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Abstract

We consider products of two Macdonald polynomials of type A, indexed by
dominant weights which are respectively a multiple of the first fundamental weight
and a weight having zero component on the k-th fundamental weight. We give the
explicit decomposition of any Macdonald polynomial of type A in terms of this basis.
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1 Introduction

In the 1980’s, I. G. Macdonald introduced a class of orthogonal polynomials which are
Laurent polynomials in several variables and generalize the Weyl characters of compact
simple Lie groups [6, 7, 8]. In the simplest situation, given a root system R, these
polynomials are elements of the group algebra of the weight lattice of R, indexed by the
dominant weights, and depending on two parameters (g, t).

When R is of type A,, these Macdonald polynomials are in bijective correspondence
with the symmetric functions Py(q,t) indexed by partitions, that were introduced by
Macdonald some years before [4, 5]. In fact, they correspond to Py(q,t)(z1, ..., Zns1), for
a partition A = (A1, ..., \,) of length n, with the n + 1 variables (z1,...,2,.1) linked by
the condition z; --- 2,41 = 1.

The purpose of this article is to extend the result of [3], given for the symmetric
functions Py(q,t), to the framework of the root system A,.
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More precisely, in [3, Theorem 4.1] we obtained a recurrence formula giving the sym-
metric function Py, x,) (¢, t) as a sum

7)()\1,...,)\”) = Z 091,...,Hn_1’P()\1+91,...,)\n,1+9n,1) IP)\n—|9|7 (11>

feNn—1

with || = 37— 6; and N the set of non-negative integers. This formula was obtained by
inverting the “Pieri formula”, which conversely expresses the product Py, .z, ,) P, as
a sum
Portyrn-) Pa, = Z Oyt P10, A1 40012 —10]) -
geNn—1
Both expansions are identities between symmetric functions, valid for any number of
variables.

These identities may also be written in terms of Macdonald polynomials of type A,,.
For this purpose let {w;,1 < i < n} be the n fundamental weights of the root system
A,. Let P, denote the Macdonald polynomial associated with the dominant weight A =
> iy Aw;. The recurrence formula (1.1), written for n+ 1 variables (1, ..., Z,41) linked
by x1 -z, = 1, yields

Py=2_ Coo s Pouplyn P (1.2)

feNn—1

with u = Z?;f()‘i +60; — 01w + (A1 + Ay + 0,-1)w,—1. This alternative formulation
is obvious and does not bring anything new.

However the method of [3], when applied in the A,, root system framework, allows
to get a much stronger result. Indeed, let k be a fixed integer with 1 < k£ < n. In
this paper we shall write the Macdonald polynomial Py in terms of products P, P,,
with g = > | gw; and py = 0. There are n such recurrence formulas, (1.2) being the
particular case k = n of the latter.

This paper is organized as follows. In Section 2 we introduce our notation for the
root system A, and recall general facts about the corresponding Macdonald polynomials.
Their Pieri formula, which involves a specific infinite multidimensional matrix, is studied
in Section 3, starting from the one given by Macdonald for the symmetric functions
Pi(g,t) [5, p. 340]. In Section 4 we invert the Pieri matrix by applying a particular
multidimensional matrix inverse, given separately in the Appendix. This matrix inverse
is equivalent to one previously obtained in [3, Section 2| by using operator methods. As
result of inverting the Pieri formula we obtain recurrence formulas for A, Macdonald
polynomials. Finally, in Section 5 we detail the examples of the A, and Aj cases and
compare them to earlier results.

Acknowledgemnts. We thank the anonymous referees for helpful comments. The
second author was partly supported by FWF Austrian Science Fund grants P17563-N13
and S9607.



2 Macdonald polynomials of type A

The standard references for Macdonald polynomials associated with root systems are [6,
7, 8].

Let us consider the space R"*! endowed with the usual scalar product and the quotient
space V = R""/R(1,...,1), where R(1,...,1) is the subspace spanned by the vector
(1,...,1). Let &1,...,6,41 denote the images in V of the coordinate vectors of R™*!,
linked by 37" e; = 0.

The root system of type A, is formed by the vectors {e; — ¢;,7 # j}. The positive
roots are {¢; —¢;,7 < j} and the simple roots are ¢; —¢; ;1 for 1 <7 < n. The Weyl group
is the symmetric group W = S, ;1 acting by permutation of the coordinates.

The weight lattice P is formed by integral linear combinations of the fundamental
weights {w;,1 < i < n}, defined by w; =e1+ ...+ ¢;. Let w; =0 for i =0,n+ 1. We
denote by P* the set of dominant weights A = """ | \jw;, which are non-negative integral
linear combinations of the fundamental weights.

