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ABSTRACT. We compute the inverse of a specific infinite r-dimensional matrix, extending a
matrix inverse of Krattenthaler. Qur inversion is different from the r-dimensional matrix inver-
sion recently found by Schlosser but generalizes a multidimensional matrix inversion previously
found by Chu. As applications of our matrix inversion we derive some multidimensional g-series
identities. Among these are g-analogues of Carlitz’ multidimensional Abel-type expansion for-
mulas. Furthermore, we derive a ¢g-analogue of MacMahon’s Master Theorem.

1. INTRODUCTION

Matrix inversions are very important tools in combinatorics and special functions theory. In
particular, it is a widely spread and often used method to derive and prove identities for (basic)
hypergeometric series with the help of so-called “inverse relations” (see Section 4), which are
immediate consequences of matrix inversions. (An inverse relation is in fact equivalent to its
corresponding matrix inversion.) In order to be able to apply this method, explicit matrix
inversions must be at hand.

At this point it seems appropriate to elaborate a little on the history of (explicit) matrix
inversions and inverse relations, in particular, since H. W. Gould’s name is inevitably tied with
it. Over time, people came across an increasing number of such explicit matrix inversions. In the
1960s, in his book [53], Riordan provided lists of known matrix inversions and, in fact, dedicated
two complete chapters of his book to inverse relations and their applications. (Riordan’s inverse
relations were classified and given a unified method of proof by Egorychev [16].) A prominent
part of these inverse relations were due to Gould, who studied them in a series of papers [27],
[28], [29], [30]. This study culminated in the important discovery, jointly with Hsu, of a very
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general matrix inversion [32], which contained a lot of inverse relations of, what is now called,
Gould-type and Abel-type as special cases. The problem, posed by Gould and Hsu, of finding
a g-analogue of their formula was immediately solved thereafter by Carlitz [8]. He did not give
any applications, however. The significance of Carlitz’ matrix inversion showed up first when
Andrews [1] discovered that the Bailey transform [3], [4], which is one of the corner stones
in the development of the theory of (basic) hypergeometric series, is equivalent to a certain
matrix inversion that is just a very special case of Carlitz’. Some time later, while further
developing on Andrews’ idea, Gessel and Stanton [22], [23] used another special case of Carlitz’
matrix inversion (a bibasic extension of the inversion Andrews considered) to derive a number
of basic hypergeometric summations and transformations, and identities of Rogers-Ramanujan
type. Finite forms of identities of Rogers—Ramanujan type were considered by Bressoud [6].
The transform which he used to prove them is equivalent to a matrix inversion [7], which has
some overlap with Carlitz’ matrix inversion (namely in the one Andrews considered), but in
general is not covered by Carlitz’ result. A few years later, Gasper and Rahman proved a
bibasic matrix inversion [19], [52] which unifies the matrix inversions of Gessel and Stanton,
and Bressoud. It enabled them to derive numerous beautiful new quadratic, cubic, and quartic
summation formulas for basic hypergeometric series. (They also extended this method to obtain
bibasic, cubic, and quartic transformation formulas [20], [51], [21, Sec. 3.6].) The end of this
line of development came with the attempt of the first author to combine all these recent matrix
inversions into one formula. Indeed, in 1989, he discovered a matrix inversion, published in [42],
which subsumes most of Riordan’s inverse relations and all the other aforementioned matrix
inversions, as it contains them all as special cases.

This matrix inversion is the following: The matrices (fux)nkez and (gr )k ez (Z denotes the
set of integers), are inverses of each other, where

n—1
11 (a; + bjcx)
fop= (1.1)
T (e —cx)
Jj=k+1
and
k

N
(a; + bicy) j:l;[+1(aj + bicx)

A + bka) k=1

I (¢; — )

i=l

Gkl = ( (1-2)

Starting in the late 1970s, Milne and co-authors, in a long series of papers (cf. [44], [48],
[46], [47], [49], [50], and the references cited therein), developed a theory of multiple (basic)
hypergeometric series associated to root systems. In order to have an equivalent of the (one-
dimensional) Bailey transform at hand, to conveniently extend the development of the theory
of (one-dimensional) basic hypergeometric series to an analogous theory for multiple series,
matrix inversions in this multidimensional setting needed to be found. In [44] and [49], Lilly
and Milne provided multidimensional extensions of the earlier mentioned matrix inversion that
Andrews considered. Subsequently, Bhatnagar and Milne [5] found a matrix inversion that
extended Gasper and Rahman’s (one-dimensional) matrix inversion to the multidimensional
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setting. (According to our terminology “multidimensional” matrix inversions are matrix inver-
sions that arise in the theory of multiple series, whereas “one-dimensional” matrix inversions
are matrix inversions which arise in the theory of one-dimensional series; see Section 2 for a
precise explanation.) At the end of this line of development stand the second author’s matrix
inversions [54]. Theorems 3.1 and 4.1 of [54] do indeed cover all previously mentioned matrix
inversions in that area as special cases. In particular, these matrix inversions also contain the
inversion (1.1)/(1.2) as one-dimensional special case.

The main result of this paper is another multidimensional extension of the matrix inverse
(1.1)/(1.2) (see Theorem 3.1). This matrix inversion finds its applications in the theory of
“ordinary” multiple series. It does not “belong”, as far as we can tell, to the theory of multiple
series associated to root systems. Also here, special cases of this matrix inversion appeared
earlier in the literature. Aside from reducing to (1.1)/(1.2), the matrix inversion from [42], in
the one-dimensional case, it also contains Chu’s multidimensional matrix inversion [12] and a
two-dimensional matrix inversion [40] by the first author. We demonstrate the usefulness of our
new multidimensional matrix inverse by deriving several multidimensional ¢-series identities,
among them g¢-analogues of Carlitz’” multidimensional Abel-type expansion formulas, and a
g-analogue of MacMahon’s Master Theorem.

Our paper is organized as follows. In order to prove our matrix inversion, we need some
preparations, which we provide in Section 2. There we review the first author’s operator
method [39]. We adapt a main theorem of [39] and add an appropriate multidimensional
corollary (see Corollary 2.2). Then, in Section 3 we state and prove our multidimensional
matrix inversion. We also add a companion inversion (Theorem 3.3) which we use later in the
applications. In Section 4 the notion and use of inverse relations is explained, together with
the standard basic hypergeometric notation. The following sections contain applications of our
matrix inversion. In Section 5 we derive some new basic hypergeometric double summations. A
multidimensional extension of a very-well-poised 19¢9-summation is the contents of Section 6.
In Sections 7 and 10 we present g-analogues of Carlitz’” multidimensional Abel-type expansion
formulas [9], [10], [11]. These g-analogues are new even in the one-dimensional case. Related
multiple ¢g-Abel and ¢g-Rothe summations are presented in Section 8. Finally, in Section 9, we
find, for the first time, a (noncommutative) g-analogue of MacMahon’s Master Theorem.

2. AN OPERATOR METHOD FOR PROVING MATRIX INVERSIONS

Let F' = (fuk)nkezr (as before, Z denotes the set of integers) be an infinite lower-triangular
r-dimensional matrix; i.e., fux = 0 unless n > k, by which we mean n; > k; forall:=1,...,r.
The matrix G = (gu)k,1ez- is said to be the inverse matriz of F' if and only if

Z Jak9gx1 = On1

n>k>1

for all n,1 € Z", where 0y, is the usual Kronecker delta.

In [39], the first author gave a method for solving Lagrange inversion problems, which are
closely connected with the problem of inverting lower-triangular matrices. We will use his
operator method for proving our new theorems.

