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Abstract

We consider products of two Macdonald polynomials of type A, indexed by
dominant weights which are respectively a multiple of the first fundamental weight
and a weight having zero component on the k-th fundamental weight. We give the
explicit decomposition of any Macdonald polynomial of type A in terms of this basis.
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1 Introduction

In the 1980’s, I. G. Macdonald introduced a class of orthogonal polynomials which are
Laurent polynomials in several variables and generalize the Weyl characters of compact
simple Lie groups [6, 7, 8]. In the simplest situation, given a root system R, these
polynomials are elements of the group algebra of the weight lattice of R, indexed by the
dominant weights, and depending on two parameters (q, t).

When R is of type An, these Macdonald polynomials are in bijective correspondence
with the symmetric functions Pλ(q, t) indexed by partitions, that were introduced by
Macdonald some years before [4, 5]. In fact, they correspond to Pλ(q, t)(x1, . . . , xn+1), for
a partition λ = (λ1, . . . , λn) of length n, with the n + 1 variables (x1, . . . , xn+1) linked by
the condition x1 · · ·xn+1 = 1.

The purpose of this article is to extend the result of [3], given for the symmetric
functions Pλ(q, t), to the framework of the root system An.
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More precisely, in [3, Theorem 4.1] we obtained a recurrence formula giving the sym-
metric function P(λ1,...,λn)(q, t) as a sum

P(λ1,...,λn) =
∑

θ∈Nn−1

Cθ1,...,θn−1P(λ1+θ1,...,λn−1+θn−1)Pλn−|θ|, (1.1)

with |θ| =
∑n−1

i=1 θi and N the set of non-negative integers. This formula was obtained by
inverting the “Pieri formula”, which conversely expresses the product P(λ1,...,λn−1)Pλn as
a sum

P(λ1,...,λn−1)Pλn =
∑

θ∈Nn−1

cθ1,...,θn−1 P(λ1+θ1,...,λn−1+θn−1,λn−|θ|).

Both expansions are identities between symmetric functions, valid for any number of
variables.

These identities may also be written in terms of Macdonald polynomials of type An.
For this purpose let {ωi, 1 ≤ i ≤ n} be the n fundamental weights of the root system
An. Let Pλ denote the Macdonald polynomial associated with the dominant weight λ =∑n

i=1 λiωi. The recurrence formula (1.1), written for n + 1 variables (x1, . . . , xn+1) linked
by x1 · · ·xn+1 = 1, yields

Pλ =
∑

θ∈Nn−1

Cθ1,...,θn−1P(λn−|θ|)ω1 Pµ, (1.2)

with µ =
∑n−2

i=1 (λi + θi − θi+1)ωi + (λn−1 + λn + θn−1)ωn−1. This alternative formulation
is obvious and does not bring anything new.

However the method of [3], when applied in the An root system framework, allows
to get a much stronger result. Indeed, let k be a fixed integer with 1 ≤ k ≤ n. In
this paper we shall write the Macdonald polynomial Pλ in terms of products Prω1Pµ,
with µ =

∑n
i=1 µiωi and µk = 0. There are n such recurrence formulas, (1.2) being the

particular case k = n of the latter.
This paper is organized as follows. In Section 2 we introduce our notation for the

root system An and recall general facts about the corresponding Macdonald polynomials.
Their Pieri formula, which involves a specific infinite multidimensional matrix, is studied
in Section 3, starting from the one given by Macdonald for the symmetric functions
Pλ(q, t) [5, p. 340]. In Section 4 we invert the Pieri matrix by applying a particular
multidimensional matrix inverse, given separately in the Appendix. This matrix inverse
is equivalent to one previously obtained in [3, Section 2] by using operator methods. As
result of inverting the Pieri formula we obtain recurrence formulas for An Macdonald
polynomials. Finally, in Section 5 we detail the examples of the A2 and A3 cases and
compare them to earlier results.

Acknowledgemnts. We thank the anonymous referees for helpful comments. The
second author was partly supported by FWF Austrian Science Fund grants P17563-N13
and S9607.
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2 Macdonald polynomials of type A

The standard references for Macdonald polynomials associated with root systems are [6,
7, 8].

Let us consider the space Rn+1 endowed with the usual scalar product and the quotient
space V = Rn+1/R(1, . . . , 1), where R(1, . . . , 1) is the subspace spanned by the vector
(1, . . . , 1). Let ε1, . . . , εn+1 denote the images in V of the coordinate vectors of Rn+1,
linked by

∑n+1
i=1 εi = 0.

The root system of type An is formed by the vectors {εi − εj, i 6= j}. The positive
roots are {εi− εj, i < j} and the simple roots are εi− εi+1 for 1 ≤ i ≤ n. The Weyl group
is the symmetric group W = Sn+1 acting by permutation of the coordinates.

The weight lattice P is formed by integral linear combinations of the fundamental
weights {ωi, 1 ≤ i ≤ n}, defined by ωi = ε1 + . . . + εi. Let ωi = 0 for i = 0, n + 1. We
denote by P+ the set of dominant weights λ =

∑n
i=1 λiωi, which are non-negative integral

linear combinations of the fundamental weights.
There is the following correspondence between dominant weights and partitions. Given

a dominant weight, if we write it as

λ =
n∑

i=1

λiωi =
n+1∑
i=1

µiεi,

the sequence µ = (µ1, . . . , µn+1) is a partition with length ≤ n + 1. We have

λi = µi − µi+1 and µi = µn+1 +
n∑

j=i

λj.

Thus µ is defined up to µn+1 and two partitions µ, ν correspond to the same weight λ if
and only if µ1 − ν1 = · · · = µn+1 − νn+1. We denote by Cλ the family of partitions thus
defined.

Let A denote the group algebra over R of the free Abelian group P . For each λ ∈ P let
eλ denote the corresponding element of A, subject to the multiplication rule eλeµ = eλ+µ.
The set {eλ, λ ∈ P} forms an R-basis of A.

The Weyl group W = Sn+1 acts on P and on A. Let Wλ denote the orbit of λ ∈ P
and AW the subspace of W -invariants in A. There are two important bases of AW , both
indexed by dominant weights. The first one is given by the orbit-sums

mλ =
∑

µ∈Wλ

eµ.

