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Explicit computation of the
q,t-Littlewood–Richardson coefficients

Michael Schlosser∗

Abstract. In joint work with Michel Lassalle [C. R. Math. Acad. Sci. Paris

337 (9) (2003), 569–574], we recently presented an explicit expansion for-
mula for Macdonald polynomials. This result was obtained from a recursion

for Macdonald polynomials which in turn was derived by inverting the Pieri

formula. We use these formulae here to explicitly compute the q, t-Littlewood–
Richardson coefficients, thus solving a problem posed by Ian G. Macdonald.

1. Introduction

For notation and basic facts about Macdonald polynomials, we refer to Chap-
ter VI of [6].

Let X = {x1, x2, . . . } be a countable, possibly infinite, set of variables, and let
q and t be two independent indeterminates. It is well known that the Macdonald
polynomials Pλ(X; q, t) form a basis of ΛQ(q,t), the ring of symmetric functions in
X with coefficients in Q(q, t) (the field of rational functions in q and t). Instead of
Pλ(X; q, t), we write Pλ(q, t) or even Pλ for short, as long as there is no confusion.

Given any three partitions λ, µ, ν, the q, t-Littlewood–Richardson coefficients
fλµν(q, t) ∈ Q(q, t) are defined by

(1.1) Pµ(q, t)Pν(q, t) =
∑
λ

fλµν(q, t)Pλ(q, t)

(see [6, p. 343, Eq. (7.1′)]).
In this paper we derive both a recursion and an explicit formula for the q, t-

Littlewood–Richardson coefficients fλµν(q, t). To establish the recursion formula for
these, we utilize our recursion for Macdonald polynomials which was announced in
[4] (and proved in [5]) and the (analytic form of the) Pieri formula for Macdonald
polynomials. The recursion for fλµν(q, t) is on the number of columns of the partition
ν (or of µ, due to the symmetry fλµν(q, t) = fλνµ(q, t)). Further, using our explicit
expansion formula for Macdonald polynomials from [4] (which gives the explicit

2000 Mathematics Subject Classification. Primary 33D52, Secondary 05E05.
Key words and phrases. Macdonald polynomials, Pieri formula, q, t-Littlewood–Richardson

coefficients.
∗The author was fully supported by an APART fellowship of the Austrian Academy of

Sciences.

c©0000 (copyright holder)

1



2 MICHAEL SCHLOSSER

development of any Macdonald polynomial in terms of modified complete symmetric
functions) and the bulk version of the Pieri formula for Macdonald polynomials, we
explicitly compute fλµν(q, t) in analytic (versus combinatorial) terms.

We employ the standard notation (a; q)m =
∏m−1
j=0 (1− aqj), for integer m ≥ 0,

for the q-shifted factorial. Instead of working with the Pλ(q, t), we prefer, for con-
venience, to work with the dual functions Qλ(q, t) (which are also called Macdonald
polynomials, see (1.3)). For easy reference, we recall the arguments leading to (1.5).
If we apply the automorphism ωq,t (defined in [6, p. 312, Eq. (2.14)]) to each side
of (1.1) we obtain (cf. [6, p. 327])

Qµ′(t, q)Qν′(t, q) =
∑
λ

fλµν(q, t)Qλ′(t, q),

or equivalently,

(1.2) Qµ(q, t)Qν(q, t) =
∑
λ

fλ
′

µ′ν′(t, q)Qλ(q, t).

Since

(1.3) Qλ(q, t) = bλ(q, t)Pλ(q, t),

where (cf. [6, p. 339, Eq. (6.19)])

(1.4) bλ(q, t) =
∏

1≤i≤k≤l(λ)

(qλi−λktk−i+1; q)λk−λk+1

(qλi−λk+1tk−i; q)λk−λk+1

,

we conclude, by combining (1.1), (1.2), and (1.3), that

(1.5) fλµν(q, t) =
bλ(q, t)

bµ(q, t) bν(q, t)
fλ

′

µ′ν′(t, q).

