q/ai, 2 7, b2/ 0:2; Q)00
provided the series terminates or |bx;/a;| < |z| < |q["' <1 fori=1,...,r,
i < I (1 — qkikjwi/xj> ﬁ (azi;q)k, i quzl(i—r)ki>
E1yekr=—o0 \ 1<i<j<r 1 —zi/z; i=1 (bzi; ¢,

— H (1_72‘7/21) ﬁ (qa bql_i/aa amiziql_ia ql/axzzu Q)oo (2 4)

\<idjer \1 = @i/2; (bzi, ¢/ axi, 2iqg' ", b/azi; q) oo
provided the series terminates or [bja| < |z| < |q|"" ' <1 fori=1,...,r.
Proof. We start with the sum

- 1—qk"k"l'i/$j> 7 (45 QK g, YT (i) ki
S SICU L 2.5
S (JL (S5 e @9

E1ykr=—o0 \ 1<i<j<r i=1
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and specialize the parameters a;, b;, z; later. We have

Sk ] 1= Mmi/a;\ 11 g Ffx — g "
l_xi/l'j 1/1’2—1/11,‘]

1<i<j<r 1<i<j<r

= I1 @m=1/m) " det ((a™/2)),

1<s,t<r
1<i<j<r

the last equation due to the Vandermonde determinant evaluation. Hence we may
write (2.5), when multiplied by [[,; ;<. (1/2; — 1/z;), as

t—r = (aS;Q)ks t—r\ ks
S (m 2 Giaw, 1) )

ks=—o0

Now, to the sum inside the determinant we apply Ramanujan’s classical 17); summa-
tion, (1.4), with a — a,, b+ b, and 2z — z,¢"~". Thus we obtain

.Tt_T (Q7 bs/asa aszsqtira ql+r7t/aszs; q)oo
* (b, q/as, 25qt T bsq" As253 Q)00 )

Now, by using linearity of the determinant with respect to rows, we take some factors
out of the determinant and obtain

H (q,bi/ai,aizi,Q/aiziQQ)oo det ((E)t_r M) . (26)

i1 (bi, /i, 2i, b/ @izi; @)oo 1<st<r \ \ as (/253 @)r—t

det
1<s,t<r

The determinant in (2.6) cannot be evaluated in closed form in general. But we can
choose different specializations of the parameters ag, b, and z;, for s = 1,... 7, for
which the determinant can be reduced to a product by means of Lemma A.1.

The simplest choice is a; = a, by, = b, and z, = z. In this case the determinant in
(2.6) equals

T

o) TP 02D qoq (gt

1 (a/2;q)—i 1ssi<r V°

and the last determinant can be reduced to [[,;_;,.(1/z;—1/z;). Substituting these
calculations and performing some other elementary manipulations, we easily recover
(1.7).

By choosing different specializations of the parameters in (2.6) we will now prove
the cases (2.2), (2.3), and (2.4) of our theorem.

To prove (2.2), we set a; = az, and z; = 2. In this case the determinant in (2.6)

equals

o) [(a/z 007 det ((bofaziz;q)rs).

! 1<s,t<r
=1
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The determinant can be evaluated by means of Lemma A.1 with X, — b,/zs, A —
1/az, B — 0, and C — 0. Subsequently, substituting our calculations and performing
some other elementary manipulations leads to (2.2).

To prove (2.3), we set by = bz, and z; = z. In this case the determinant in (2.6)
equals

f[(Q/ @) det | ((Z—)t (bas/asz; q)r—t) : (2.7)

=1

The determinant can be evaluated by means of a limiting case of Lemma A.1. Namely,

first multiply both sides of the C' — 0 case of (A.2) with (—B)(;)q(g) and then let
B — o0 in the resulting identity to see that

det (X77(AXgqh—) = [] (U/Xi—1/X)). (2.8)

1<s,t<r
1<i<j<r

Now evaluate the determinant in (2.7) by the X, — z;/a; and A — b/z case of
(2.8). Substituting our calculations and performing some elementary manipulations,
we easily deduce (2.3).

