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Abstract. We use Andrews’ q-analogues of Watson’s and Whipple’s 3F2 summation
theorems to deduce two formulas for products of specific basic hypergeometric functions.
These constitute q-analogues of corresponding product formulas for ordinary hyperge-
ometric functions given by Bailey. The first formula was obtained earlier by Jain and
Srivastava by a different method.

1. Introduction

We refer to Slater’s text [9] for an introduction to hypergeometric series, and to Gasper
and Rahman’s text [5] for an introduction to basic hypergeometric series, whose notations
we follow. Throughout, we assume |q| < 1 and |z| < 1.

In [1], George Andrews proved the following two theorems:

Theorem 1.
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]
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, (1.1)

where b = q−n and n is a nonnegative integer.

Theorem 2.

4φ3

[
a, q/a, c

1
2 ,−c 1

2
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]
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n+1
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where a = q−n and n is a nonnegative integer.

By a standard polynomial argument (1.2) also holds when a is a complex variable but
c = q−2n with n being a nonnegative integer. (This is the case we will make use of.)

Theorems 1 and 2 are q-analogues of Watson’s and of Whipple’s 3F2 summation theo-
rems, listed as Equations (III.23) and (III.24) in [9, p. 245], respectively.
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2. Two product formulas for basic hypergeometric functions

We now have the following two product formulas which are derived using Theorems 1
and 2. The first one in Theorem 3 was already given earlier by Jain and Srivastava [7,
Equation (4.9)] (as Slobodan Damjanović has kindly pointed out to the author, after
seeing an earlier version of this note), who established the result by specializing a gen-
eral reduction formula for double basic hypergeometric series. The second formula in
Theorem 4 appears to be new.

Theorem 3.
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Theorem 4.
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Sketch of proofs. To prove Theorem 3, compare coefficients of zn. The resulting identity
is equivalent to Theorem 1. The proof of Theorem 4 is similar. Comparison of coefficients
of zn gives an identity which is equivalent to Theorem 2 (where in the latter theorem
the restriction a = q−n is replaced by c = q−2n, as mentioned). The second identity in
Equation (2.2) follows from splitting the sum over j into two parts depending on the
parity of j. (This is motivated by the particular numerator factors in the j-th summand.)
The technical details – elementary manipulation of q-shifted factorials – are routine and
thus omitted. �

Theorem 3 is a q-analogue of Bailey’s formula in [2, p. 246, Equation (2.11)]:
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To obtain (2.3) from Theorem 3, replace (a, b, z) by (qa, qb, (1− q)z/2), and let q → 1.
Similarly, Theorem 4 is a q-analogue of Bailey’s formula in [2, p. 245, Equation (2.08)]:
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To obtain (2.4) from Theorem 4, replace (a, b, z) by (qa, qb, 2z/(1− q)) and let q → 1.

3. Related results in the literature

A different product formula for basic hypergeometric functions was established by Sri-
vastava [10, Eq. (21)] (see also [11, Eq. (3.13)]):
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]
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This formula is a q-extension of Bailey’s formula in [2, p. 245, Equation (2.08)] (or,
equivalently, of an identity recorded by Ramanujan [8, Ch. 13, Entry 24]).

Finally, we mention that in 1941 F.H. Jackson [6] had derived the identity
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which is a q-analogue of Clausen’s formula of 1828,(
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2
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]
. (3.3)

Another q-analogue of Clausen’s formula was delivered by Gasper in [4]. While it
has the advantage that it expresses a square of a basic hypergeometric series as a basic
hypergeometric series, it only holds provided the series terminate:(
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See [5, Sec. 8.8] for a nonterminating extension of (3.4) and related identities.
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