The second one is provided by the Weyl characters

χλ = δ−1
∑
w∈W

det(w)ew(λ+ρ),

with ρ =
∑n

i=1(n − i + 1)εi and δ =
∑

w∈W det(w)ew(ρ). The Macdonald polynomials
{Pλ, λ ∈ P+} form another basis, defined as the eigenvectors of a specific self-adjoint
operator (which we do not describe here).
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For 1 ≤ i ≤ n+1 define xi = eεi , so that the variables xi are linked by x1 · · ·xn+1 = 1.
Then δ is the Vandermonde determinant

∏
i<j(xi−xj). There is a correspondence between

AW and the symmetric polynomials restricted to n+1 variables x = (x1, . . . , xn+1) linked
by the previous condition.

In terms of bases this correspondence may be described as follows. Let λ be any
dominant weight and x1 · · ·xn+1 = 1. All monomial symmetric functions mµ(x1, . . . , xn+1)
with µ ∈ Cλ are equal and their common value is the orbit-sum mλ. Similarly, the
Weyl character χλ is the common value of the Schur functions sµ(x1, . . . , xn+1), µ ∈ Cλ,
whereas the Macdonald polynomial Pλ is the common value of the symmetric polynomials
Pµ(q, t)(x1, . . . , xn+1), with µ ∈ Cλ and Pµ(q, t) the symmetric function studied in Chapter
6 of [5].

Given a positive integer r and a dominant weight λ, the “Pieri formula” expands the
product

Prω1 Pλ =
∑

ρ

cρ Pλ+ρ,

in terms of Macdonald polynomials, where the range of ρ and the values of the coefficients
cρ are to be determined.

Let Q denote the root lattice, spanned by the simple roots. For any vector τ , define

Σ(τ) = C(τ) ∩ (τ + Q)

with C(τ) the convex hull of the Weyl group orbit of τ . Since the orbit of ω1 = ε1 is the
set {εi = ωi − ωi−1, 1 ≤ i ≤ n + 1}, it is clear that Σ(rω1) is formed by vectors

n+1∑
i=1

θi(ωi − ωi−1) =
n∑

i=1

(θi − θi+1)ωi,

with θ = (θ1, . . . , θn+1) ∈ Nn+1 and |θ| =
∑n+1

i=1 θi = r.
By general results [8, (5.3.8), p. 104], it is known that the sum on the right-hand side

of the Pieri formula is restricted to vectors ρ such that ρ ∈ Σ(rω1) and λ+ρ ∈ P+. In the
next section we shall give a direct proof of this result and make the value of the coefficient
cρ explicit.

3 Pieri formula

Let 0 < q < 1. For any integer r, the classical q-shifted factorial (u; q)r is defined by

(u; q)∞ =
∏
j≥0

(1− uqj), (u; q)r = (u; q)∞/(uqr; q)∞.

Let u = (u1, . . . , um) be m indeterminates and θ = (θ1, . . . , θm) ∈ Nm. For clarity of
display, throughout this paper, any time such a pair (u, θ) is given, we shall implicitly
assume m auxiliary variables v = (v1, . . . , vm) to be defined by vi = qθiui.

Macdonald polynomials of type An satisfy the following Pieri formula.
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Theorem 3.1. Let λ =
∑n

i=1 λiωi be a dominant weight and r ∈ N. For any 1 ≤ i ≤ n+1
define

ui = q
Pn

j=i λj t−i,

and for θ ∈ Nn+1,

dθ(u1, . . . , un+1; r) =
(q; q)r

(t; q)r

n+1∏
j=1

(t; q)θj

(q; q)θj

∏
1≤i<j≤n+1

(tvi/vj; q)θj

(qvi/vj; q)θj

(qui/tvj; q)θj

(ui/vj; q)θj

.

We have
Prω1 Pλ =

∑
θ∈Nn+1

|θ|=r

dθ(u1, . . . , un+1; r) Pλ+ρ,

with ρ =
∑n

i=1(θi − θi+1)ωi.

Proof. In a first step, we write the Pieri formula for arbitrary Pµ(q, t) with µ = (µ1, . . . , µn)
being a partition having length ≤ n. We start from [5, p. 340, Eq. (6.24)(i)] and [5, p. 342,
Example 2(a)]. Replacing gr by (t; q)r/(q; q)r P(r) we have

P(r)Pµ =
∑
κ⊃µ

ϕκ/µPκ,

where the skew-diagram κ − µ is a horizontal r-strip, i.e. has at most one node in each
column. The Pieri coefficient ϕκ/µ is given by

(t; q)r

(q; q)r

ϕκ/µ =
∏

1≤i≤j≤l(κ)

f(qκi−κj tj−i)

f(qκi−µj tj−i)

f(qµi−µj+1tj−i)

f(qµi−κj+1tj−i)
=

∏
1≤i≤j≤l(κ)

wκj−µj
(qκi−κj tj−i)

wκj+1−µj+1
(qµi−κj+1tj−i)

,

with f(u) = (tu; q)∞/(qu; q)∞ and ws(u) = (tu; q)s/(qu; q)s.
Since κ− µ is a horizontal strip, the length l(κ) of κ is at most equal to n + 1, so we

can write κ = (µ1 + θ1, . . . , µn + θn, θn+1), with |θ| = r. Then

(t; q)r

(q; q)r

ϕκ/µ =
∏

1≤i≤j≤l(κ)

wθj
(qκi−κj tj−i)

∏
1≤i<j≤l(κ)+1

(
wθj

(qµi−κj tj−i−1)
)−1

=
n+1∏
j=1

(t; q)θj

(q; q)θj

∏
1≤i<j≤n+1

(tvi/vj; q)θj

(qvi/vj; q)θj

(qui/tvj; q)θj

(ui/vj; q)θj

,

where for 1 ≤ i ≤ n + 1 we set ui = qµit−i and vi = qκit−i = qθiui.
In a second step we translate this result in terms of An Macdonald polynomials. Given

the dominant weight λ, we choose µ = (µ1, . . . , µn+1) to be the unique element of Cλ such
that µn+1 = 0, i.e. with length ≤ n. For 1 ≤ i ≤ n we have µi =

∑n
j=i λj. As for

the partition κ (with length ≤ n + 1), it belongs to Cσ with σ =
∑n

k=1(κk − κk+1)ωk =∑n
k=1(λk + θk − θk+1)ωk. Hence the statement.
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Remark. On the right-hand side of the Pieri formula, the condition λ + ρ ∈ P+ is
necessarily satisfied as soon as dθ(u1, . . . , un+1; r) 6= 0. Using the correspondence between
dominant weights and partitions, this may be verified on the Pieri formula

P(r)Pµ =
∑

κ=(µ1+θ1,...,µn+θn,θn+1)

ϕκ/µPκ.