To prove (2.4), we set a; = azx, and by = bx,. In this case the determinant in (2.6)

equals
&) det (M)
1<st<r \ (q/2s; Q)r—t

The determinant can be evaluated by means of Lemma A.1 with X — 1/z5, A+ b/a,
B — q, and C — 0. Finally, substituting our calculations and performing some
elementary manipulations, we arrive at (2.4). O

Remark 2.9. There are two other cases where the determinant in (2.6) can be eval-
uated in closed form.
We may set by = bz, and z, = zx,/a,. In this case the determinant in (2.6) equals

[1®/2 a)r— det ((Z_>— (qas/zsz; Q)rlt> : (2.10)

=1

The determinant can be evaluated by means of a limiting case of Lemma A.1. Namely,
first multiply both sides of the C' +— 0 case of (A.2) with (—A)*(;)q*(g) and then let
A — o0 in the resulting identity to see that

T

det (XI'(BXs0),Y) =]]BXs0), Y I (i-X).  (211)

1<s,t<r N .
i=1 1<i<j<r



MULTIDIMENSIONAL SUMMATION THEOREMS 7

Now evaluate the determinant in (2.10) by the X; — as/zs and B — ¢/z case of
(2.11). Substituting our calculations and performing some other elementary manip-
ulations leads to the following identity:

o) L. r k;
5 1 (1—qk’ kam,-/a:j> 11 (ai; @), (2) S NG
1—z;/z; 1 (bzis e, \ @i

Ei,ekr=—00 \ 1<i<j<r

r

_ H <x’t/al - x]/aj> H q7 bxi/a’i7 inql_r7 qr/zmi; ) (2.12)
i . =1 b

\<isi<r T; — Tj (bz;, q/a;, z2:Y7 /ai, b1/ 2, Q) o
provided the series terminates or |bz;/a;| < |z| < |g|" ! <1fori=1,...,r.
Actually, (2.12) is equivalent to (2.2), since (2.12) can be obtalned by doing the
replacements k; — —k;, z; — 1/z;, by — q/a;, for i = 1,...,r, a — ¢/b, and

2+ q"'b/z in (2.2), and some elementary manipulations.
On the other hand, if we set a; = azs and z;, = 2bs/z, in (2.6) the determinant
equals

T

ald) [T /az0),: | det ((925/bs70),2) - (2.13)

i=1
The determinant can be evaluated by means of the A,C — 0 limiting case of
Lemma A.1, reading

T

det ((BX.;0);%) = BE@E [[(Bxs0 [[ G-X).  (219)

1<s,t<r .
=1 1<i<j<r

Now evaluate the determinant in (2.13) by the X, +— z,/b; and B — ¢/z case of
(2.14). Again, substituting our calculations and performing some other elementary
manipulations we arrive at the following summation:

1—z;/x; (bi; Ok, \ i

1y kp=—o00 \ 1<i<j<r i=1

1—bizi/bix;\ 71 (g,bi/axs, azbiq' ™, ¢ Jazbi; q)so
T (Frmme) [0 g5
\<ij<r — z;/T; T (bi,q/ami, 2big" 7 /33, ¢ [az; @)oo
provided the series terminates or |b;/az;| < |z| < |g|" ! <1fori=1,...,r.

As in the case above we have not obtained a new identity, since (2.15) is equivalent
to (2.3), where (2.15) can be obtained by doing the replacements k; — —k;, z; — 1/x;,
a; — q/b;, fori=1,...,r, b q/a, and z — ¢""*a/z in (2.3), and some elementary
manipulations.
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Remark 2.16. The choice b; = ga; in (2.5) is a special case of the summation formula
implied by Theorem 6.5, where we even could have started with different bases ¢; in
the series (2.5). In this case most of the factors in (2.6) cancel.

3. ¥ SUMMATION FORMULAS

Before we state the C, extensions of Bailey’s 49/ summation formula that we are
going to prove, it might be convenient to recall Bailey’s original g0 summation. This

is (cf. [2], [8, (5.3.1)])

Theorem 3.1 (Bailey’s classical g1 sum). Let a, b, ¢, d and e be indeterminate,
and suppose that none of the denominators in (3.2) vanish. Then

i 1—ag (b,c,d, e;q)x qa® \"*
1—a (ag/b,aq/c,aq/d,aq/e;q)r \bcde

k=—o00

_ (aq,aq/bc,aq/bd,aq/be, aq/cd,aq/ce,aq/de,q,q/a;q)s
(ag/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e, qa?/bcde; q) oo’

provided the series terminates or |q| < 1 and |ga®/bcde| < 1.