We can thus equivalently also work with fλ
′

µ′ν′(t, q) instead of fλµν(q, t), while keeping
(1.4) and (1.5) in mind.

The q, t-Littlewood–Richardson coefficients fλµν(q, t) are usually used to define
the skew Macdonald polynomials Pλ/µ, Qλ/µ ∈ ΛQ(q,t). Specifically, one writes (cf.
[6, p. 344, Eq. (7.5)])

(1.6) Qλ/µ(q, t) =
∑
ν

fλµν(q, t)Qν(q, t),

and (cf. [6, p. 351, Eq. (7.8)])

(1.7) Qλ/µ(q, t) =
bλ(q, t)
bµ(q, t)

Pλ/µ(q, t).

For q = t, the q, t-Littlewood–Richardson coefficients fλµν(q, t) reduce to the
classical Littlewood–Richardson coefficients cλµν . The latter are nonnegative inte-
gers which can be combinatorially characterized by the Littlewood–Richardson rule
[6, Ch. I, Sec. 9]. Other important special cases are listed in [6, p. 343, Eq. (7.2)].

In [6, p. 347, Remark 4] Ian G. Macdonald raised the question of explicitly
computing the coefficients fλµν(q, t). Our solution in Section 3 is essentially an
explicit (though admittedly elaborate) work-out of [6, p. 351, Example 5]. The
procedure is straightforward and efficient but, unfortunately, does not lead to any
combinatorial insight. In particular, we were not able to obtain any q, t-extension
of the celebrated Littlewood–Richardson rule. We hope that Theorems 2.1 and
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3.4 will prove to be useful. This may concern possible implementation in some
computer algebra package. It should be pointed out that all the (multiple) sums
appearing in this paper actually have finite support. However, the number of terms
in our sums explodes exponentially (with increasing number of rows of the partition
involved) due to the determinants appearing in the summand. Thus, our formulae
may mainly serve theoretical considerations.

Before we derive a recursion and an explicit formula for fλ
′

µ′ν′(t, q) in Sections 2
and 3, respectively, we recall our two main ingredients, namely the Pieri formula
and a recursion formula for Macdonald polynomials.

1.1. Pieri formula for Macdonald polynomials. Let u1, . . . , un be n in-
determinates and N the set of nonnegative integers. For θ = (θ1, . . . , θn) ∈ Nn, let
|θ| =

∑n
i=1 θi and define

(1.8) D
(q,t)
θ1,...,θn

(u1, . . . , un) =
n∏
k=1

(t; q)θk

(q; q)θk

(q|θ|+1uk; q)θk

(q|θ|tuk; q)θk

×
∏

1≤i<j≤n

(tui/uj ; q)θi

(qui/uj ; q)θi

(q−θj+1ui/tuj ; q)θi

(q−θjui/uj ; q)θi

.

Macdonald symmetric functions satisfy a Pieri formula which generalizes the
classical Pieri formula for Schur functions. This generalization was obtained by
Macdonald [6, p. 331], and independently by Koornwinder [1].

Most of the time this Pieri formula is stated in combinatorial terms. Here is
its analytic form (cf. [5, Th. 4.1]).

Theorem 1.1. Let λ = (λ1, ..., λn) be an arbitrary partition with length n and
λn+1 ∈ N. For any 1 ≤ k ≤ n define uk = qλk−λn+1tn−k. We have

Q(λ1,...,λn) Q(λn+1) =
∑
θ∈Nn

D
(q,t)
θ1,...,θn

(u1, . . . , un)Q(λ1+θ1,...,λn+θn,λn+1−|θ|).

1.2. A recursion formula for Macdonald polynomials. Let u1, . . . , un
be n indeterminates and θ = (θ1, . . . , θn) ∈ Nn. For convenience, we introduce n
auxiliary variables v1, . . . , vn defined by vk = qθkuk. We write

(1.9) C
(q,t)
θ1,...,θn

(u1, . . . , un) =
n∏
k=1

tθk
(q/t; q)θk

(q; q)θk

(quk; q)θk

(qtuk; q)θk

×
∏

1≤i<j≤n

(qui/tuj ; q)θi

(qui/uj ; q)θi

(tui/vj ; q)θi

(ui/vj ; q)θi

× 1
∆(v)

det
1≤i,j≤n

[
vn−ji

(
1− tj−1 1− tvi

1− vi

n∏
k=1

uk − vi
tuk − vi

)]
.