We only have to show that ϕκ/µ necessarily vanishes when the multi-integer κ is not a par-
tition. But then there is an index i such that κi < κi+1 so that the factor (qui/tvi+1; q)θi+1

in ϕκ/µ writes out as
(1− q1+µi−κi+1) · · · (1− qµi−µi+1).

Due to κi < κi+1 this product would be 6= 0 only if µi < µi+1, which is impossible since
µ is a partition.

From now on, we fix some integer 1 ≤ k ≤ n. Substituting r − |θ| for θk, the Pieri
formula may be written in the more explicit form

Prω1 Pλ =
∑

θ=(θ1,...,θk−1,0,θk+1,...,θn+1)∈Nn

|θ|≤r

d̂θ(u1, . . . , un+1; r) Pλ+ρ,

with
ρ =

∑
1≤i≤n

i6=k−1,k

(θi − θi+1)ωi + θk−1 ωk−1 + (r − |θ|)(ωk − ωk−1)− θk+1 ωk,

and

d̂θ(u1, . . . , un+1; r) =
(q; q)r

(t; q)r

(t; q)r−|θ|

(q; q)r−|θ|

n+1∏
j=1
j 6=k

(t; q)θj

(q; q)θj

×
∏

1≤i<j≤n+1
j 6=k

(tvi/vj; q)θj

(qvi/vj; q)θj

(qui/tvj; q)θj

(ui/vj; q)θj

k−1∏
i=1

(tvi/vk; q)r−|θ|

(qvi/vk; q)r−|θ|

(qui/tvk; q)r−|θ|

(ui/vk; q)r−|θ|
.

Here ui, vi (1 ≤ i ≤ n + 1) are as in Theorem 3.1, except vk = qr−|θ|uk. The sum is
restricted to |θ| ≤ r since 1/(q; q)s = 0 for s < 0.

In a second step, we concentrate on the situation λk = 0. Then each term on the
right-hand side vanishes unless θk+1 = 0. Indeed, if λk = 0, one has uk = tuk+1 and
vk+1 = qθk+1uk+1. Hence for i = k and j = k + 1 the factor (qui/tvj; q)θj

evaluates as

(quk/tvk+1; q)θk+1
= (q1−θk+1 ; q)θk+1

= δθk+1,0.

Therefore if λk = 0 the Pieri formula can be written as

Prω1 Pλ =
∑

θ=(θ1,...,θk−1,0,0,θk+2,...,θn+1)∈Nn−1

|θ|≤r

d̃θ(u1, . . . , uk−1, uk, uk+2, . . . , un+1; k, r) Pλ+ρ,
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with

ρ =
∑

1≤i≤n
i6=k−1,k,k+1

(θi − θi+1)ωi + θk−1 ωk−1 + (r − |θ|)(ωk − ωk−1)− θk+2 ωk+1,

and

d̃θ(u1, . . . , uk−1, uk, uk+2, . . . , un+1; k, r) =

(q; q)r

(t; q)r

(t; q)r−|θ|

(q; q)r−|θ|

n+1∏
i=1

i6=k,k+1

(t; q)θi

(q; q)θi

∏
1≤i<j≤n+1

i6=k,k+1
j 6=k,k+1

(tvi/vj; q)θj

(qvi/vj; q)θj

(qui/tvj; q)θj

(ui/vj; q)θj

×
k−1∏
i=1

(tvi/vk; q)r−|θ|

(qvi/vk; q)r−|θ|

(qui/tvk; q)r−|θ|

(ui/vk; q)r−|θ|

n+1∏
j=k+2

(tvk/vj; q)θj

(qvk/vj; q)θj

(quk/t
2vj; q)θj

(uk/tvj; q)θj

.

Here the notations are the same as before, including vk = qr−|θ|uk. For j ≥ k + 2 we have
used

(tvk/vj; q)θj

(qvk/vj; q)θj

(quk/tvj; q)θj

(uk/vj; q)θj

(tvk+1/vj; q)θj

(qvk+1/vj; q)θj

(quk+1/tvj; q)θj

(uk+1/vj; q)θj

=
(tvk/vj; q)θj

(qvk/vj; q)θj

(quk/t
2vj; q)θj

(uk/tvj; q)θj

,

which is a direct consequence of vk+1 = uk+1 = uk/t.
In a third step, we perform some relabelling in order to remove the two 0’s appearing in

θ. For that purpose, for n indeterminates (u0, u1, . . . , un−1) and θ = (θ1, . . . , θn−1) ∈ Nn−1,
we define

Dθ(u0, u1, . . . , un−1; k, r) =

(q/t)|θ|
(t2u0; q)|θ|
(qtu0; q)|θ|

n−1∏
i=1

(t; q)θi

(q; q)θi

(q|θ|+1ui; q)θi

(q|θ|tui; q)θi

∏
1≤i<j≤n−1

(tvi/vj; q)θj

(qvi/vj; q)θj

(qui/tvj; q)θj

(ui/vj; q)θj

×
k−1∏
i=1

(ui/u0; q)θi

(qui/tu0; q)θi

(qui/tu0; q)θi−r+|θ|

(ui/u0; q)θi−r+|θ|

(ui/tu0; q)θi−r+|θ|

(qui/t2u0; q)θi−r+|θ|

n−1∏
i=k

(tui/u0; q)θi

(qui/u0; q)θi

.