(3.2)

Remark 3.3. Andrews [1] discusses some applications of Bailey’s very-well-poised g
summation formula to number theory.

Our C, extensions of Bailey’s bilateral very-well poised g1)g summation formula are
the following.

Theorem 3.4 (C, g6 summations). Let zi,...,z,, €1,...,6., a, b, ¢, d and e be
indeterminate, let r > 1, and suppose that none of the denominators in (3.5) or
(3.6) vanish. Then

i H q Fje—q P )x; 1 — azxighith H a$2q2k
1/z; = 1/x; 1—az;x; 1 — az?

E1yekr=—o00 \ 1<i<j<r i1

% rr[ (bl'i,C.Tfi,dil'i, eixi;q)ki < a2q ) 1)
1 (aziq/b, azig/c, aziq/d, aziq/es; @)k, \bede;

) H <1/ei—1/ej 1 ) = (ax?q, aq*"*/bc, ag® " /bd; q) o

1/z; — 1/z; 1 — az;z; (az;q/b, ax;q/c, ax;q/d; q) oo

1<i<j<r

y H (ag/be;, aq>¢/cd, aq/ce;, aq/de;, q,q/az}; @)oo

(az;q/ei, q/bx;,q/czi, q/dx;, q/eix;, a?q>~" [bede;; ) o (3:5)
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provided the series terminates or |q| < 1 and |a?q* " /bede;| < 1 fori=1,...,r,
i 11 (q_ki/xi —q Mz 1 - axiquk“rkj) 11[ (1 ax;q* >
kikr=—o0 \ 1<i<j<r Vi —1/z; 1 — azz; i=1 1 - az}

o f[ (bz;, cxi, dzi/e;, €T q)k, <@> ki
-1 (aziq/b, azig/c, aeiziq/d, aziq/es; @)x; \bed
) H (1/ei —1/ej 1— eiej/d) ~ (az?q,aq*"/bc, aeiq/bd; q) oo
(

1)z —1/z; 1 — ax;z; " az;q/b,azx;q/c,ae;x;q/d; q) oo

1<i<j<r

y H (ag/be;, aeiq/cd, ag/ce;, aq/d, q, ¢/ az?; @)oo (3.6)
a’xlq/elv Q/bxla Q/C.’B,, elq/dxla q/elxla a2q2 z/de q) .

provided the series terminates or |q| < 1 and |a?q*™" /bcd| < 1.
Proof. We start with the sum
i I (q"“/mi —q /e 1— axifrjq’“*’“f) - ( —az} q )
kiyekr=—o00 \ 1<i<j<r Va; —1/z; 1 — azz; i=1 1 - az}

bxu C;Z;, d; iy €14, Q)k (I2q ki
H b d; be;d » 37)
1 asz/ am,q/c,, asz/ 19 axzq/eza )k:' C;;€;

and specialize the parameters c;, d; later. We have

11 (q_ Yo — g ey 1~ aziaigtt j) = I (/e —1/2)( - aziaz;)] !

1/z, —1/x; 1—az;x;
1<i<j<r /i [ v 1<i<j<r

x (/b)) g6 det ((bg ™ fazy; @)r_s (b2:0"; @)rs) ,

1<s,t<r

due to the X, — ¢ % /z,, A~ b/a, B 0, and C + a case of Lemma A.1. Hence,
using the elementary identities [8, (I1.13) and (I.18)]

(b/axs,q)r ¢ (arq/b; Q) (t—r)ks
(bg™ fazs; q)r—s (azsqt " /b; q)k,

and

bzs; q)r—t (b2sq" %5 q)k
bms ks; r— :( ’ : . 3
( q q) ! (be? q)ks
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we may write (3.7), when multiplied by [[,,_;,[(1/z; — 1/z;)(1 — az;z;)], as

oo 2 %%,
6 ot (52 L—azig™
(a/b) 2 q 3 1§dsit§r (b/axs; q)r—t (bajs: q)r—t . _Z_oo 1 — CL.’IJ%
. (bzsq" ", s, dsLs, €55 Qi a?q o\
(azsq'="tt /b, axsq/cs, axsq/ds, axsq/es; @), \ besdses '

Now, to the sum inside the determinant we apply Bailey’s classical g summation,
(3.2), with a — ax?, b+ br.q"t, ¢ — c,x,, d — d,,, and e — e;z,. Thus we obtain