First we need to introduce some notation and terminology. By a formal Laurent series we

mean a series of the form Y5y a,z", for some k € Z", where z" = 2{"'23%--- zI'". Given the
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formal Laurent series a(z) and b(z) we introduce the bilinear form (, ) by

(a(z), b(z)) = (2°)(a(z) - b(z)),
where (z°)c(z) denotes the coefficient of z° in ¢(z). Given any linear operator L acting on
formal Laurent series, L* denotes the adjoint of L with respect to (, ); i.e., (La(z),b(z)) =

(a(z), L*b(z)) for all formal Laurent series a(z) and b(z). We need the following special case of
[39, Theorem 1].

Lemma 2.1. Let F = (fuk)nkezr be an infinite lower-triangular r-dimensional matriz with
fux # 0 for all k € Z". For k € Z", define the formal Laurent series fi(z) and gx(z) by

fu(z) = Tosk farz® and ge(z) = Zlgkgklz’l, where (gu)k1ezr s the uniquely determined
inverse matriz of F'. Suppose that for k € Z" a system of equations of the form

Uifk(z) = ¢;(K)V fi(z), j=1,...,m7,

holds, where U;,V are linear operators acting on formal Laurent series, V being bijective, and
where (cj(k))kezr are arbitrary sequences of constants. Moreover, we suppose that

for allm,n € Z", m # n, there exists a j with 1 < j <r and ¢c;(m) # ¢;(n).  (2.1)
Then, if hx(z) is a solution of the dual system
Ui hi(z) = c;(k)V" i (z), j=1,...,m
with hy(z) Z 0 for allk € 77, the series gx(z) are given by
1
Jfx(2), V*hi(2))
We will use the following corollary of Lemma 2.1:

o(z) = < V*hy(z).

Corollary 2.2. Let W;, V;; be linear operators acting on formal Laurent series, c;(k) arbitrary
constants fork € Z" and i,j = 1,...,r. Suppose the operators W;,Vi;, i,j = 1,...,r, satisfy
the commutation relations

ViiiWi, = Wi, Vi, i F iy 1 <idy,49,5 <, (2.2)

VivjiVisje = Viaja Virjns i1 F iy 1 <dy,d9, 51,52 ST (2.3)

Moreover, the c;(k) are assumed to satisfy (2.1), and 15327“(%) is assumed to be invertible.
With the notation of Lemma 2.1, if

T

> ci(k)Viifulz) = Wifu(z),  i=1,...,m (2.4)

then i
(2) = !
B = (), det (Vi) e ()

where hy(z) is a solution of

det(Vij)hk(z), (2.5)

i cj(k)Viihi(z) = Wi hi(z), i=1,...,m, (2.6)

=1
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with hy(z) Z 0 for allk € Z".

Proof. Due to (2.3), we can apply Cramer’s rule to (2.4) to obtain

cj(k) det (Vi)fu(z) =Y (-1)HVEIW, fi (=),

<z,I< .
1<4,I<r i—1

for j =1,...,r, V@) being the minor of (Vi;)1<ss<r With the i-th row and j-th column being
omitted. The dual system (in the sense of Lemma 2.1) reads

r

¢j(k) det (Vihu(z) = 3 (=) WiV hy(2) (2.7)
== i=1
= (1) VW (),
=1

for j=1,...,r, and is easily seen to be equivalent to (2.6). Notice that condition (2.3) justifies
to write the dual of det(Vj;) as det(V;;) (and similarly for V7)), and that, because of (2.2),
we may commute W and V*® in (2.7). Now apply Lemma 2.1 with V = det(V};) and
T PR ..
U= ¥ (-)HVEW,. O
i=1
Remark 2.3. A slightly more general corollary is given in [54, Corollary 2.14] which was needed
to prove another multidimensional matrix inversion which lead to the derivation of several in-
teresting identities for multidimensional basic hypergeometric series associated to root systems.

3. A MULTIDIMENSIONAL MATRIX INVERSION

Theorem 3.1. Let (a;(t))icz, (bi(t))icz, and (ci(t))ez, i,j = 1,...,r be arbitrary sequences
such that ¢;(s) # ¢;(t) for s # t. Then (fuk)nkezr and (gu)kiezr are inverses of each other,
where

L (e + S b))
fax = 1] ——=; (3.1)
i=1 ti:lng(Ci(ti) — ci(ki))
and
1 Jet | ((@s(B) + X5m b (l)es (k)b + big (1) (ci (1) — (k)
g1 = —— T
il;ll(ai(ki) + 221 bij(ki)ej (k;))
r t,_ﬁ l(az(tz) + 25:1 bij (tz)cj(k]))
x ] == (3.2)
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Remark 3.2. For r = 1, Theorem 3.1 reduces to the first author’s matrix inverse (1.1)/(1.2).
The special case ¢;(t) = ¢, i = 1,...,r, is equivalent to Chu’s [12, Egs. (2.3)/(2.4)] matrix
inversion result. Setting r = 2, ¢;(t) = ¢*, a;(t) = 0,7 =1,2,

(bij(ti))lgi,jSQ - <q)\+t2 -1 ) )

and simplifying a bit, we recover the first author’s two-dimensional inversion [40, (4.15)/(4.16)],
which was used there to derive many two-dimensional expansion formulas.

Proof of Theorem 3.1. We will use the operator method of Section 2. From (3.1) we deduce for
n > k the recursion

(ci(ni) — ci(ki)) fax = (ai(ni — 1) + 302 bij(ni — 1)cj(kj)) facer ks 1=1,...,7,  (3.3)
where e; denotes the vector of Z" where all components are zero except the ¢-th, which is 1.

We write
n;—1

r T (aa(ts) + X520 by (ti)e; (k)
filz) =3 fumz" =3 11— z".

n>k n>ki=1 IT (ci(ti) —ci(ki))
ti=k;+1
Moreover, we define linear operators B;;, A;,C; by B;jz™ = b;;(n;)z"*, Aiz® = a;(n;)z", and
Ciz"™ = ¢;(n;)z", for all i,j = 1,...,r. Then we may write (3.3) in the form
(Ci — ci(ki) fu(z) = (zAi + 2 5 Bijej(kj)) f(z), i=1,...,r, (3.4)

valid for all k € Z". We rewrite our system of equations in a way such that Corollary 2.2 is
applicable:

(Cz(kl) -+ Zi ;::1 Cj(lfj)Bij)fk<Z) = (Cz — ZiAi)fk(Z), = 1, .., T (35)

Now (35) is a system of type (24) with V;'j = 52'7' + ZiBij, VVZ = Cz - Zi.AZ', and Cj(k) = Cj(kj).
The conditions (2.1), (2.2), and (2.3) are satisfied. Hence we may apply Corollary 2.2. The
dual system (2.6) for the auxiliary formal Laurent series hy(z) in this case reads

(Cz<k1) + 29:1 Cj(kj)B;jZi)hk(Z) = (Cz* - A;‘Zl)hk(Z), 1= 1, ., T
Equivalently, we have
(CF — ci(ki))(z) = (Ajzi + X2 Bijei(kj)zi)h(z), i=1,...,m, (3.6)

for all k € Z". As is easily seen, we have Bj;z~' = b;(l)z ", Ajz' = a;(l;)z”!, and C;z ™' =
ci(l)z7Y, for 4,5 = 1,...,r. Thus, with hy(z) = Yk hz™!, by comparing coefficients of z™!
in (3.6) we obtain

(ci(li) — ci(ki))wa = (ai(li) + X5y bij(li)ej (Bj)) hicrye;,  1=1,...,7

If we set hyxx = 1, we get
ki—1

r 1T (ai(ts) + X7 big(ti)ci(ky))
ha = [[ == '
i=1 IT (ci(ti) — ci(ks))

t;=l;
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Taking into account (2.5), we have to compute the action of

det (V)= det (d;+B}z) (3.7)