Lemma. If we write

wi =


q−rt−2, i = 0,

q−rui/tuk, 1 ≤ i ≤ k − 1,

q−rui+2/tuk, k ≤ i ≤ n− 1,

we have

Dθ(w0, w1, . . . , wn−1; k, r) = d̃(θ1,...,θk−1,0,0,θk,...,θn−1)(u1, . . . , uk−1, uk, uk+2, . . . , un+1; k, r).
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Proof. Merely by substitution, and using vk = qr−|θ|uk, we only have to prove

(q/t)|θ|
(q−r; q)|θ|

(q1−r/t; q)|θ|

n+1∏
j=k+2

(q|θ|−r+1uj/tuk; q)θj

(q|θ|−ruj/uk; q)θj

(t2uj/uk; q)θj

(qtuj/uk; q)θj

×
k−1∏
i=1

(q|θ|−r+1ui/tuk; q)θi

(q|θ|−rui/uk; q)θi

(tui/uk; q)θi

(qui/uk; q)θi

(qui/uk; q)θi−r+|θ|

(tui/uk; q)θi−r+|θ|

(ui/uk; q)θi−r+|θ|

(qui/tuk; q)θi−r+|θ|
=

(q; q)r

(t; q)r

(t; q)r−|θ|

(q; q)r−|θ|

k−1∏
i=1

(tvi/q
r−|θ|uk; q)r−|θ|

(qvi/qr−|θ|uk; q)r−|θ|

(qui/tq
r−|θ|uk; q)r−|θ|

(ui/qr−|θ|uk; q)r−|θ|

×
n+1∏

j=k+2

(tqr−|θ|uk/vj; q)θj

(qr−|θ|+1uk/vj; q)θj

(quk/t
2vj; q)θj

(uk/tvj; q)θj

.

We have obviously

(q|θ|−r+1ui/tuk; q)θi

(q|θ|−rui/uk; q)θi

(ui/uk; q)θi−r+|θ|

(qui/tuk; q)θi−r+|θ|
=

(qui/tq
r−|θ|uk; q)r−|θ|

(ui/qr−|θ|uk; q)r−|θ|
.

Using the identities

(aq−n; q)n

(bq−n; q)n

=
(q/a; q)n

(q/b; q)n

(a/b)n,

(a; q)n

(b; q)n

(b; q)n−k

(a; q)n−k

=
(q1−n/a; q)k

(q1−n/b; q)k

(a/b)k,

we get

(tui/uk; q)θi

(qui/uk; q)θi

(qui/uk; q)θi−r+|θ|

(tui/uk; q)θi−r+|θ|
=

(q1−θiuk/tui; q)r−|θ|

(q−θiuk/ui; q)r−|θ|
(t/q)r−|θ|

=
(tvi/q

r−|θ|uk; q)r−|θ|

(qvi/qr−|θ|uk; q)r−|θ|
.

Similarly we obtain

(t/q)θj
(q|θ|−r+1uj/tuk; q)θj

(q|θ|−ruj/uk; q)θj

=
(tqr−|θ|uk/vj; q)θj

(qr−|θ|+1uk/vj; q)θj

(q/t)θj
(t2uj/uk; q)θj

(qtuj/uk; q)θj

=
(quk/t

2vj; q)θj

(uk/tvj; q)θj

.

Finally we have proved the following Pieri formula.

Theorem 3.2. Let λ =
∑n

i=1 λiωi be a dominant weight and r ∈ N. Assume λk = 0 for
some fixed 1 ≤ k ≤ n. Define

ui =


q−rt−2, i = 0,

q−r+
Pk−1

j=i λj tk−i−1, 1 ≤ i ≤ k − 1,

q−r−
Pi+1

j=k+1 λj tk−i−3, k ≤ i ≤ n− 1.
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We have
Prω1 Pλ =

∑
θ=(θ1,...,θn−1)∈Nn−1

|θ|≤r

Dθ(u0, u1, . . . , un−1; k, r) Pλ+ρ,

with

ρ =
k−2∑
i=1

(θi − θi+1)ωi + θk−1 ωk−1 + (r − |θ|)(ωk − ωk−1)− θk ωk+1 +
n∑

i=k+2

(θi−2 − θi−1)ωi.

Remark. For k = 1, 2 (resp. k = n, n − 1) the first (resp. the last) sum in the above
expression of ρ must be understood as zero. This convention will be kept in the next
sections.

4 A recurrence formula

Given two multi-integers β = (β1, . . . , βn−1), κ = (κ1, . . . , κn−1) ∈ Zn−1, we write β ≥ κ
for βi ≥ κi (1 ≤ i ≤ n − 1). We say that an infinite (n − 1)-dimensional matrix F =
(fβκ)β,κ∈Zn−1 is lower-triangular if fβκ = 0 unless β ≥ κ. When all fκκ 6= 0, there exists a
unique lower-triangular matrix G = (gκγ)κ,γ∈Zn−1 such that∑

β≥κ≥γ

fβκ gκγ = δβγ,

for all β, γ ∈ Zn−1, where δβγ is the usual Kronecker symbol. We refer to F and G as
mutually inverse.

Such a pair of infinite multidimensional inverse matrices is given in the Appendix,
as a corollary of [3, Theorem 2.7] (and, in fact, equivalent to the latter). This result is
essential for our purpose.

Given n indeterminates (u0, u1, . . . , un−1), θ = (θ1, . . . , θn−1) ∈ Nn−1, and k, r ∈ N
with 1 ≤ k ≤ n, we define

Cθ1,...,θn−1(u0, u1, . . . , un−1; k, r) =

q|θ|
(t2u0; q)|θ|
(qtu0; q)|θ|

n−1∏
i=1

(q/t; q)θi

(q; q)θi

(qui; q)θi

(qtui; q)θi

∏
1≤i<j≤n−1

(qvi/tvj; q)θj

(qvi/vj; q)θj

(tui/vj; q)θj

(ui/vj; q)θj

×
k−1∏
i=1

(ui/tu0; q)θi

(qui/t2u0; q)θi

(qtu0/ui; q)r

(t2u0/ui; q)r

(tu0/ui; q)r

(qu0/ui; q)r

n−1∏
i=k

(tui/u0; q)θi

(qui/u0; q)θi

× 1

∆(v)
det

1≤i,j≤n−1

[
vn−j−1

i

(
1− tj−1 1− tvi

1− vi

n−1∏
s=1

vi − us

vi − tus

)]
,

with ∆(v) the Vandermonde determinant
∏

1≤i<j≤n−1(vi − vj). Here is our main result.
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Theorem 4.1. Let λ =
∑n

i=1 λiωi be a dominant weight. Assume λk = 0 for some fixed
1 ≤ k ≤ n. For any positive integer r ≤ λk−1 the weight

λ(r) = λ + r(ωk − ωk−1) = λ + rεk

is dominant. Define

ui =


q−rt−2, i = 0,

q−r+
Pk−1

j=i λj tk−i−1, 1 ≤ i ≤ k − 1,

q−r−
Pi+1

j=k+1 λj tk−i−3, k ≤ i ≤ n− 1.