The following result of [5] gives a recursion of Macdonald polynomials on the
length of the indexing partition.

Theorem 1.2. Let λ = (λ1, ..., λn+1) be an arbitrary partition with length n+1.
For any 1 ≤ k ≤ n define uk = qλk−λn+1tn−k. We have

Q(λ1,...,λn+1) =
∑
θ∈Nn

C
(q,t)
θ1,...,θn

(u1, . . . , un)Q(λn+1−|θ|) Q(λ1+θ1,...,λn+θn).
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Remark 1.3. Theorem 1.2 is not the only known recursion formula for Macdon-
ald polynomials. A completely different recursion (in terms of a q-integral represen-
tation) was found by Okounkov [7, Th. 1] which expresses Macdonald polynomials
of n variables in terms of Macdonald polynomials of n−1 variables. While [7, Th. 1]
extends the determinant ratio formula for Schur functions, Theorem 1.2 above can
be shown to extend the Jacobi Trudi determinant formula for Schur functions, see
[5, Sec. 7].

Theorem 1.2 was proved in [5, Th. 5.1] by applying inverse relations to the Pieri
formula. The corresponding multidimensional matrix inversion was established by
using a method developed by Krattenthaler [2] and further adapted by the present
author [8]. A completely different proof of Theorem 1.2 was recently delivered by
Michel Lassalle [3].

The advantage of Theorem 1.2 (see [5, Th. 5.1]) is that it gives rise to explicit
expansions of Macdonald polynomials in terms of classical bases of ΛQ(q,t), in par-
ticular, in terms of the elementary or the modified complete symmetric functions.
We are not aware of any other classical bases expansions for Macdonald polynomials
in the general case.

2. A recursion for fλ
′

µ′ν′(t, q)

Let µ = (µ1, . . . , µm) denote a partition of length m, and ν = (ν1, . . . , νn+1)
denote a partition of length n + 1. Further, for any 0 ≤ k ≤ n + 1, let ν(k) =
(ν1, . . . , νk) denote the partition consisting of the first k rows of ν. Clearly, ν(n+1) =
ν.

Following [4, Sec. 5] we define for any composition ν = (ν1, . . . , νn+1) of length
n+ 1

(2.1) cθ1,...,θn
(ν) := C

(q,t)
θ1,...,θn

(u1, . . . , un),

and

(2.2) dθ1,...,θn(ν) := D
(q,t)
θ1,...,θn

(u1, . . . , un),

with uk := qνk−νn+1tn−k, k = 1, . . . , n. The rational functions C
(q,t)
θ1,...,θn

and

D
(q,t)
θ1,...,θn

are defined in (1.9) and (1.8).
Let Qλ = Qλ(q, t). We are interested in the coefficient of Qλ in the product

QµQν . We have

QµQν = Qµ
∑
θ∈Nn

cθ(ν)Qν(n)+θ Q(νn+1−|θ|),

by application of Theorem 1.2. Now, we apply (1.2) and obtain

QµQν =
∑
θ∈Nn

cθ(ν)
∑
ρ

fρ
′

µ′(ν(n)+θ)′
(t, q)QρQ(νn+1−|θ|),

which after application of the Pieri formula in Theorem 1.1 is

QµQν =
∑
θ∈Nn

cθ(ν)
∑
ρ

fρ
′

µ′(ν(n)+θ)′
(t, q)

×
∑

φ∈Nm+n

dφ(ρ1, . . . , ρm+n, νn+1 − |θ|) Q(ρ1+φ1,...,ρm+n+φm+n,νn+1−|θ|−|φ|).
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Now, by extracting the coefficient of Qλ, where l(λ) ≤ m+ n+ 1, on both sides of
this equation, we obtain the following result.