1<4,5<r 1<2,5<r

when applied to
ki—
. tH( ai(t:) + 251 bij(ti)ci(ky)) 1
ZH i=l po— zZ .
Iski=1 IT (ci(ti) — ci(ki))

ti=l;

Since

-1
haz™,

B (Cz(lz) - Cz(kl))
zihi(z) = lgzk (ai(ls) + 3251 bij (li)c;(k;))

we conclude that

bij(li)(ci(li) - Cz(kz)
a;(li) + X5z bis(li)es(

dej‘, (V*)hk Z 1gejt<r (5” * (

1<4,5<r 1<k

) -
ks))) hyaz . (3.8)

Note that since fiac = 1, the pairing (fi(z), det(V;})hx(z)) is simply the coefficient of z™* in (3.8)
which is easily seen to be one. By taking the denominators out of the rows of the determinant,
equation (2.5) is turned into

g(z) = det (Vi)h(z)

- ( et ((an(l) + oy bi(l)ea (1)) + b (1) (1) — (k)

1<i,j<r

r

IT (ki) + 251 by (Re)c; (K5))

I et + S5 bt ()
i ). 6o
IT (cilts) — cilks))

2 _ll

where gi(z) = X<k g1az . So, by extracting the coefficient of z~' in (3.9) we obtain exactly
(32). O

By a slightly modified application of the operator method of Section 2 one can show that the
determinant in (3.2) can be “transferred” from gy to fuk. The corresponding Theorem reads
as follows.



8 CHRISTIAN KRATTENTHALER AND MICHAEL SCHLOSSER

Theorem 3.3. Assume the conditions of Theorem 3.1. Then (fakx)nkezr and (gi)kiezr are
wnwverses of each other, where

det ((as(m) + iy bis(ma)es (k)i + big (mi) (cs(mi) = i(k))

fop = 1505
nk — T
il;ll<ai(ki) + 51 big(ki)e;(kj))
n;—1
r I (ai(ts) + 2520 bij(ti)ci(ky))
x J] = (3.10)
i=1 IT (ci(t:) — ci(ks))
ti=k;+1
and
ki
R CIORESWELIDELD)
ga =13 : (3.11)
=1 IT (ci(ts) — ci(ks))

ti=l;

Remark 3.4. The special case ¢;(t) =t,i=1,...,r, is equivalent to Chu’s [12, Eq. (2.9)/(2.10)]
companion matrix inversion result.

4. PRELIMINARIES ON INVERSE RELATIONS AND BASIC HYPERGEOMETRIC NOTATION

Here we introduce the basic concept of “inverse relations” and introduce some standard
g-series notation.

There is a standard technique for deriving new summation formulas from known ones by
using inverse matrices (cf. [1], [5], [13], [19], [20], [21, Sec. 3.8], [22], [23], [42], [44], [48], [49],
[51], [52], [53], [54]). If (fuk)nkezr and (gu)k ez are lower triangular matrices being inverses
of each other, then of course the following is true:

Y faxtk = by (4.1)
0<k<n
if and only if
Z gklb] = Q- (42)
0<I<k

If either (4.1) or (4.2) is known, then the other produces another summation formula. The
less used dual version, the so-called “rotated inversion”, can be used to derive nonterminating
summations. It reads

Z fnkan = by (43)
k<n<oo
iof and only of
Z gklbk = ay, (44)
1<k<oo

subject to suitable convergence conditions. Again, if one of (4.3) or (4.4) is known, the other
produces a possibly new identity.
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In the subsequent sections we use special cases of our Theorems 3.1 and 3.3 to derive a couple
of higher dimensional summations for g-series.

Before we start to develop the applications of our Theorems, we need to recall the standard
basic hypergeometric notation (cf. [21]). Let ¢ be a complex number such that |¢| < 1. Define

(a;9)s0 = [[ (1 — ag’), (4.5)

and, _
o (69)e
(% 0 1= (a¢%; @)oo (4.6)

kl:[ 1—aq’) (4.7)

where the equality (4.7) holds when £ is a non-negative integer. We also make use of the
standard notation for basic hypergeometric series,

ol ] - B bt ot (Cp) s

Finally, for multidimensional series, we also employ the notation |k| for (k; + - - -+ k,) where
k = (ki,...,k;). Concerning the nonterminating multiple series given in this paper, we have
stated their regions of convergence explicitly. The convergence of these series can be checked
by application of the multiple power series ratio test [35], [38]. In cases where the summand
of the multiple series contains a determinant we would first have to expand the determinant
appearing in the summand according to its definition as a sum over the symmetric group, then
interchange summations and apply the multiple power series ratio test to each of its resulting
r! multiple sums. In our proofs, however, we have not carried out such calculations explicitly.
For explicit examples of how to use the multiple power series ratio test, see [48, Sec. 5.

5. SOME IDENTITIES FOR DOUBLE SERIES

In our first application we use the two-dimensional special case (i.e., the r = 2 case) of our
matrix inversion (3.1) to derive a few basic hypergeometric double summation theorems. These
developments are very much in the spirit of [40], although the particular case of (3.1) that we
consider here is a different one than in [40]. Namely, the particular choice of the parameters in
(3.1) that we make is a;(t) = ax(t) = 0, ¢1(t) = co(t) = ¢, and

_(Cgr =1
CIC) ( -1 fo”) '

Thus, after little simplification, we obtain that the matrices (fak)nkezz and (gu)xjezz are
wnverses of each other, where

—k2)(na—ka—ni+ki1) (quklikz; q)nl—kl (Dq2k2 b q)nz ko
(& Dna—kr (6 Dy

fae = ¢™ (5.1)
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and
_ (k1—k2)(k2—l2—k1+11) (<Cq2l1 - qkz)(Dq2l2 - qkl) - (qll - qkl)(ql2 o qk2)>
k1 = ¢ (Cg?1 — gh2)(Dg2*z — gk)
(Cg?1k2 g gy 1y (D> ¢ iy
(q_l; q_l)klfll (q_l; q_l)kZ*lz

(5.2)

Now, in (4.1) we take

e = Ckszlq—k§+3k1k2—kg (C; @2k —ks (D5 q) 2k, ko (5.3)
(@ Ok (¢ Dy
(cf. [21, Eq. (1.5.3); Appendix (I1.6)]),

By two-fold use of g-Chu—Vandermonde summation

[P ] - i

we have by (4.1) and a bit of manipulation

ni

= Z iz: qklk2_k1n1+k2”1+k1n2—k2n2CkzDk1 (C, Q)n1+k1—k2 (D; Q)n2+kz—k1
k1=0k2=0 (q; Q) (q q)k)g ((] q)nl—kl (q; q)nz—kz
— - kani—kang k2 (07 q)nl—kz (D§Q)k2+n2 lcqnl kQaq ]
- = ¢ 21 v
kzzZ:O (@ Dbs (6 Dy (G Do~ | @77"2/D
= 52: qn12—k2n20k2+n1 <O’ Q)nl—kz (D’ q)kz-f—nz (ql_nl_n2/0D; Q)n1
k20 (@ Diy (€ Dy (@ Do—ien (@522 /D @),
C; Oy (D5 @)y (ql_m—nz/CD; Q)n, 201 [Dq?1+n2’ qg" ; q]
(q; q)”l (q; q)’ﬂz <q1—n2/D; Q)m q _"I/C ’
= gm’Tmnatne® om pna (C; Dny (D3 @)ny (¢ 72 /C D5 )y 4 (5.5)

(¢ D (G Dy (@™ /C Dy (¢2/ D3 @)y
Substituting this into the inverse relation (4.2) gives, after some simplification,

— qnlzcnl (

B8 g (O =)D =) = = ) = )
11=01>=0 (1 - 0)(1 - D)

. (C’ q)h—b (D’ q)ZZ—ll (CD, Q)lﬁ—lz (qikl; q)h (qikQQ q)lz
(Cqthh q), (Dg+h k1 q), (5. @), (430D,
(k1 _(k
= (~1yfa+taghe pha g (0)=(%) (C; )yt (Dg; @pytn- (5.6)
Setting ky = 0 in this identity, we obtain

4| €¥Ca, —vCq.CD. g ] (4G
VC,—V/C,q/D,Cq"*, 0’ “7D (@/D; q)w,
which is a terminating limiting case of the very-well-poised g¢s-summation (cf. [21, Eq. (2.7.1);

Appendix (I1.20)]). Hence, our double sum identity (5.6) is a two-dimensional extension of the
s¢s-summation (5.7).