We have

Pλ(r) =
∑

θ=(θ1,...,θn−1)∈Nn−1

|θ|≤r

Cθ(u0, u1, . . . , un−1; k, r) P(r−|θ|)ω1 Pλ+ρ,

with

ρ =
k−2∑
i=1

(θi − θi+1)ωi + θk−1 ωk−1 − θk ωk+1 +
n∑

i=k+2

(θi−2 − θi−1)ωi.

Remark. The weight λ+ ρ has no component on ωk. Further, similarly as in Theorem 3.1
(see the Remark following the proof of that theorem), the condition λ + ρ ∈ P+ is
necessarily satisfied in Theorem 4.2 as soon as Cθ(u0, u1, . . . , un−1; k, r) 6= 0. We omit the
details which involve a tedious case-by-case analysis.

Proof. We make use of the multidimensional matrix inverse given in the Appendix. Let
β = (β1, . . . , βn−1), κ = (κ1, . . . , κn−1), γ = (γ1, . . . , γn−1) ∈ Zn−1. If we define

fβκ = Cβ1−κ1,...,βn−1−κn−1

(
q|κ|u0, q

κ1+|κ|u1, . . . , q
κn−1+|κ|un−1; k, r − |κ|),

gκγ = Dκ1−γ1,...,κn−1−γn−1

(
q|γ|u0, q

γ1+|γ|u1, . . . , q
γn−1+|γ|un−1; k, r − |γ|

)
,

by this result, the infinite lower-triangular multidimensional matrices (fβκ)β,κ∈Zn−1 and
(gκγ)κ,γ∈Zn−1 are mutually inverse.

Now let us replace in Theorem 3.2 λi by λi + γi − γi+1 for 1 ≤ i ≤ k − 2, λk−1 by
λk−1 + γk−1, λk+1 by λk+1 − γk, λi by λi + γi−2 − γi−1 for k + 2 ≤ i ≤ n, r by r − |γ|,
respectively. Then u0 is replaced by q|γ|u0, and ui by qγi+|γ|ui for 1 ≤ i ≤ n−1. In explicit
terms, we are considering the identity

P(r−|γ|)ω1 Pλ+γ̃ =
∑

θ=(θ1,...,θn−1)∈Nn−1

|θ|≤r

Dθ(q
|γ|u0, q

γ1+|γ|u1, . . . , q
γn−1+|γ|un−1; k, r − |γ|) Pλ+γ̃+ρ,

with

ui =


q−rt−2, i = 0,

q−r+
Pk−1

j=i λj tk−i−1, 1 ≤ i ≤ k − 1,

q−r−
Pi+1

j=k+1 λj tk−i−3, k ≤ i ≤ n− 1,
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and

ρ =
k−2∑
i=1

(θi − θi+1)ωi + θk−1 ωk−1 + (r − |θ|)(ωk − ωk−1)− θk ωk+1 +
n∑

i=k+2

(θi−2 − θi−1)ωi,

γ̃ =
k−2∑
i=1

(γi − γi+1)ωi + γk−1 ωk−1 − γk ωk+1 +
n∑

i=k+2

(γi−2 − γi−1)ωi.

After substituting the summation indices θi 7→ κi − γi for 1 ≤ i ≤ n − 1, we obtain
exactly ∑

κ∈Zn−1

gκγyκ = wγ (γ ∈ Zn−1),

with
yκ = Pλ+κ̃, wγ = P(r−|γ|)ω1 Pλ+γ̃,

and

κ̃ =
k−2∑
i=1

(κi − κi+1)ωi + κk−1 ωk−1 + (r − |κ|)(ωk − ωk−1)− κk ωk+1 +
n∑

i=k+2

(κi−2 − κi−1)ωi.

This immediately yields the inverse relation∑
β∈Zn−1

fβκwβ = yκ (κ ∈ Zn−1).

We conclude by setting κi = 0 for all 1 ≤ i ≤ n− 1.

Finally, by the substitutions r → λk and λk−1 → λk−1 + λk, we obtain the following
very remarkable expansion.

Theorem 4.2. Let λ =
∑n

i=1 λiωi be a dominant weight and k ∈ N fixed with 1 ≤ k ≤ n.
Define

ui =


q−λkt−2, i = 0,

q
Pk−1

j=i λj tk−i−1, 1 ≤ i ≤ k − 1,

q−
Pi+1

j=k λj tk−i−3, k ≤ i ≤ n− 1,

and µ = λ− λk (ωk − ωk−1) = λ− λk εk. We have

Pλ =
∑

θ=(θ1,...,θn−1)∈Nn−1

|θ|≤λk

Cθ(u0, u1, . . . , un−1; k, λk) P(λk−|θ|)ω1 Pµ+ρ,

with

ρ =
k−2∑
i=1

(θi − θi+1)ωi + θk−1 ωk−1 − θk ωk+1 +
n∑

i=k+2

(θi−2 − θi−1)ωi.

11



Remark. Observe that the weights µ and µ + ρ have no component on ωk.

The k = n special case is worth writing out explicitly.

Corollary. Let λ =
∑n

i=1 λiωi be a dominant weight. Define u0 = q−λnt−2 and ui =

q
Pn−1

l=i λltn−i−1 (1 ≤ i ≤ n− 1). We have

Pλ =
∑

θ=(θ1,...,θn−1)∈Nn−1

|θ|≤λn

Cθ(u0, u1, . . . , un−1; n, λn) P(λn−|θ|)ω1 Pµ,

with µ =
∑n−2

i=1 (λi + θi − θi+1)ωi + (λn−1 + λn + θn−1)ωn−1.