Theorem 2.1. Let λ, µ, ν be three partitions with l(µ) = m, and l(ν) = n+ 1.
Then, if |µ| + |ν| 6= |λ|, we have fλ

′

µ′ν′(t, q) = 0. Otherwise, if |µ| + |ν| = |λ|, we
have the recursion

fλ
′

µ′ν′(t, q) =
∑
θ∈Nn

cθ(ν)
∑
ρ

fρ
′

µ′(ν(n)+θ)′
(t, q) dλ(m+n)−ρ(ρ1, . . . , ρm+n, νn+1 − |θ|).

3. An explicit formula for fλ
′

µ′ν′(t, q)

Assume the definitions of the previous section. Further, let M(n) be the set of
lower triangular n × n matrices with nonnegative integers. Let ν = (ν1, . . . , νn+1)
be a partition of length n + 1. For any θ = (θ(i, j))1≤i,j,≤n ∈ M(n), we define a
set of n partitions {σ(ν, θ, k), 1 ≤ k ≤ n} where σ(ν, θ, k) has length k + 1 and is
defined by

σ(ν, θ, k)i = νi +
n∑

j=k+1

θ(j, i), for 1 ≤ i ≤ k + 1.

Note that {σ(ν, θ, k), 1 ≤ k ≤ n} essentially corresponds to {µ(θ, k), 1 ≤ k ≤ n} of
[4, Th. 5.1].

Remark 3.1. Observe that the notation we are using here follows that of [4]
but is slightly different from the one used in [5]. In particular, the term θ(j, i)
used in this paper corresponds to θi,j+1 of [5]. Also note that M(n) is defined in
[5] differently, where it denotes the set of upper triangular n × n matrices with
nonnegative integers and 0 on the diagonal.

By iteration we readily deduce from Theorem 1.2 the following explicit expan-
sion of any Macdonald polynomial in terms of one row Macdonald polynomials, see
[4, Th. 5.1].

Theorem 3.2 (Expansion formula). Let λ = (λ1, ..., λn+1) be an arbitrary
partition with length n + 1. For any θ = (θ(i, j))ni,j=1 ∈ M(n), let us consider a
sequence of n partitions {µ(θ, k), 1 ≤ k ≤ n} where µ(θ, k) has length k + 1 and is
defined by

µ(θ, k)i = λi +
n∑

j=k+1

θ(j, i) (1 ≤ i ≤ k + 1).

We have

Qλ =
∑

θ∈M(n)

n∏
k=1

cθ(k,1)...θ(k,k)(µ(θ, k))
n∏
k=0

Q(
λk+1+

Pn
j=k+1 θ(j,k+1)−

Pk
j=1 θ(k,j)

).
Let M(n,m+n) be the set of all “m-shifted lower-triangular” n×(m+n) matrices

with nonnegative integers. By “m-shifted lower-triangular” we mean that θ(i, j) =
0, if θ ∈ M(n,m+n) and i+m < j. Note that M(n,n) = M(n).

Let ξ = (ξ1, . . . , ξm+n+1) be a composition of length m + n + 1. For any
ϕ = (ϕ(i, j)) 1≤i≤n

1≤j≤m+n

∈ M(n+1,m+n), we define a sequence of n + 1 compositions
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{τ(ξ, ϕ, k), 1 ≤ k ≤ n+ 1} where τ(ξ, ϕ, k) has length m+ k and is defined by

(3.1) τ(ξ, ϕ, k)i = ξi +
k∑

j=i−m+1

ϕ(j, i)−
i−1∑
j=1

ϕ(i−m, j), for 1 ≤ i ≤ m+ k.

In the above definition the value of ϕ(i, j) is understood to be 0 if either i or j is
out of range, in particular, if i or j is not a positive integer.

By iterating the Pieri formula we immediately deduce the following result.