(5.7)
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For our second application of the matrix inverse (5.1)/(5.2), in (4.1) we choose

Aqukl(kl—l) (C; Oy (D; Oy (5.8)

ax =0 ,
8 ks (QQ Q)kl (A7 q)kl

where 0; ; denotes the Kronecker delta, ¢; ; = 1 if 7 = j and 9, ; = 0 otherwise. Again, by using
¢-Chu—Vandermonde summation (5.4), we obtain from (4.1),

b, = (i Dm (D5 s (A D ns (5.9)

(@ Oy (@ Oy (A3 Oy (4505,

With these values of ax and by, the inverse relation (4.2) then becomes

8 8 g (CF = D)~ g )
11=01>=0 (1 - 0)(1 - D)

(A5 Q)irtis (C; 01 (D5@)i, (%501, (a7%25 91,
(A5 q)1, (A59)1, (Cqttikesq)y, (Dgtthe=Fq)y, (¢50)u (45 Oy

= G AP (?A‘ik (5.10)

This is a two-dimensional extension of the terminating very-well-poised 4¢3-summation (cf. [21,
Eq. (2.3.4)]), which in Chapter 2 of [21] is used as one of the corner stones of building up the
summation theory for very-well-poised basic hypergeometric series.

6. A “TWISTED” MULTIDIMENSIONAL EXTENSION OF A VERY-WELL-POISED
10P9-SUMMATION

In this section we bring an application of the companion inversion (3.10)/(3.11). We start
by making the replacements ¢;(t) — 1/¢;(t) + Aici(t), ai(t) = (Ai1 + ai(t)?)/ci(t + 1), and

ai1(t1)
0 b0 L 0
_ a2(t2)
cz(tz—l—l)
(b)) s e, = . (6.1)
. Apr— (tr— )
0 : _Cr—l(lt'r—lj'l)
arltr) 0 0

- cr(tr+1)
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n (3.3). Upon little simplification we obtain that the matrices (fok)nkezr and (gi)k ez are
wnwverses of each other, where

Josc = (zlill ci(ni) A1 (1 — ai(ni)civr(kiva)) (1 — ai(ng) [Aiiciva(ki1))—
z ai(ni)(1 — Ajei(ni)ei(ki)) (1 — Cz‘("z’)/Cz‘(ki)))

T = as(keie (ki) (Ao (ki) = ai(k)
ji_[kl(l — ai(ti)cir1(kiv1)) (1 — ai(t) [Airiciva (Kiva))
% H i - (6.2)
H (1= Aici(ti)ei(ki)) (1 — cits) /ci(ki))

=

and
. t'_llz_i 1(1 — a;i(ti)cit1(kiv1)) (1 — ai(ti)/Airicivr(Kit1))
g =[[ == P . (6.3)
= IT (1= Aici(ti)ci(ki) (1 — citi) [ ci(ki))

ti=l;

Here and in the following we make the convention that indices have to be taken modulo r,
i.e., by k41 we mean ki, etc. The above matrix inversion is a “twisted” extension to several
dimensions of the “Bressoud-type” writing [42, (1.5)] of the one-dimensional matrix inversion
(1.1)/(1.2), to which it reduces for r = 1.

Now, in (6.2)/(6.3) we specialize ¢;(t) = ¢' and a;(t) = a;¢". Thus, we obtain the inverse pair
of matrices (fuk)nkezr and (gi1)k ez, where

( 1 Ai(1 — a;g™ ) (1 — azg™i R [Aiyy) — 1 a;(1 — Ag™i+h) (1 — qn’k’))
n i=1

=1

f =4q T
Hl(l — a;grithien) (A gk — aigh)
1=
x 11 (@™t 425 @y gy (@ig™ 54 [ Ai1; @y (6.4)
P (Aig® Y @)y (@ Dni—k
and
= H (CL qk¢+k¢+1 q l)kz ( i—ki+1/AZ,+1; q_l)kifli (6 5)
=i (A1 )k (5 ¢k

This matrix inversion is a “twisted” extension to several dimensions of Bressoud’s matrix in-
version [7], to which it reduces for r = 1.
For our application of (6.4)/(6.5), in (4.2) we choose

A; Az 1, q)
by — qm qa / + ‘
l 1—[1 (¢:9)i;
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Then the left-hand side of (4.2) can be written as

T (@R ag )y, (aiqliki+l/Ai+1;Q)ki3¢2 ¢" Ai,qa? [AiAigr, g8 14,4
(7% q)r; (Asq™; @) ¢' e /Ay, ¢Fe e

=1

The 3¢o-series appearing in this expression can be evaluated by means of the g-Pfaff-Saalschiitz
summation (cf. [21, (1.7.2); Appendix (II.12)]),

a,bg 1 (¢/a;q),(c/big),
3¢2 |F7 abqlfn/ca q, Q] - (C, q)n(c/ab, Q)n )

where n is a nonnegative integer. Thus we obtain

a (Aig™ ag; )r, (@R A A Ok
ax = qui(ki+ki+1+1)a;cl( q Jai; Ok, (g / +1 Q)kl_ (6.7)

=1 (¢% Ai; Q)r; (45 @)k,

Substitution of (6.6) and (6.7) in (4.1), and some simplification, leads to the following summa-
tion theorem.

Theorem 6.1. Let a; and A; be indeterminates, i = 1,2,...,r. Then

( i Ai(1 = a;g" R ) (1 — azq™ Rt [Aiyy) — 1 ai(1 — Ayg™th) (1 — qn’k'))
Z =1 i=1
0<k<n ﬁ (1 — aygkithivt) (A bt — aqki)
i=1
N ki—k; . .
.ﬁq% ( s ) T =-MA) (A Ok (@5 Ok
AiAin (1—=A4) (508 (@A @)k,
. (qnzal’ Q)kH_l (qaZ/A’La Q)kiﬂ (AZAZ-I—I/GZ’ Q)ki-l—kH_l <A'l/aza Q)ki—kiﬂ
(CIl*”"Az‘H/ai; Q)km (AiAi—f-l/az‘; C])k,-+1 (az’§ Q)k¢+ki+1 (ai/Ai—l—l; Q)ki—kH_l
_ ﬁ (qa3 [ AiAig1; Qn, (A5 Q)
i=1 (ai; Q)nl <ai/Ai—|—1; Q)nl

=1

, (6.8)

where, by convention, A1 = Ay and k.11 = k.