(az2q,aq* """ /bcs; @)oo
(azsq' /b, azsq/cs; 9) oo

1<s,t<r

(a/t)®) gG)  det <<b/azs;q>r_t (b3 q)rt

(agt "t /bd,, ag' "t /be,, aq/csds, aq/cses, aq/dses, 4,9/ az%; @)oo
(axsq/ds,azsq/es, g7 /bas, g/ css, g/ dss, g/ €sTs, a2 [besdses; @)oo |

Now, by using linearity of the determinant with respect to rows, we take some factors
out of the determinant and obtain

T

I (az?q, aq/bc;, aq/bd;, aq/be;, aq/cid;, aq/cie;, aq/diei, 4, q/ax?; q)oo
(az;q/b, azx;q/c;i, axiq/d;, axiq/e;, q/bxzi, q/cixiy q/ dixi, g/ eixi, qa? [beidies; q) oo

x (a/b) (;) q—(g) det <(bcs/a; q)r—t (bds/a’a q)r—t (bes/a’; Q)r—t> . (38)

1<s,t<r (bcsdses/a2; Q)T*t

To evaluate the determinant in (3.8) we choose different specializations of the param-
eters c,, d,, for s =1,...,r, for which the determinant can be reduced to a product
by means of Lemma A.1.

One choice is ¢; = ¢, and d; = d. In this case the determinant in (3.8) equals

=1

. (bes/a; Q)r—t
b v q)r—i bd yq)r—i det .
E[( C/G,Q) ( /(L Q) ] ISsigr((bcdes/aQ;q),.t
The determinant can be evaluated by means of Lemma A.1 with X, — e,, A+ b/a,
B+ bed/ a?, and C + 0. Subsequently, substituting our calculations and performing
some other elementary manipulations leads to (3.5).

The other choice is ¢; = ¢, and d; = d/e;. In this case the determinant in (3.8)
equals

H M det ((bd/aes; q)r—s (bes/a;q)r—t) -

L1 (bed/a?; q)p—i 1<st<r
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The determinant can be evaluated by means of Lemma A.1 with X, — e;, A b/a,
B +— 0, and C +— d. Finally, substituting our calculations and performing some other
elementary manipulations leads to (3.6). O

Remark 3.9. Other multivariate extensions, associated to root systems, of the very-
well-poised g1 summation formula were derived by Gustafson [10] using difference
equations. He used these higher-dimensional 49 summations to obtain, by special-
ization and limits, the Macdonald identities for the affine root systems of classical

type.
4. AN g7 SUMMATION FORMULA

One of the most powerful results in the theory and application of classical one-
dimensional basic hypergeometric series is Jackson’s [17] summation formula for a
terminating g¢; series, which is both balanced and very-well-poised.

Theorem 4.1 (Jackson’s classical g¢y summation). Let a, b, ¢ and d be indetermi-

nate, let n be a nonnegative integer and suppose that none of the denominators in
(4.2) vanish. Then

i 1— aq2k (aa ba c, d, a2qn+1/bcd, q—n, q)k: k
1—a (g,aq/b,aq/c,aq/d,bedg="/a, aq™*;q)

_ (ag, aq/bc, aq/bd, ag/cd; )n
(ag/bed, aq/d, ag/c,aq/b;q)n’
Theorem 4.1 is equation (2.6.2) of [8], where we have chosen to do the replacement
e — a?q"™! /bed explicitly.
We state our C, extension of Jackson’s balanced very-well poised g¢; summation
formula.

Theorem 4.3 ((dedicated to Tejasi*) A C, Jackson’s sum). Let zy, ..., x,, a, b, ¢
and d be indeterminate, let N be a nonnegative integer, let r > 1, and suppose that
none of the denominators in (4.4) vanish. Then

i H 1—q" %z, /z; 1 — azzjqti H 1 — ax?q®
. 1—z;/z; 1 — az;z; 1 — az?