The reader may check that this is exactly Theorem 4.1 of [3] (with n 7→ n−1), written
for x1 · · ·xn+1 = 1, up to the normalization Qλ = bλ Pλ with

bλ =
∏

1≤i≤j≤n

(q
Pj−1

l=i λltj−i+1; q)λj

(q1+
Pj−1

l=i λltj−i; q)λj

=
∏

1≤i≤j≤n

(tui/uj; q)λj

(qui/uj; q)λj

,

where we set un = 1/t.

5 Examples

In this section we write out the formulas in Theorem 4.2 explicitly for n = 2, 3.

5.1 The root system A2

For k = 2 we have u0 = q−λ2/t2, u1 = qλ1 , and

Cθ(u0, u1; 2, r) = qθ (t2u0; q)θ

(qtu0; q)θ

(q/t; q)θ

(q; q)θ

(qu1; q)θ

(qtu1; q)θ

(u1/tu0; q)θ

(qu1/t2u0; q)θ

× (qtu0/u1; q)r

(t2u0/u1; q)r

(tu0/u1; q)r

(qu0/u1; q)r

(
1− 1− tv1

1− v1

v1 − u1

v1 − tu1

)
.

After some simplifications, we obtain

Pλ1ω1+λ2ω2 =
∑
θ∈N

C
(2)
θ (λ) P(λ2−θ)ω1 P(λ1+λ2+θ)ω1 ,

with

C
(2)
θ (λ) = Cθ(u0, u1; 2, λ2)

= tθ
(qλ2−θ+1; q)θ

(tqλ2−θ; q)θ

(1/t; q)θ

(q; q)θ

(qλ1+1; q)θ

(tqλ1+1; q)θ

(tqλ1 ; q)λ2+θ

(qλ1+1; q)λ2+θ

(tqλ1+1; q)λ2

(t2qλ1 ; q)λ2

1− qλ1+2θ

1− qλ1+θ
.
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This result may be compared with the Jing–Józefiak classical result [1], more precisely
its restriction to three variables (x1, x2, x3) subject to x1x2x3 = 1. Namely, given a
partition (µ1, µ2), the Macdonald symmetric function P(µ1,µ2)(q, t) is given by

P(µ1,µ2) =
∑
θ∈N

Cθ(µ)P(µ2−θ)P(µ1+θ),

with

Cθ(µ) =
(tqµ1−µ2+1; q)µ2

(t2qµ1−µ2 ; q)µ2

(qµ2−θ+1; q)θ

(tqµ2−θ; q)θ

(tqµ1−µ2 ; q)µ2+θ

(qµ1−µ2+1; q)µ2+θ

× tθ
(1/t; q)θ

(q; q)θ

(qµ1−µ2+1; q)θ

(tqµ1−µ2+1; q)θ

1− qµ1−µ2+2θ

1− qµ1−µ2+θ
.

Our formula is equivalent to the main result of [1] by the correspondence λ1 = µ1 − µ2,
λ2 = µ2 between dominant weights and partitions, recalled in Section 2.

For k = 1 we have u0 = q−λ1/t2, u1 = q−λ1−λ2/t3, and

Cθ(u0, u1; 1, r) = qθ (t2u0; q)θ

(qtu0; q)θ

(q/t; q)θ

(q; q)θ

(qu1; q)θ

(qtu1; q)θ

(tu1/u0; q)θ

(qu1/u0; q)θ

(
1− 1− tv1

1− v1

v1 − u1

v1 − tu1

)
.

After some simplifications, we obtain

Pλ1ω1+λ2ω2 =
∑
θ∈N

C
(1)
θ (λ) P(λ1−θ)ω1 P(λ2−θ)ω2 ,

with

C
(1)
θ (λ) = Cθ(u0, u1; 1, λ1)

= tθ
(1/t; q)θ

(q; q)θ

(qλ1 ; 1/q)θ

(tqλ1−1; 1/q)θ

(qλ2 ; 1/q)θ

(tqλ2−1; 1/q)θ

(t3qλ1+λ2−1; 1/q)θ

(t2qλ1+λ2−1; 1/q)θ

1− t3qλ1+λ2−2θ

1− t3qλ1+λ2−θ
.

We thus recover exactly Perelomov, Ragoucy and Zaugg’s result given in [9, Theo-
rem 1(a)].

5.2 The root system A3

For k = 1, 2, 3 our formulas in Theorem 4.2 write respectively as

Pλ1ω1+λ2ω2+λ3ω3 =
∑

(i,j)∈N2

C
(1)
ij (λ) P(λ1−i−j)ω1 P(λ2−i)ω2+(λ3+i−j)ω3 ,

=
∑

(i,j)∈N2

C
(2)
ij (λ) P(λ2−i−j)ω1 P(λ1+λ2+i)ω1+(λ3−j)ω3 ,

=
∑

(i,j)∈N2

C
(3)
ij (λ) P(λ3−i−j)ω1 P(λ1+i−j)ω1+(λ2+λ3+j)ω2 .

13



In order to make these expansions explicit, we need to evaluate the determinant of the 2
by 2 matrix A given by

Akl = v2−l
k

(
1− tl−1 1− tvk

1− vk

vk − u1

vk − tu1

vk − u2

vk − tu2

)
,

with v1 = qiu1, v2 = qju2.
More precisely we need to compute the quotient of this determinant by the Vander-

monde determinant v1 − v2 = qiu1 − qju2. There is no evidence this quotient may be
written in canonical form. Inspired by the explicit result of [2, Theorem 1] (see below),
we write this quotient of determinants as

det A

qiu1 − qju2

=
(t− 1)2

(t− qi)(t− qj)

(
1− q2iu1

1− qiu1

1− q2ju2

1− qju2

(
1 + t−1 1− qi

1− qiu1/tu2

1− qj

1− qju2/tu1

)
− (qiu1 + qju2)

1− qi

1− qiu1

1− qj

1− qju2

1− qi/t

1− qiu1/tu2

1− qj/t

1− qju2/tu1

)
.