Remark 6.2. The special case r = 1 of (6.8) can be rewritten as (when writing a for a;, A for
A, and n for ny)

¢ A7 \/ZQ7 _\/Z(L A/\/_7 _A/\/aa A\/q/\/_a _A\/(?/\/C_lu aCI/Aa aqn, q—n‘ q,q
1T \/Za _\/Za \/Eq, _\/aQa \/G_Qa —V a4, Az/aa Aql—n/a, Aql-l-n o
_ (—a) (qa*/A% q)n (q4;q)n (6.9)
(1 —ag®) (a;q)n (a/A5q)n
This 19¢9-summation can be obtained by specializing Bailey’s transformation formula [2] (see
[21, (2.8.5); Appendix (II1.27)]; the specializations that have to be performed there are d = 1,
b — a*q/cA, a — A%/aq, in that order).
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7. ¢-ANALOGUES OF CARLITZ’ ABEL-TYPE EXPANSION FORMULAS

In [10], Carlitz gave multidimensional extensions of Euler’s formulas

. A(A + Bk)F!
A = 3 (A + BE)

k=0

i Zke BZk (7.1)

where |BZe!=B%| < 1 (17, p. 354] (cf. [53, Sec. 4.5), and

> A <A+Bk

(1+2)* = 2:: yeu A G )Z’“(l + Z) 7Bk, (7.2)

iuzl ‘ < 1 [17, p. 350] (cf. [53, Sec. 4.5]). The purpose of this section is to present

g-analogues of (7.1) and (7.2) and to derive g-analogues of Carlitz’ multidimensional extensions
thereof.
First we derive a simple multidimensional extension of the expansion formula

& (a+b)(a+ bgk)k-1
= ,; (¢;0)x

where ‘

(2(a +bq"); @)oo 2*, (7.3)

valid for |az| < 1, which is a g-analogue of Euler’s formula (7.1).
To see that (7.3) is a g-analogue of (7.1), do the replacements a — 1 — ¢4 + =2 b —

_11:(1;9’ z — Z and then let ¢ — 1. In this case, lim,,; % “*bq = A+ Bk. Also, recall that

lim,1 (1 = ¢)Z; ¢)oo e ?.
The second formula that we extend to several dimensions is
© 1—(a+b) (ag*+b;q k
(1) = 3 0T Sk C1pg® alat byt (74)

=1 —(agF+0) (g9

valid for |az| < 1, which in turn is a ¢g-analogue of Euler’s formula (7.2).
B

To see that (7.4) is a g-analogue of (7.2), do the replacements a — ¢4 — =L b= 11—qq ,

2 = —Z and then let ¢ — 1. In this case, lim,,; I-(a™* ) 4 4 B4 j — k. Furthermore,

1—q
% = (14 Z)~A=Bk_ Similar limiting processes apply for others of the

identities given in the following sections, especially for our multidimensional formulas.
Now we state our multiple extension of (7.3):

we use limg_,;

Theorem 7.1. Let a;, bij, 2, 1,5 = 1,...,7, be indeterminate. Then there holds

1= Z (1532," ( (ai + Zgzl bisQfs) 52']' -+ bl]<1 — qf@))

K1,..kr=0

y ﬁ (Clz + 27521 bijq fj)kiil (

(a q-)k zi(ai + X5 bijqu);qi)oo 2f>, (7.5)
=1 1y Y1) k;

provided |a;z;| < 1 fori=1,...,r
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Remark 7.2. The expansion (7.5) is a g-analogue of Carlitz’ formula [10, Eq. (3.5)] which he

derived via MacMahon’s Master Thegrem To obtagn his result we would have to do the

replacements a; — 1 — ¢ + POV i 7 , bij = — —ql— and then let ¢; — 1 fori = 1,.

(compare with our observation concerning equation (7 3))

Proof of Theorem 7.1. Setting ¢;(t;) — ¢, ai(t;) — a;, bij(t;) — bij, i,5 = 1,...,7 in Theo-
rem 3.1 we see that the following pair of matrices are inverses of each other:

In|— k| T (“”E bijq f]>m_ki ("i3%)
fnk: —1)™~ q; 2
( ) 1:1—[1 (QZa Q'i)nq;—ki !
and
ks .. .. li _ ki N ki—l;
g — 13%((% + i bisdl?) 0y + by (0 — )) I (i + S bisd)’)
Kkl = )
ﬁ 4+ > bij ki i=1 (35 i) kit
i1 a; j=1 l]qj
1=

Now (4.3) holds for

ap = H::1 2z and by = HT Zkz (zz(az + EQ 1 bz]q] ); Qi)oo,

by r-fold application of the g¢p-summation (which is a g-analogue of the exponential function
[21, Eq. (1.3.16); Appendix (I1.2)]). This implies the inverse relation (4.4), with the above
values of a, and by. After shifting the indices k; — k; +1;, + = 1,...,r, and substituting the
variables b;; — bZ]q] i,j=1,...,7r, we get rid of the [; and eventually obtain (7.5). O

Next we give a multidimensional extension of (7.4):

Theorem 7.3. Let a;,bi;,2;, 1,5 = 1,...,7, be indeterminate. Then there holds
k;
r 00 lg?&r(( _1+Es 1 zsqs)(sij+bij(1_qi ))
H(Zi; Qi)oo = Z T
i—1 Eiy.enkin=0 'H1 (ai — g+ 25— bijg; >
1=
) T PV APR T )
y ﬁ ((a, + 2]21 bz]q] )q, 7%),% qi(kzg'l) . (_1)“{‘
baiet (955 @)k

x 11 (zi(aﬁE}le bijq;-”);qi)oo Zf) (7.6)

i=1
provided |a;z;| < 1 fori=1,...,r

Remark 7.4. The expansion (7.6) is a g-analogue of Carlitz’ formula [10, Eq. (6.5)] which he
also derived via MacMahon’s MaBs‘per Theoren}]é. To obtain his result we would have to do the

1—q, 7 1-q; 7 .
;lef—’q,,szé % 2 — —Z; andthenlet ¢ — 1fori=1,...,r

(compare with our observation concerning equation (7.4)).

replacements a; — q;‘li —
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Proof of Theorem 7.3. Setting ¢;(t;) — qF, a;(t;) — a; — ¢, bij(t;) — bij, 4,5 = 1,...,7 in
Theorem 3.1 we see that the following pair of matrices are inverses of each other:

(o /(@i + iy by i),

[n|—|k]| : ks Ic] n;—k; (nl;kl)
fnk = <_1) H ki (az + Z zy ; ) qz.
i=1

and
L ki
(Jet (( — ' + X0 bisdl) i + by (af — ))
k1 = T
z'l;Il (az’ - Qz +E] 1 z]q] )
_ki' N . .
1)‘k|_“| ﬁ ( i+ E] 1 z]q] ")g; ’qz)krli qi(kzg'l)i(h;-l)'
=1 (i3 9i) ks 1

Now (4.3) holds for

v i r (zila; + X, bijg); g

a'n:H Zz and bk:H (z i ]..1.’6] j Z)Oozfi’
i=1 (ZZ’ ql)ni i—1 (Zza Qz)oo

by r-fold application of the ;¢;-summation (see [21, Appendix (II.5)]). This implies the inverse
relation (4.4), with the above values of a, and bk After shifting the indices k; — k; + 1;, i =
1,...,r, and substituting the variables z; — z;q; ia; — a,-qzl-", bij — bijqf"qj_lj, ,7=1,...,7,
we get r1d of the /; and eventually obtain (7.6). O

We consider Theorems 7.1 and 7.3 as being of “simple type”, as we have started with products
of classical (one-dimensional) summations, even with independent bases (g1, - .-, ¢), and then
applied inversion. Our next theorem, a multiple extension of (7.4), is not as “simple” in this
respect, as we start with a genuine r-dimensional summation which needs to have only one
base ¢. For the derivation of our multiple extension of (7.4), in Theorem 7.6 we apply rotated
inversion to the following multidimensional ;¢;-sum:

Lemma 7.5 (An A, 1¢,-sum). Let xq,...,2,, a and c be indeterminate. There holds the
following summation:

(0 (S il oz ()

ki,.0kr=0 \ 1<i<j<r

Lemma 7.5 (which extends the classical ;¢;-summation formula [21, Appendix (IL.5)]) is a
special case of a more general multidimensional ¢-Gaufl summation formula which originally
came up in [41, (4.3.12)]. Such type of identities occurred there in combinatorial studies of
generating functions for specific plane partitions. In the sequel the special type of series has
been studied by Gustafson and the first author [33], [34], and more recently by the second
author [55].