1y kr=0 \ 1<i<j<r i=1

22 2. 214N ~N.
y H bz, cx;, dx;, a*wiq Jbed, q ;5 q), ) .qu_likz)
ks

k=0

(4.2)

(g, amzq/b az;q/c,azr;q/d, bedriqg" 1N [a, aziq' N q

- 11 (1 — az;T;q ) H (ax?q, aq® */bc,aq® * [bd, aq® " /cd; q) N (4.4)
\idjer \ L mazizy ) o5 (ag* ™" /bedz;, axig/d, aziq/c, aziq/b; N

*Tejasi is the daughter of Gaurav Bhatnagar. She was born on October 27, 1995, in Ohio.
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Remark 4.5. Note that all summation indices on the left hand side of (4.4) have the
same range. Summing over a cube is strange but essential for the determinant in our
derivation of (4.4) to simplify. In fact, the series

N . . r
Z ( H <1 — g iz 1 — azizighith H 1 — ax?q*
1—z:/z; 1— azx; 1— az’
0<k;<N; \ 1<i<j<r :1:1/ L azLiZ; i=1 axz
i=1,2, .7

y H 22, bx;, cx;, da;, a®x;g* "V bed, N ), ST ik
q,axzq/b ax;q/c, ax;q/d, bedz;qm—1Ni Ja, ax?q Vi q)y, I

does not factor, except for Ny = Ny = --- = N,. To our knowledge, such a phe-
nomenon has not occurred so far with terminating multiple series associated to root
systems.

Unfortunately, we cannot use Theorem 4.3 for deriving a multiple 1g¢g transforma-
tion.

Proof of Theorem 4.3. We have

— gk ki Jrs 1 — N AL ]
quzl(ifr)k,i H (1 q J:v,/wj 1 ar;T;q J)

1<i<j<r 1— xi/wj 1—ax;x;
— H (q_ki/wi - q_kf/xj 1-— axiquki+kj)
1<i<j<r 1/ — 1/z; 1—az;x;
r 2—r—k; . o ik ‘
AT @ e @)1 (azig? T e g)
- 1/z; — 1/z;)(1 — aziz;)] ™! ( '
A | e e e

—ks i ks .
% (a/b) (;) q—(g) det (bq /CL.TS, Q)r—t (bxsq ;Q)r—t :
1<st<r (q2—r—ks /st; Q)T—t (axsq2_r+ks/c; Q)r—t
due to the X, — ¢ */z,, A~ b/a, B~ ¢*"/c, and C > a case of Lemma A.1.
Hence, using some elementary identities from [8, Appendix I], we may write the left
hand side of (4.4), when multiplied by [[,; ;. [(1/z; — 1/2:)(1 — az;z;)], as

(a/be®)( H[ 7 fbes @)ioa (g™ s q)ia]

ax2q2ks

N
1—
x det ((b/axs,bxs;q)r_t(c/aacs,cxs;q)t_lZ

1<s,t<r 1 — az?
ks=0 s

_ (az3, brsq” ", cxsq" ! das, a’xsq® "N [bed, ¢ N @), e
(¢, 0z:q' /b, az,q>~ /¢, azsq/d, bedz,q "N [0, aziq N q)r, T )
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Now, to the sum inside the determinant we apply Jackson’s classical g¢; summation,
Theorem 4.1, with the replacements a — az?, b — bx,q" %, ¢ — cz,q""", d — dx,,
and n — N. Thus we obtain

(a® /b H[ " fbes )i (bg % e q)ia]”

1<s,t<r

x det <(b/axs,bxs;q)r—t (C/a.’]fs,cxs;q)t—l

 (azlg,aq* "/bc,aq" "'/bd, ag® */cd; q)n
(ag>/bedx,, azxsq/d, ax.q®>~t/c, az,q' " /biq)n |

Now, we take some factors out of the determinant and obtain

(a® /bet)(5) V() T) H (cq ™ /azi; @)r-1 (czi;@)r1
1 (ag?/be; q)i1 (bg* 7% /c; q)in
" H (ax2q,aq® " /bc,aq' " /bd, aq® ¢ /cd; q) §
(ag®" [bedz;, axiq/d, axiq/c, aziq/b; @) n

« det (( (bg N /azy; q)r—t (bxs; @)r—s ) (4.6)

1<st<r \ (277 /cs; @)rt (05> TN/ € q)r s

=1

The determinant can be evaluated by means of Lemma A.1 with X; — 1/z,, A —
bgN/a, B+ ¢>"/c, and C + aq". Subsequently, substituting our calculations and
performing some other elementary manipulations leads to (4.4). l

5. SPECIALIZATIONS

First, we state an important limiting case of Theorem 4.3, namely an A, extension
of Jackson’s [16] g-analog of the Pfaff-Saalschiitz formula [8, (1.7.2)], a summation
theorem for a terminating and balanced 3¢9 series. The ¢ = 1 case of this classical
summation theorem, the 3 F5 summation theorem [8, (1.7.1)], was originally found by
Pfaff [24], and was rediscovered by Saalschiitz [25].