Theorem 3.3 (Bulk version of the Pieri formula). Let µ = (µ1, . . . , µm) be a
partition of length m. Then

QµQ(µm+1) . . . Q(µm+n+1)

=
∑

ϕ∈M(n+1,m+n)

n+1∏
k=1

dϕ(k,1),...,ϕ(k,m+k−1)

(
τ(µ, ϕ, k)

)
Q(ω1(µ,ϕ),...,ωm+n+1(µ,ϕ)),

where

ωk(µ, ϕ) = µk +
m+n+1∑
j=k+1

ϕ(j −m, k)−
k−1∑
j=1

ϕ(k −m, j), for 1 ≤ k ≤ m+ n+ 1.

With Theorems 3.2 and 3.3 at hand, we are now ready for our derivation of an
explicit formula for fλ

′

µ′ν′(t, q).
Let µ = (µ1, . . . , µm) be a partition of length m, and let ν = (ν1, . . . , νn+1) be

a partition of length n+ 1. By Theorem 3.2 we have

QµQν = Qµ
∑

θ∈M(n)

n∏
k=1

cθ(k,1),...,θ(k,k)
(
σ(ν, θ, k)

)
×
n+1∏
k=1

Q(
νk+

Pn
j=k θ(j,k)−

Pk−1
j=1 θ(k−1,j)

).
We apply Theorem 3.3 and obtain for the above expression

(3.2)
∑

θ∈M(n)

n∏
k=1

cθ(k,1),...,θ(k,k)
(
σ(ν, θ, k)

)
×

∑
ϕ∈M(n+1,m+n)

n+1∏
k=1

dϕ(k,1),...,ϕ(k,m+k−1)

(
τ(ξ(µ, ν, θ), ϕ, k)

)
×Q(

η(ξ(µ,ν,θ),ϕ)1,...,η(ξ(µ,ν,θ),ϕ)m+n+1

),
where

(3.3) ξ(µ, ν, θ)k =
{

µk if 1 ≤ k ≤ m
ω(ν, θ)k−m, if m+ 1 ≤ k ≤ m+ n+ 1 ,

where

ω(ν, θ)k = νk +
n∑
j=k

θ(j, k)−
k−1∑
j=1

θ(k − 1, j), for 1 ≤ k ≤ n+ 1,
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and where

η(ξ(µ, ν, θ), ϕ)k = ξ(µ, ν, θ)k +
m+n+1∑
j=k+1

ϕ(j −m, k)−
k−1∑
j=1

ϕ(k −m, j),

for 1 ≤ k ≤ m+ n+ 1.
Extracting the coefficient of Qλ in (3.2), for a partition λ with l(λ) ≤ m+n+1,

we need to have

λk = η(ξ(µ, ν, θ), ϕ)k = ξ(µ, ν, θ)k+ϕ(n+1, k)+
m+n∑
j=k+1

ϕ(j−m, k)−
k−1∑
j=1

ϕ(k−m, j),

for 1 ≤ k ≤ m+ n+ 1. Consequently, we need

(3.4) ϕ(n+ 1, k) = λk − ξ(µ, ν, θ)k −
m+n∑
j=k+1

ϕ(j −m, k) +
k−1∑
j=1

ϕ(k −m, j),

for 1 ≤ k ≤ m+ n, and furthermore,

(3.5) λm+n+1 = ω(ν, θ)n+1 −
m+n∑
j=1

ϕ(n+ 1, j),

which, by using (3.4), is

λm+n+1 = ω(ν, θ)n+1 − (λ1 + · · ·+ λm+n) + ξ(µ, ν, θ)1 + · · ·+ ξ(µ, ν, θ)m+n

+
m+n∑
k=1

m+n∑
j=k+1

ϕ(j −m, k)−
m+n∑
k=1

k−1∑
j=1

ϕ(k −m, j)

= ω(ν, θ)n+1 − (λ1 + · · ·+ λm+n) + (µ1 + · · ·+ µm) + ω(ν, θ)1 + · · ·+ ω(ν, θ)n

+
∑

1≤k<j≤m+n

ϕ(j −m, k)−
∑

1≤j<k≤m+n

ϕ(k −m, j)