Here is our other extension of (7.4):
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Theorem 7.6. Let b;,z;, 1 =1,...,7r, a and z be indeterminate. Then there holds
T o0 7k 7k
q " /zi —q "z kS (%)
[[Gride = 11 ( ) (—1)K g2ui= {5
i=1 Ei,onke=0 \ 1<i<j<r 1/x; — 1/,
( Ly b ) v ((a+ S5 bia*)d 5 eisa),
x [1— - i
i=1 (mi —a— j= 1qu ) i=1 (4 @)k

T

x I1 (20" (a + Tjy bya)iq)  af -z"‘), (7.8)

i=1
provided |azq'™"| < 1.

Remark 7.7. To the authors’ knowledge, the expansion (7.8) is not a g-analogue of any of the
identities which have appeared in literature yet. In particular, it is of different type than Carlitz’
formulas in [9], [10].

Proof of Theorem 7.6. Setting ¢;(t;) — %, a;(t;) — a — xiq", by;(t;) — b, i,j = 1,...,7r in
Theorem 3.1 we see that the following pair of matrices are inverses of each other:

r (g™ /(e + 5, 5445 q)

frk |n\ k| H ni—k; (a i 2921 qukj)m—ki q(ni;ki)

(45 Dni—ts
and
et (o= + T b 6y 050 = )
Jk1 = 7
r + k, 1’ .
1)'1“_'”1—[ ( Zy 1(]q )) [ )k l xf’_llq( ;1)7(1@1)‘
] qﬂq kifli
Now (4.3) holds for
H ( i / —ni / ) 2
ap = q "/r;i—q Ti) mr o
1<i<j<r ’ i=1 (2235 Qn,
and
—k: Z|k| T 1—
o= I (¢7%/2i= a7 /0;) T (20" (0 + Zioi bia)ia) .
1<i<j<r i-1(2%5 @)oo i &

by Lemma 7.5. This implies the inverse relation (4.4), with the above values of a, and by.
After shifting the indices k; — k; +1;, i = 1,...,r, and substituting the variables z; — z;¢7%,

b; = bjg7li, i=1,...,r, we get rid of the /;. In addition, we can simplify our determinant due
to the rule
et (Aidi; + BiCy) = (1+ Xy BG4 Ty Ay, (7.9)

and eventually obtain (7.8). O
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Of course, by specializing equation (7.8) we may also obtain an interesting formula for or-
B, .

dinary series. If we do the replacements a — ¢* — Y lfqu, b; — 1;_"?, x; — g,

i=1,...,r, 2z — —Z, then let ¢ — 1 and rewrite (compare with Remark 7.4), we obtain the

following multidimensional generalization of (7.2):

Theorem 7.8. Let A;,B;, i =1,...,r, and Z be indeterminate. Then there holds

(14 2)E+Ea 4 = i ( 11 <A j 1:+k).<1_i(/1z'+§ii13jkj)>

k1, ke =0 \ 1<i<j<r i=1

Hl( 0 =1 Bikj ) ZM(1+2)” B’C) (7.10)

2

provided ‘(ﬁzl ‘ <1 fori=1,.

8. MULTIPLE ¢-ABEL AND ¢-ROTHE SUMMATIONS

We can use the expansions (7.3) and (7.4) to obtain terminating g-Abel and ¢-Rothe summa-
tions, respectively (for g-summations of this type, also see [5], [36], [37]). Later, we will apply
the same method to derive multidimensional generalizations of these formulas.

First, we apply the g-binomial theorem in the form

s et baia); a+bq q); (a+bg%9); ;

(z(a + bg"); q) (2;9) 0 2 @0,

to the right-hand side of (7.3) and move (z; ¢) to the left-hand side of (7.3). Next, by equating
coefficients of 2" /(q; q), in the resulting identity (again making use of the ¢-binomial theorem),
and employing the ¢g-binomial coefficient notation

m . T g qu;(;];);)n—k

for nonnegative integers k < n (cf. [21, Appendix (1.39)]), we arrive at the following terminating
summation:

n

1= Z [Z] (a4 b)(a+bg") a4+ b¢*; q)ns (8.1)

(see [36]). This is a g-analogue of Abel’s theorem
A+O)"=> (Z) A(A+ Bk)*(C — Bk)"™. (8.2)
k=0

A/(A+C) | 1_gB/(A+0)
1—q (1-¢9)> >

For, (8.2) can easily be obtained from (8.1) via the substitutions a — =4

by _ LogP/(45O)

T and then letting ¢ — 1.
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On the other hand, if we iterate (7.4) r — 1 times we get

(2 Qoo = i (ﬁ 1 i— (a; +b;)  (aig™ + bi; @), (_1);%(](’921-)

i 1= (aig™" +b;) (4 @)k

x (2 Moy (@i + big*);q) =¥ f[ (@ + bz-q’”)zgzi“ kj) . (8.3)

=1

Now, after the following application of the ¢-binomial theorem

00 " (a; +b; k; q) )
(ZH§:1(ai+biqk");q)oo (2/¢q)oo Z (CHz_l(a + big") Q)] (E)]

iz (45 9); ¢

to the right-hand side of (8.3) we may put (2/¢;¢)s to the left-hand side of (8.3). Next, by
equating coefficients of (z/c)" (again making use of the ¢g-binomial theorem), we arrive at the
following terminating summation:

(ca)n 1= (a; +b) (@i + b g, ki (%)
= 2 _]_ % 2
(¢ 9)n kE};ZO 1;[1 1—(aig ki +b:) (G (=1

0<[k|<N

X (c [T (0 + big™); q)N*|k‘ ﬁ (ai + biqki)E;:Hl ij|k|> . (84)

(G )Nk ie1

Identity (8.4) may be viewed as a Gould-type generalization of the g-multinomial theorem. The
case r =1,

(G0 _§~ 1= (a+b) (ag™* +b0) (c(a+ba");@nr 1y (2)
N g) 1—(ag*+0b) (g:9)k (@ Dr 1)"q (8.5)

(see [37]), is a g-analogue of the (Hagen-)Rothe summation formula [26]

(r) -t () <@;—_zk>,

for (8.6) can be obtained from (8.5) via the substitutions a — ¢ — 1 q ,b— 11 qq ,C—q ,
and then letting ¢ — 1.

Many more similar convolution formulas, in the ¢ = 1 case, are listed in [31] (also see [58]),
whereas more ¢-Abel and ¢-Rothe summations can be found in [37], where these are derived
by means of umbral calculus.

We start our multidimensional exposition with a multiple ¢-Abel summation:
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Theorem 8.1. Let a;,b;;, t,5 = 1,...,r, be indeterminate, and let n,...,n, be nonnegative
integers. Then there holds

1= Z (15(1,%%7" ( (ai + 21 bisQfs) 51‘]' + bij(l - C]f’))

0<k<n

i=1

X H lﬂ (ai + 20 bz‘jQ;'cj)ki—l (ai + 25 bz-jqu;qi)m_ki) (8.7)
qi

Starting with the identity (7.5), Theorem 8.1 is proved exactly as in the one variable
case (8.1), by an r-fold application of the g-binomial theorem and a comparison of coef-
ficients. Our multidimensional ¢g-Abel summation theorem is a g-analogue of Carlitz’ for-
mula [10, Eq. (3.8)] which basically can be obtained from (8.7) via the substitutions a; —

1—q4i/(4;+C)) r 1_qBij/(Ai+Ci) b —s _1_qBij/(Ai+Ci)
1—g; J=1 (1-¢:)*> 7% (1-gi)?