Theorem 5.1 (An A, ¢-Pfaff-Saalschiitz sum). Let x1, ...,z,, and a, b and c be
indeterminate, let N be a nonnegative integer, let r > 1, and suppose that none of
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the denominators in (5.2) vanish. Then,

N ks r _
Z H 1—qgk ’“Jx,-/xj H (az;, bxi, q N;Q)ki .qZ;“:lik,-
. V—a;/z; ) 1 (g, cmi,abzig™ N /c; q)x,

E1ykr=0 \ 1<i<j<r

_ H (g™ /a, e big)n s o)
i3 (cicq'~r/abziiq)n

Proof. The proof is just as in the classical one-dimensional case. Take the limit a — 0
after replacing d by aq/d in (4.4). Finally, relabel ¢ — a and d — ¢ in the resulting
identity to obtain (5.2). O

Other important specializations of our Theorems 3.4 and 4.3 are nonterminating
and terminating C, ¢¢5 summations.

Theorem 5.3 (C, nonterminating g¢s summations). Let =1, ..., z,, a, b, ¢ and d
be indeterminate, let r > 1, and suppose that none of the denominators in (5.4) or
(5.5) vanish. Then

3 ( 10 (qk;/xi—qkf/xj 1—a:ciqukf+kf> 1 (1—ax3q;'w>
k1,eskr=0 \ 1<i<j<r [z —1/z; 1= azz; i=1 1 = az;
Xﬁ (ax?, bx;, cx;, dws; q), ( aq )k’>
p (q,az;q/b,az;q/c, az;q/d; Q)r, \ bedz;
92— 2—i 92—
= AL @-ama) IH e Tl s O

1<i<j<r

provided the series terminates or |q| < 1 and |ag? "/bedz;| <1 fori=1,...,r,

i H (q_k"/l’i —q*/z;1— axizch’““rkj) H (ﬂ)
Fipeekr=0 \ 1<i<j<r 1/2; —1/z; 1 —aziz; i\ 1—az]
y H x2,bx;, cxi,y d; Q) (ﬂ)k
q,aftzq/b az;q/c,axq/d;q)y, \bcd
_ H (l—axixj/d) H (ax?q,aq” " /bc, ar;q/bd, ax;q/cd; q) oo

(1 — az;z;) - (ag?~i/bcd, az?q/d, az;q/c,az:q/b; @)oo’

(5.5)

1<i<j<r
provided the series terminates or |q| < 1 and |ag*™" /bed| < 1.

Proof. For (5.4), let e; = ax; in (3.5), or, equivalently, N — oo in (4.4). For (5.5),
let e; = ax; and d — ad in (3.6). O
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Theorem 5.6 (A C, terminating g¢5 summation). Let z1, ..., x,., a, b and c be in-
determinate, let N be a nonnegative integer, let r > 1, and suppose that none of the

denominators in (5.7) vanish. Then
i I ¢ " /zi—q M /z; 1 — aziz;ghth H 1 — az}g*™
o 1)z —1/z; 1 —ax;z; pale 1—az?

1y kr=0 \ 1<i<j<r

« H 2 bl?z,Cl'“q ;q k; 1+N ki
(¢, afczq/b aziq/c, ax?q'tN; q)y, bc
)

(1 — az;ziq = (ax? 29,a9* 7" Jbc; q)n
H (1 - az;z;) H (5.7)

i i (azig/b,aziq/c;q)n’

provided the series terminates or |q| < 1 and |ag®>™™ " /bc| < 1.

Proof. Let d — ¢~ in (5.5), or, equivalently, d — oo in (4.4). O

If we specialize our above theorems further, we obtain A, extensions of various
important classical summation theorems such as the ¢g-GauB}, ¢-Chu-Vandermonde,
and g-binomial theorem.