= −(λ1 + · · ·+ λm+n) + (µ1 + · · ·+ µm) + ω(ν, θ)1 + · · ·+ ω(ν, θ)n+1

= −(λ1 + · · ·+ λm+n) + (µ1 + · · ·+ µm) + (ν1 + · · ·+ νn+1)

+
n+1∑
k=1

n∑
j=k

θ(j, k)−
n+1∑
k=1

k−1∑
j=1

θ(k − 1, j)

= −(λ1 + · · ·+ λm+n) + (µ1 + · · ·+ µm) + (ν1 + · · ·+ νn+1)

+
∑

1≤k≤j≤n

θ(j, k)−
∑

1≤j<k≤n+1

θ(k − 1, j)

= −(λ1 + · · ·+ λm+n) + (µ1 + · · ·+ µm) + (ν1 + · · ·+ νn+1).

Hence, there are only terms appearing in (3.2) when |µ|+ |ν| = |λ|.
Now, in the multisum in (3.2), for each matrix ϕ ∈ M(n+1,m+n), we replace the

entries of the last row, ϕ(n+1, k), 1 ≤ k ≤ m+n, according to (3.4). After having
performed these substitutions, we reduce (ϕ(i, j)) ∈ M(n+1,m+n) by removing its
last row and column (since (ϕ(i,m + n)) = 0, for i = 1, . . . , n) so that the inner
summation in (3.2) now runs over all (ϕ(i, j)) ∈ M(n,m+n−1). Also, note that due
to (3.4), τ(ξ(µ, ν, θ), ϕ, n+ 1) simply reduces to (λ1, . . . , λm+n+1), since
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τ(ξ(µ, ν, θ), ϕ, n+1)i = ξ(µ, ν, θ)i+ϕ(n+1, i)+
n∑

j=i−m+1

ϕ(j, i)−
i−1∑
j=1

ϕ(i−m, j)

= ξ(µ, ν, θ)i +
(
λi − ξ(µ, ν, θ)i −

m+n∑
j=i+1

ϕ(j −m, i) +
i−1∑
j=1

ϕ(i−m, j)
)

+
n∑

j=i−m+1

ϕ(j, i)−
i−1∑
j=1

ϕ(i−m, j) = λi, for 1 ≤ i ≤ m+ n,

and

τ(ξ(µ, ν, θ), ϕ, n+ 1)m+n+1 = ξ(µ, ν, θ)m+n+1 −
m+n∑
j=1

ϕ(n+ 1, j) = λm+n+1,

by (3.1), (3.3) and (3.5).
Thus, we have derived the following result.

Theorem 3.4. Let λ, µ, ν be three partitions with l(µ) = m, and l(ν) = n+ 1.
Then, if |µ| + |ν| 6= |λ|, we have fλ

′

µ′ν′(t, q) = 0. Otherwise, if |µ| + |ν| = |λ|, we
have

fλ
′

µ′ν′(t, q) =
∑

θ∈M(n)

n∏
k=1

cθ(k,1),...,θ(k,k)
(
σ(ν, θ, k)

)
×

∑
ϕ∈M(n,m+n−1)

n∏
k=1

dϕ(k,1),...,ϕ(k,m+k−1)

(
τ(ξ(µ, ν, θ), ϕ, k)

)
× dλ1−ψ(ξ(µ,ν,θ),ϕ)1,...,λm+n−ψ(ξ(µ,ν,θ),ϕ)m+n

(λ1, . . . , λm+n+1),

where

ψ(ξ(µ, ν, θ), ϕ)k = ξ(µ, ν, θ)k +
m+n∑
j=k+1

ϕ(j −m, k)−
k−1∑
j=1

ϕ(k −m, j),

for 1 ≤ k ≤ m+ n, where

ξ(µ, ν, θ)k =
{

µk if 1 ≤ k ≤ m
ω(ν, θ)k−m if m+ 1 ≤ k ≤ m+ n

,

and where

ω(ν, θ)k = νk +
n∑
j=k

θ(j, k)−
k−1∑
j=1

θ(k − 1, j), for 1 ≤ k ≤ n.
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