A multidimensional ¢g-Abel summation of a different type is given in Bhatnagar and Milne [5].

, and then letting ¢; — 1, fori=1,...,r

Concerning the next two theorems, we could also have given multidimensional generalizations
of the Gould-type ¢-multinomial convolution (8.4), but have decided to restrict ourselves to
stating the special cases which are multiple g-Rothe summations:

Theorem 8.2. Let a;, bij,c;, 1,7 = 1,...,7, be indeterminate, and let ny, ..., n, be nonnegative
integers. Then there holds

R r ks .. (1 — o
ﬁ Cis CIZ Z (13?@ ( (aZ L+ Zs:l b’tst ) 51] + bw(]_ q; )>

r
= q“%) osksn I1 (a’ - 4" '+ 21 bisgy )

i=1

—ki. .
« ﬁ ((a, + Z] 1 Uq] )QZ aQZ)ki qfkljl) . (_1)|k\
i=1 (935 @)k

(cZ (a; + 304 qu "); Qi> ki K

ﬁ o ’c/) (8.8)

=1 (Qi; Qz)mfkl

Starting with the identity (7.6), Theorem 8.2 is proved exactly as in the one variable
case (8.5), by an r-fold application of the g-binomial theorem and a comparison of coeffi-
cients. Our multidimensional ¢g-Rothe summation theorem is a g-analogue of Carlitz’ for-
mula [10, Eq. (6.10)] which basically can be obtained from (8.8) via the substitutions a;, —

B, .

B.:
Ap g l=gW g (1
q j=1 1—¢; ’b'L]

Lo — q,'_A"_Ci, and then letting ¢; — 1, fori=1,...,r

Theorem 8.3. Let b;,c;,x;, 1 =1,...,7r, and a be indeterminate, and let nq,...,n, be nonneg-
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ative integers. Then there holds

[ - 5 ( 11 (q_ i;ﬁiii;;j/xj) (~1)* =i ()

=1 \4; Q)ni 0<k<n \ 1<i<j<r

’ bi(1 — ) r (@ + S bjg)e e aiq),
§ (1_2 biq" )> it

o (@i—a—Xi, i=1 (¢ @),
v ((a+ 5= b4%)eiq" " i q)

X —c' . (8.9
,~ZHI (@5 D=k, ) (89)

Starting with the identity (7.8), Theorem 8.3 is proved exactly as in the one variable
case (8.5), by an r-fold application of the g-binomial theorem and a comparison of coefficients.
In identity (8.9), if we make the substitutions a — ¢4 1 1;3(1] by — Ai=Ci
x; = ¢4, i=1,...,r, and then let ¢ — 1, we obtain the following nice multidimensional
Rothe summation:

1—q~i _
1qaci_>q

Theorem 8.4. Let A;, B;,C;, i =1,...,r, be indeterminate, and let nq,...,n, be nonnegative
integers. Then there holds

T Ai+0,~) (Ai—ki—AjJrkj) ( i Bik: )
— 1 - :
i:l_Il < U ogzk:gn (151’1;[]'9 A — A 1:2‘; (Ai + X1 Bik;)
y H (A,- +Y0, Bjkj> <Cz- ti-1-Y0, Bjkj>)‘ (8.10)
il k; n; — k;

Remark 8.5. In this section, we derived (multiple) g-Abel and g-Rothe summations by manipu-
lating the series expansions we had obtained by rotated inversion in Section 7 and then extract-
ing coefficients from them. However, we also could have derived these terminating summations
directly by applying the inverse relations (4.1)/(4.2) combined with terminating g-binomial and
¢-Chu—Vandermonde summations. In this case we would have utilized the companion matrix
inversion in Theorem 3.3.

9. A ¢-ANALOGUE OF MACMAHON’S MASTER THEOREM

Here we derive a g-extension of MacMahon’s Master Theorem [45]. Chu [12, Sec. 5] observed
that inverse relations imply MacMahon’s Master Theorem. Basically, he recovered Carlitz’ mul-
tidimensional extension of (7.1) [10, Eq. (3.5)] (or rather the related formula in [9, Eq. (4.3)]) by
inverse relations, which by some further manipulations he showed to be equivalent to MacMa-
hon’s celebrated theorem.

Letting (z")f(z) denote the coefficient of z" in f(z), the classical version of MacMahon’s
Master Theorem can be stated as follows:

Theorem 9.1. Let z;,b;;, i,7 = 1,...,r, be indeterminate, and let ny,...,n, be arbitrary
nonnegative integers. Then there holds

lf[(z bwzy)m = (z") (153%T(5ij _Zibij))_l-
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In deriving our g-analogue, Theorem 9.2, we basically “g-extend” Chu’s analysis, but if we
would perform the whole matter with Theorem 7.1, a g-extension of Carlitz’ identity mentioned
above, we would just end up with the classical version of the Master Theorem. Instead, in our
derivation we utilize Theorem 7.3, a multiple extension of the g-expansion (7.4) (i.e., a ¢-
analogue of [10, Eq. (6.5)]), and are able to extend the whole analysis with additional bases
41,42, - - -, qr- In our case certain g-operators come into the game.

Defining the shift operators E(qb") by S(qg)b = ¢;b, our derivation is based on rewriting the

identity (7.6) of Theorem 7.3 in the form

- . _ - i eol/a s el/ai
HGEa)e= 2. | det (83 + 2ibii €5 Eia Tl € Eih)
i=1 otyokr=0 \ 1SS

T kiy 1=k,
r ((ai+2j:1 bijq;” )i ,Qi)ki (4

! o (1)

i—1 (%’; Qi)ki

=1

x 11 (Zz'(ai + 2 biqu'cj);%')oo Zf)

This is achieved by moving all the terms of the summand in (7.6) inside the determinant using
linearity in the rows, by termwise rewriting of the expressions in the determinant, thereby
introducing the shift operators, and then moving terms again outside of the determinant by
linearity in the rows. For our purpose it is particularly pleasant that now the determinant does
not depend on the summation indices. If we transfer [T_;(2;;¢i)oo to the right-hand side, we
obtain

_ = AN .00 el/a eds el/a

- kzk:O (15’32 (0= 2/ @) + 2ibig €008 Tars €65, €
k; —k;

r ((ai+2§:1bz~jq]~])q} kl;%‘)k, (4

<11 o3y

im1 (Qi§ Qi)ki

x ] 2

r (Zi(ai + 351 bz’jQ;'cj); Qi)oo ). (o)

Since the determinant does not depend on the summation indices we can multiply both sides
of (9.1) with the operator inverse of the determinant. Then we obtain, after having replaced z;
by ziq;, a; by a;/q;, and b;; by b;;/q;, for i,j =1,...,r, respectively,

ki —k;
-1 o0 r ((ai + 251 bija;” ) ; Z;Qi) (ki)
( (( s / (zl)) 2 (i:l (35 i),

1<d,j<r k1o For—0

x (=D T i
i=1

(Zi(ai + X0 bijq;?f); qz‘)oo ks (9.2)
(25 Gi) oo ’ '

where we have readily cancelled the operators in the determinant which produce no powers of
¢ in the left-hand side expansion, since the operator is applied to the constant polynomial 1
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which we have denoted by 1. For our ¢-Master Theorem we set a; — 0,7 =1,...,r, in (9.2).
Then, we expand the right-hand side further by means of the ¢-binomial theorem in order to
extract the coefficient of z™:

1
( det ((1 — 2;)04 +Zibijg(qzii))) 1

1<i,j<r

ki —ki.
_ i ﬁ (( ;:1 b”/]q]]qz ’QZ)kz( i k Z ] 1 Z]q] aQZ) Zfz)

k1., kp=01t=1 (q'“ qz)kz =0 (QZﬂ QZ)