6. TRANSFORMATION FORMULAS OF GASPER-KARLSSON-MINTON TYPE

Finally, we give multiple extensions of Chu’s [5, eq. (15)] general formula trans-
forming a bilateral ,;91,12 series of Gasper-Karlsson-Minton type into a multiple
of a unilateral (one-sided) ,i2¢,+1 series of Gasper-Karlsson-Minton type. (We say
that a ,429p12 series is of Gasper-Karlsson-Minton type if there are p upper param-
eters ai,...,a, and p lower parameters by,...,b, such that each a; differs from b;
by a nonnegative integer power of ¢, i.e. a; = b;¢™, m; > 0, [8, sec. 1.9].) Our
observation is quite interesting, namely, not only that we may employ several bases
qQi,--.,q- in the multiple series but our calculations can also be carried out using
various “Vandermonde determinants”, corresponding to the associated root systems.
Further multilateral transformations may be deduced by employing other determi-
nants in our series. Our intention is merely to give an idea how such calculations
work.

Chu’s general bilateral transformation formula reads

Theorem 6.1 (Chu). Leta, c, d, z and by, ..., b, be indeterminate, let N be an inte-
ger and mq, ..., m, nonnegative integers, and suppose that none of the denominators
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n (6.2) vanish. Then

i (a, Z, blqml,qumZ, ey bpqmp; q)k (qlfN/a)k

= (c,qdz, by, ba,. .., by; Q)

(b; m;
_, (qZ/GC/zqdqqooH /zq ;

(¢dz,q/2,q/a,¢;q) ;
s (1/d,qz/c,qz/b1,qz/ba, .. qz/bp'q)k N—lml\ K
A ’ dg™N ! 6.2
* kz:% (¢,92/a, ¢ =™ 2 /b1, q'~ mzz/b%---aql_mpz/bp;Q)k (cdg™™)", (62)

provided the series terminate or |q| < 1 and |q/a| < |¢V| < |¢™!/cd|. Here, we have
used the notation |m| =my + - - + m,,.

Remark 6.3. Note, that when d = 1, the sum on the right hand side of (6.2) reduces
to a single term, and hence, (6.2) reduces to a summation formula. On the other
hand, when ¢ = ¢ we obtain a ,,2¢,,1 transformation (where the N = |m| case
was derived in [7]). Jim Haglund [13] has stumbled over the ¢ = ¢ case of (6.2) via
rook theory. He has also noticed that (6.2) can be obtained by specializing a general
transformation formula for bilateral series, due to Slater [27], [8, (5.4.4)].

We give multiple generalizations of (6.2) associated to the root systems A,, B,
C.,, and D, of classical type (cf. [4]).

The determinant evaluations we use in these cases are listed in the following lemma.
We remark that the evaluations are basically the Weyl denominator factorizations of
type A,, B, C,, and D,, respectively (cf. [6, Lemma 24.3]).

Lemma 6.4. The following determinant evaluations hold

det (o) = [] (w—=) (A)

1<6,5<r 1<i<j<r
r—i_ 1
1<cle-t<r (zi77 - T H [(@: — 25)(1 — zi;)] H(l i) (B)
<ij< lsi<ysr .
1<(%e-t<r (xff _ 7‘+J = H [(s — 25)(1 — z35)] H(l — i) ©
<ij< lsi<ysr -
1 rI 4 g7t
5o det (2l 7+l = II [@i—2)(1 —aizy)]. )
<ig< 1<i<j<r

Proof. Identities (A), (B), (C), and (D) are readily proved by the standard argument
that proves Vandermonde-type determinant evaluations. Namely, first it is verified
that the determinant on the left hand side vanishes whenever one of the factors of
the right hand side vanishes. Then one checks that both sides are polynomials in
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x1,...,x, of the same total degree. Hence, the determinant equals a constant times
the right hand side. The constant is easily computed by comparing coefficients of a
“maximal” or “minimal” monomial. [

Let G denote A,, B,, C,, or D,. Besides, let Ag[z1,...,x,] denote the product
side of the G-Vandermonde as displayed in Lemma 6.4. Now we can state a general
multilateral transformation formula for basic hypergeometric series associated to G.