The above identity (which is not trivial) may be easily verified by using any formal calculus
software.

Next, for (i, j) ∈ N2 we define

∇ij(u0, u1, u2) =

qi+j (t2u0; q)i+j

(qtu0; q)i+j

(1/t; q)i

(q; q)i

(u1; q)i

(qtu1; q)i

(1/t; q)j

(q; q)j

(u2; q)j

(qtu2; q)j

(qi−j+1u1/tu2; q)j

(qi−j+1u1/u2; q)j

(tq−ju1/u2; q)j

(q−ju1/u2; q)j

×

(
1− q2iu1

1− u1

1− q2ju2

1− u2

(
1 + t−1 1− qi

1− qiu1/tu2

1− qj

1− qju2/tu1

)
− (qiu1 + qju2)

1− qi

1− u1

1− qj

1− u2

1− qi/t

1− qiu1/tu2

1− qj/t

1− qju2/tu1

)
.

It is readily verified that we have

Cij(u0, u1, u2; 1, r)

∇ij(u0, u1, u2)
=

(tu1/u0; q)i

(qu1/u0; q)i

(tu2/u0; q)j

(qu2/u0; q)j

,

Cij(u0, u1, u2; 2, r)

∇ij(u0, u1, u2)
=

(u1/tu0; q)i

(qu1/t2u0; q)i

(qtu0/u1; q)r

(t2u0/u1; q)r

(tu0/u1; q)r

(qu0/u1; q)r

(tu2/u0; q)j

(qu2/u0; q)j

,

Cij(u0, u1, u2; 3, r)

∇ij(u0, u1, u2)
=

(u1/tu0; q)i

(qu1/t2u0; q)i

(qtu0/u1; q)r

(t2u0/u1; q)r

(tu0/u1; q)r

(qu0/u1; q)r

× (u2/tu0; q)j

(qu2/t2u0; q)j

(qtu0/u2; q)r

(t2u0/u2; q)r

(tu0/u2; q)r

(qu0/u2; q)r

.
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Now, by Theorem 4.2 the respective recurrence coefficients are determined to be

C
(1)
ij (λ) = Cij(q

−λ1/t2, q−λ1−λ2/t3, q−λ1−λ2−λ3/t4; 1, λ1),

C
(2)
ij (λ) = Cij(q

−λ2/t2, qλ1 , q−λ2−λ3/t3; 2, λ2),

C
(3)
ij (λ) = Cij(q

−λ3/t2, qλ1+λ2t, qλ2 ; 3, λ3).

The cases k = 1, 2 are new. For k = 3 we recover the first author’s earlier result in [2,
Theorem 1], more precisely the restriction of this result to four variables (x1, x2, x3, x4)
subject to x1x2x3x4 = 1. Namely given a partition (µ1, µ2, µ3) and u = qµ1−µ2 , v = qµ2−µ3 ,
the Macdonald symmetric function P(µ1,µ2,µ3)(q, t) is given by

P(µ1,µ2,µ3) =
∑

(i,j)∈N2

Cij(µ)P(µ3−i−j)P(µ1+i,µ2+j),

with

Cij(µ) = ti+j (1/t; q)i

(q; q)i

(1/t; q)j

(q; q)j

(tuv; q)i

(qt2uv; q)i

(v; q)j

(qtv; q)j

(q−jt2u; q)i

(q−jtu; q)i

(qu; q)i

(qtu; q)i

× (t; q)µ1−µ2+i−j

(q; q)µ1−µ2+i−j

(t; q)µ2+j

(q; q)µ2+j

(t; q)µ3−i−j

(q; q)µ3−i−j

(q; q)µ1−µ2

(t; q)µ1−µ2

(q; q)µ2−µ3

(t; q)µ2−µ3

(q; q)µ3

(t; q)µ3

× (qi−jt2u; q)µ2+j

(qi−j+1tu; q)µ2+j

(qtu; q)µ2−µ3

(t2u; q)µ2−µ3

(qt2uv; q)µ3

(t3uv; q)µ3

(qtv; q)µ3

(t2v; q)µ3

1− q2ituv

1− tuv

1− q2jv

1− v

×

(
1 + u

1− qi

1− qiu

1− q−j

1− q−jt2u

(
t− v(qitu + qj)

t− qi

1− q2ituv

t− qj

1− q2jv

))
.

The reader may check our formula is indeed equivalent to [2, Theorem 1] by using the
correspondence λ1 = µ1 − µ2, λ2 = µ2 − µ3, λ3 = µ3 between dominant weights and
partitions.

6 Final remark

The Macdonald polynomial Pλ, λ =
∑n

i=1 λiωi, is in bijective correspondence with the
symmetric function Pµ(x1, . . . , xn+1) with µ = (µ1, . . . , µn), µi =

∑n
j=i λj, subject to the

condition x1 · · ·xn+1 = 1. Therefore the n recurrence relations that we have obtained for
Pλ may be expressed in terms of Pµ(x1, . . . , xn+1), subject to x1 · · ·xn+1 = 1.

One may wonder whether this restriction can be removed. Equivalently, being given
some fixed integer 1 ≤ k ≤ n, is it possible to expand the symmetric function Pµ in terms
of products P(r)Pρ for partitions ρ = (ρ1, . . . , ρn) satisfying ρk = ρk+1?

Such a development has been obtained in [3] for k = n, in which case ρn = ρn+1 = 0.
However this method cannot be used for other values of k.

Actually the Pieri expansion of P(r)Pρ involves symmetric functions Pσ with σ − ρ a
horizontal r-strip. Hence some of these partitions σ have length l(σ) = n + 1. The only
exception occurs for k = n since in that case ρn = 0 entails l(σ) ≤ n.

15



Therefore, except for k = n, the Pieri multiplication does not conserve the space
generated by {Pκ, l(κ) ≤ n}, and it is not possible to define a Pieri matrix to invert.

This difficulty does not arise in the An framework. Then the Pieri matrix can be
defined, because the condition x1 · · ·xn+1 = 1 and the property [5, (4.17), p. 325]

P(σ1,...,σn+1)(x1, . . . , xn+1) = (x1 · · ·xn+1)
σn+1 P(σ1−σn+1,...,σn−σn+1,0)(x1, . . . , xn+1)

allow to deal with partitions of length n + 1.