N1yeyNp=014=1 QZan) k;=0

= Z H( g i lg:] '(_1) qz<k12+1)< §:1bz'jq;'€jqi_ki;%)ni)- (9.3)

Observe that
u ki +1 —nik;

H > H (l ] '“qz( ) )p(zqul,---,zrqfr)
= a4

i=1 q'wa)nz 0<k<ni=1

z21=...2r=1
= (") p(z1,...,2:), (9.4)
for polynomials p(z1, ..., 2,) of degree < |n|, by iterated application of the g-binomial theorem

and linearity Besides, note that by defining the partial difference operators D; by D; = ((¢; —
1)z)~ (E‘h —1I), where I denotes the identity operator (cf. [14]), and using Schiitzenberger’s [56]
observatlon that if yz = qxy, then

o= ] (95

k=0
equation (9.4) may also be expressed more compactly as

ﬁ wpzmp@)

i=1 (Qi; Qi)ni

= (") p(2).

z1=...2p=1

Back to (9.3), we recognize that we can apply (9.4) to the inner sum on the right-hand side
of (9.3), with the instance

T .
p(zl, ceey ZT) = l_lz‘:1 Z;m( ;-:1 biij/Zi; qz)m
After this observation we have arrived at:

Theorem 9.2 (A g-analogue of MacMahon’s Master Theorem). Let z;, b;;, for i,j =
1,...,r, be indeterminate, and let nq,...,n, be arbitrary nonnegative integers. Then there
holds

1<i,j<r

Z0> f[l (Z;Zl bijzj/zi; qz)m = <Zn> ( det ((1 — Zi)éij + Zibijgi))_l 1, (96)

where &; denotes the q-shift operator defined by &;z; = ¢;z;, and 1 denotes the constant polyno-
mial 1.
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Theorem 9.2 indeed includes MacMahon’s Master Theorem as a special case. Namely, if we
write (9.6) in the way

N roong 7“ B 0 -1
<Z > H H (ZZ' — Zj:l bz’ijQf 1) = <Z > <1<qe]t<'r ((1 — Zl)&] -+ Zzb”gz)> 1,
i=1 s=1 SIS
we conveniently can see that the substitutions ¢; — 1, z; — az;, bj; = —b;j/a, i,7 =1,...,r,
then a — 0, specialize to the classical case, Theorem 9.1.
For illustration, we quickly verify the statement of Theorem 9.2 for one dimension (r = 1).
Writing by = b, 21 = 2z, and & = &£, we want to check

(b;q)n = (Z"Y(1—2z+2b€)7"1
We have
(1= 2+ 2b€) 1 = 20<z—zbg 1= szl ] _bE)rL = 20 Zl ] YegDp,

the second equality due to (9.5). The last inner sum evaluates to the desired quantity by the
g-binomial theorem.

We plan to give a more detailed discussion of our g-analogue of MacMahon’s Master Theorem
including several applications in a forthcoming paper [43].

10. ADDITIONAL EXPANSION FORMULAS

We want to mention some formulas which are closely related to those we used and derived
in Section 7, and which may also be used to derive additional identities.
The expansion formulas (see [53, Sec. 4.5])

eA? (A + Bk: BZk
= Z ke~ Bk (10.1)
1-BZ &~
where ‘BZel_BZ‘ <1, and
1+2)4 & (A+ Bk _
% =Y ( L )Z’“(l + Z) Bk, (10.2)
1+Z k=0
where Ef;zlgﬁ\ < 1, are companion identities of (7.1) and (7.2), respectively. ¢-Analogues of

these identities are

]ci_o:(—l)kq@)bk b= f: CEUL (oot b0 (103)
and
(21 0)o0 i(b; q)* = i W(—l)kq(kgl) (z(a+ bg"); q)oo 2, (10.4)

respectively, both being valid for |az| < 1. To see that these formulas are g-analogues of the

above we can make similar substitutions that were needed ealier in the respective cases where
we showed that (7.3) and (7.4) are g-analoques of (7.1) and (7.2).
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We have already given a multidimensional version of (10.4), see equation (9.2), involving
g-shift operators, which appeared in our derivation of the ¢-Master Theorem.
The multidimensional version of (10.3),

( det (51] -+ Zzszg(qzll)>)_l 1

1<e,5<r
k; ki
0 ( r (ai + 351 bz’jq]'];(h')

- Z g (Qz'; Qi)ki

K1eenkp =0
can easily be deduced from (7.5) in the same manner as (9.2) was deduced from (7.6).

Identities (10.5) and (9.2) themselves can be used to derive additional higher-dimensional
(terminating) convolutions with the method we demonstrated in Section 8. These would include
g-extensions of Carlitz’ other multidimensional convolution formulas [10, Egs. (3.9) and (6.9)].

It is also interesting to look for nontrivial cases where the determinant in the multiple identi-
ties simplify. These cases have higher chances to occur naturally in combinatorial enumeration
problems. The specific type of multiple series we consider occur, e.g., in [57]. We already had
a case of nearly total factorization of the determinant in Theorem 7.6, where we could simplify
the determinant due to (7.9). Another case concerns the determinant of a matrix having entries
# 0 only in the principal diagonal and the diagonal above (indices modulo r). It is easy to
see that in this case the determinant can be reduced to the difference of two products (see for
example Section 6).

The following theorem provides such an example, where we use the g-binomial coefficient

notation -
a ¢ "y 4 %4 ayk, (4
. % Dr (4 )
for nonnegative integer k£ and arbitrary « (cf. [21, Appendix (1.42),(1.43)]).

(Zi(az‘ + 3 bz’jq;'cj); %)oo zf’) ., (10.5)

Y

Theorem 10.1. Let o;,z;, 1 = 1,...,r, be indeterminate. Then there holds
00 r m oo T ki
mbm 3 o Zi _ (%) [Cw + ki+1] %
q i=1 — q 2 3 (106)
Z Z:Hl (=2i; Q)m kl,;ﬁ:oi:nl ki q (=2 Q)ai+ki+1
where the indices are written modulo .

Proof. We consider the special case of formula (9.2), where we have ¢1,...,¢ = q, zi = —zi/q,
a; =0, bjjp1 = ¢, for i =1,...,7 (mod r), and where b;; = 0if j # i+ 1 (mod r). We also
write &; instead of E(qzl,), for short. In this special case, the left-hand side of (9.2) is

(H: (14 z/q) — HT q“izi&)il 1= (1 — H: (14 z/q)” lqa'zzé') . H::1(1 +2z/q9)7 1

= L4 2/ g )" (L4 2z 1= 3 g m i [ —
mZoZHl( / ) ( /9 Z, g(—zi/q;q)mﬂ

It is even more straightforward to compute the right-hand side of (9.2) for our particular choice
of parameters. Finally, we multiply both sides of the resulting identity by IT;_(1 + z;/q) to
obtain (10.6). O
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Remark 10.2. Identity (10.6) is a g-analogue of a special case of Carlitz’ formula [11, A =1 in
Eq. (2.6)],

:—1<1 + Zi)ai+1

k.
= N ki+1> ( Zi ) '
= —_— 10.7
£=1<]‘ + ZZ) - g:l Zi kl,.;kr:Oizl—[l ( kl 1 + Zi—1 ( )

(again, indices are written modulo r), which simply follows from (10.6) by the limit ¢ — 1.
Also Carlitz derived his formula by specializing a more general expansion. It is worth noting
that (10.7) (or rather an identity equivalent to (10.7) via substitutions) was given combinatorial
proofs [15], [24], [57]. It would also be interesting to find a combinatorial proof of the multiple
g-series identity (10.6).
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