Theorem 6.5. Let a;, ¢;, d;, z; and b;1,. .., by, be indeterminate, let N; be integers
and my1, . .., M, nonnegative integers, fort =1,...,r, and suppose that none of the
denominators in (6.6) vanish. Then

Ag[l/zy,...,1)z,]

i <AG (7" /21, ... g% /2]

k1yeeiskp=—00

T .o Begid i " i .
X H (aza Ziy blez L bqu ’ QZ)kl (qil_Ni/ai)kl )

1 (e @idiziy bia, - - bip i),

H N; qzzi/aiaci/zia%diaqi;qz oo HH zj/zzan \Yig/ <i5 Yi)mi;

Pl (@idizi, @i/ i, @] i, Ci5 Qi) o

i=1 j=1 z];qz)m,]

% AG [zl/xla . -azr/xr] i AG [ql 21/.1’1, .. '7Q7I?TZ7'/1:T]
Ag[1/$1,...,1/1‘r] AG[zl/xl,...,zT/:vT]

k1, skr=0

T

(1/ds, qizi/cs, @i/ biv, - - -, Gi2i/bip; @)k, c.d.qN,-—|mi|)k" (6.6)
m; 1-m; 114g ) .
o (@, Gzifai, @ " 2 by qp 2 bip @)k

provided the series terminate or converge (where we have used the notation |m;| =
Mig + -+ myp, fori=1,...,r).

Sketch of proof. We start with the left hand side of (6.6). Using Lemma 6.4, we
substitute the corresponding determinant for Ag [ql_ k1 [T1,. . q R/ mr] , and by using
linearity of the determinant with respect to rows, we write the whole series as a single
determinant. Now we transform the terms in the determinant by Theorem 6.1. In
the resulting determinant, again by using linearity of the determinant with respect
to rows, we take some factors out and are left with a determinant for which we can
apply Lemma 6.4 again, obtaining the right hand side of (6.6). It is an easy exercise
to verify that for the respective determinants of Lemma 6.4 the described calculations
indeed work out well and yield (6.6). O

Remark 6.7. Tt is also possible to extend (6.2) by using other determinants, instead
of the respective G-Vandermonde determinants of Lemma 6.4, in the analysis of our
above sketch of proof.
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APPENDIX A. A DETERMINANT LEMMA

Here we provide a determinant lemma which we needed for proving our theorems.

Lemma A.1. Let Xq,...,X,, A, B, and C be indeterminate. Then there holds

d (AXS; q)rft (AC/Xsa Q)’rft
et
1<s,t<r \ (BXs;q)r—t (BC/Xs;q)r—t

= I] (X -X:) Q- C/X:X;)]

1<i<j<r

N () 17 (B/A;9)i1 (ABCG™ ;5 q)i
< Al )q(g) H (BXi;q)r—1 (BC/X55q)r—1 (4.2)

i=1
This determinant evaluation follows easily from a determinant lemma of Kratten-
thaler [19, Lemma 34], which we state here without proof.

Let the degree of a Laurent polynomial ZfiM a;x', M,N € Z, a; € R and ay # 0,
be defined by degp := N.

Lemma A.3 (Krattenthaler). Let X1, X, ..., X,, A2, As,..., A,, and C be indeter-
manates. If po,p1, -..,pr—1 are Laurent polynomials with degp; < j and p;(C/X) =
p;i(X) for j=0,1,...,7 —1, then

det ((Ar+ X.) -+ (Apps + X)(Ar 4+ C/X,) -+ (Apir + C/X,) - pra (X))

1<s,t<r

= H (Xz — X])(l — C/XZX]) HAzzil Hpi—l(_Ai)a (A4)

1<i<j<r i=1 i=1

with the convention that empty products (like (A, + X) -+ (Ayr1 + Xs) fort =r) are
equal to 1. (The indeterminate Ay, which occurs at the right side of (A.4), in fact is
superfluous since it occurs in the argument of a constant polynomial.)

Proof of Lemma A.1. By taking some factors out of the determinant, we write the
left side of (A.2) as

420 @0 T ((BX: 0),1(BO/ X 0)74)
x det ((1/A= X))@ /A= X)(1/A=C/X) - (@ /A= C/X,)

(BXoq" 50) 1 (BCT ™/ X30)i 1) (A5)

Now we apply Lemma A.3 with the replacements X, — —X,, A; — ¢ "/A,
C — C, and p;(X) — (=BXq"'7;q); - (-=BCq""'77/X;q);. A few simplifications
give the product side of (A.2). O
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Remark A.6. The special case X; = ¢° of Lemma A.1 is equivalent to a determi-
nant evaluation which J. A. Wilson [28] utilized to compute biorthogonal rational
functions.
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