Appendix: A multidimensional matrix inverse

The following result (equivalent to one previously given in [3]) is crucial to obtain the
recursion formula in Section 4.

Lemma. Let t, u0, u1, . . . , un be indeterminates and r, k ∈ N with 1 ≤ k ≤ n + 1. Define

fβκ = q|β|−|κ|
(t2u0; q)|β|
(qtu0; q)|β|

(qtu0; q)|κ|
(t2u0; q)|κ|

n∏
i=1

(q/t; q)βi−κi

(q; q)βi−κi

(qκi+|κ|+1ui; q)βi−κi

(qκi+|κ|+1tui; q)βi−κi

×
k−1∏
i=1

(ui/tu0; q)βi

(qui/t2u0; q)βi

(qui/tu0; q)κi

(ui/u0; q)κi

(ui/u0; q)|κ|−r+κi

(qui/tu0; q)|κ|−r+κi

(qui/t
2u0; q)|κ|−r+κi

(ui/tu0; q)|κ|−r+κi

×
n∏

i=k

(tui/u0; q)βi

(qui/u0; q)βi

(qui/u0; q)κi

(tui/u0; q)κi

×
∏

1≤i<j≤n

(qβi−βj+1ui/tuj; q)βj−κj

(qβi−βj+1ui/uj; q)βj−κj

(qκi−βj tui/uj; q)βj−κj

(qκi−βjui/uj; q)βj−κj

(
qβiui − qβjuj

)−1

× det
1≤i,j≤n

[(
qβiui

)n−j

(
1− tj−1

(
1− qβi+|κ|tui

)(
1− qβi+|κ|ui

) n∏
s=1

(
qβiui − qκsus

)(
qβiui − qκstus

))],
and

gκγ =
(q

t

)|κ|−|γ| (t2u0; q)|κ|
(qtu0; q)|κ|

(qtu0; q)|γ|
(t2u0; q)|γ|

n∏
i=1

(t; q)κi−γi

(q; q)κi−γi

(qγi+|κ|+1ui; q)κi−γi

(qγi+|κ|tui; q)κi−γi

×
k−1∏
i=1

(ui/u0; q)κi

(qui/tu0; q)κi

(qui/t
2u0; q)γi

(ui/tu0; q)γi

(qui/tu0; q)|κ|−r+κi

(ui/u0; q)|κ|−r+κi

(ui/tu0; q)|κ|−r+κi

(qui/t2u0; q)|κ|−r+κi

×
n∏

i=k

(tui/u0; q)κi

(qui/u0; q)κi

(qui/u0; q)γi

(tui/u0; q)γi

×
∏

1≤i<j≤n

(qκi−κj tui/uj; q)κj−γj

(qκi−κj+1ui/uj; q)κj−γj

(qγi−κj+1ui/tuj; q)κj−γj

(qγi−κjui/uj; q)κj−γj

.

Then the infinite lower-triangular n-dimensional matrices (fβκ)β,κ∈Zn and (gκγ)κ,γ∈Zn are
mutually inverse.

16



Proof. Given two non-zero sequences (ξκ) and (ζκ), and a pair of matrices (fβκ) and (gκγ)

which are mutually inverse, it is easily checked (using the trivial relation
ξβ

ξγ
δβγ = δβγ)

that the matrices (fβκ ξβ/ζκ) and (gκγ ζκ/ξγ) are mutually inverse.
We choose

ξκ =
(q

t

)|κ| (t2u0; q)|κ|
(qtu0; q)|κ|

k−1∏
i=1

(ui/tu0; q)κi

(qui/t2u0; q)κi

n∏
i=k

(tui/u0; q)κi

(qui/u0; q)κi

×
∏

1≤i<j≤n

(qui/uj; q)κi−κj

(tui/uj; q)κi−κj

(ui/uj; q)κi−κj

(qui/tuj; q)κi−κj

,

ζκ =
(q

t

)|κ| (t2u0; q)|κ|
(qtu0; q)|κ|

k−1∏
i=1

(ui/u0; q)κi

(qui/tu0; q)κi

(qui/tu0; q)|κ|−r+κi

(ui/u0; q)|κ|−r+κi

(ui/tu0; q)|κ|−r+κi

(qui/t2u0; q)|κ|−r+κi

×
n∏

i=k

(tui/u0; q)κi

(qui/u0; q)κi

∏
1≤i<j≤n

(qui/uj; q)κi−κj

(tui/uj; q)κi−κj

(ui/uj; q)κi−κj

(qui/tuj; q)κi−κj

,

together with the pair of mutually inverse matrices (fβκ) and (gκγ) as defined in [3,
Theorem 2.7].

Several elementary manipulations of q-shifted factorials eventually lead to the result
in the desired form. To give a sample, (concentrating only on the products over

∏
1≤i<j≤n

of q-shifted factorials) we use the simplification∏
1≤i<j≤n

(qκi−κj+1ui/tuj; q)βi−κi

(qκi−κj+1ui/uj; q)βi−κi

(qκi−βj tui/uj; q)βi−κi

(qκi−βjui/uj; q)βi−κi

×
∏

1≤i<j≤n

(qui/uj; q)βi−βj

(tui/uj; q)βi−βj

(ui/uj; q)βi−βj

(qui/tuj; q)βi−βj

(tui/uj; q)κi−κj

(qui/uj; q)κi−κj

(qui/tuj; q)κi−κj

(ui/uj; q)κi−κj

=

∏
1≤i<j≤n

(qui/tuj; q)βi−κj

(qui/uj; q)βi−κj

(ui/uj; q)κi−βj

(tui/uj; q)κi−βj

(qui/uj; q)βi−βj

(qui/tuj; q)βi−βj

(tui/uj; q)κi−κj

(ui/uj; q)κi−κj

=

∏
1≤i<j≤n

(qβi−βj+1ui/tuj; q)βj−κj

(qβi−βj+1ui/uj; q)βj−κj

(qκi−βj tui/uj; q)βj−κj

(qκi−βjui/uj; q)βj−κj

in the computation of fβκ in the Lemma.
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