There is the following correspondence between dominant weights and partitions. Given
a dominant weight, if we write it as

n+1

A= 2": Aiw; = Z/ﬁz’é‘z’a
i=1 i=1

the sequence = (p1, ..., tint1) is a partition with length < n + 1. We have

Ai = i — pig1 and  py = g + Z Aj.
j=t

Thus p is defined up to p,,1 and two partitions pu, v correspond to the same weight A if
and only if py — vy = -+ + = ppy1 — Vny1. We denote by Cy the family of partitions thus
defined.

Let A denote the group algebra over R of the free Abelian group P. For each A\ € P let
e denote the corresponding element of A, subject to the multiplication rule e*e# = e*#.
The set {e*, A € P} forms an R-basis of A.

The Weyl group W = S,,.; acts on P and on A. Let WA denote the orbit of A € P
and A" the subspace of W-invariants in A. There are two important bases of A", both
indexed by dominant weights. The first one is given by the orbit-sums

my = Z et
HEWA
The second one is provided by the Weyl characters
Xa=06"" Z det(w)e? ),
weW

with p = 37 (n — i+ 1)g; and § = Y,y det(w)e®®). The Macdonald polynomials
{P\,\ € P} form another basis, defined as the eigenvectors of a specific self-adjoint
operator (which we do not describe here).



For 1 <17 < n+1 define z; = €, so that the variables x; are linked by z; --- 2,1 = 1.
Then § is the Vandermonde determinant [ [, _;(x;—x;). There is a correspondence between
AW and the symmetric polynomials restricted to n -+ 1 variables x = (21, ..., 7,,1) linked
by the previous condition.

In terms of bases this correspondence may be described as follows. Let A be any

dominant weight and 2y - - - 2,41 = 1. All monomial symmetric functions m,,(z1, ..., Zp41)
with © € C) are equal and their common value is the orbit-sum m,. Similarly, the
Weyl character x) is the common value of the Schur functions s, (z1,...,%n41), 1t € Cy,

whereas the Macdonald polynomial Py is the common value of the symmetric polynomials
P.(q,t)(z1,. .., Tps1), with p € Cy and P, (g, t) the symmetric function studied in Chapter
6 of [5].

Given a positive integer r and a dominant weight A, the “Pieri formula” expands the
product

Prwl P\ = Zcpp)\—i-pa
P

in terms of Macdonald polynomials, where the range of p and the values of the coefficients
¢, are to be determined.

Let @ denote the root lattice, spanned by the simple roots. For any vector 7, define

YXr)=C(r)n(t+Q)

with C(7) the convex hull of the Weyl group orbit of 7. Since the orbit of w; = & is the
set {&; =w; —w;_1,1 <i <n+ 1}, it is clear that ¥(rwy) is formed by vectors

n+1 n
Z Oi(w; —wi—1) = 2(91 — Oi1)wi,
=1 i=1

with 0 = (01,...,0,41) € N**Land 0] = 320160, = r.

By general results [8, (5.3.8), p. 104], it is known that the sum on the right-hand side
of the Pieri formula is restricted to vectors p such that p € X(rw;) and A+p € P*. In the
next section we shall give a direct proof of this result and make the value of the coefficient
¢, explicit.

3 Pieri formula

Let 0 < ¢ < 1. For any integer r, the classical g-shifted factorial (u;q), is defined by

(i )oo = [J(U—ue?),  (4;0)r = (450)oo/ (Uq"; @) c-

720
Let u = (uy,...,uy) be m indeterminates and 6 = (0y,...,60,,) € N™. For clarity of
display, throughout this paper, any time such a pair (u, ) is given, we shall implicitly
assume m auxiliary variables v = (v1,...,v,,) to be defined by v; = ¢%u;.

Macdonald polynomials of type A,, satisfy the following Pieri formula.
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Theorem 3.1. Let A = Z?Zl Aiw; be a dominant weight andr € N. Forany 1 <1 <n+1

define 4
wp = g Nt

and for 6 € N1,

n+1
5 q)r (t; q)o, (tvi/visq)e; (qui/tvs; e,
do(ur, ..., Ups1;7) = (z 9) H - J H : JA‘ J : ] ..
( ) Q)r j=1 <Q7 Q>9j 1<i<j<n+1 (qu/vjv Q)Gj (u’t/vj7 Q)Gj
We have
P, P\ = Z do(ur, ..., Uns1;7) Prip,
s

with p =Y (0; — Oiy1)w;.

Proof. In afirst step, we write the Pieri formula for arbitrary P,(q, t) with g = (@1, . . ., ftn)
being a partition having length < n. We start from [5, p. 340, Eq. (6.24)(i)] and [5, p. 342,
Example 2(a)]. Replacing g, by (t;4),/(q; ¢)r Py we have

Py Pu= D _ @i Prs
KD

where the skew-diagram x — p is a horizontal r-strip, i.e. has at most one node in each
column. The Pieri coefficient ¢,/ is given by

(t; q)r H Flgrrati=iy f(grmmti=l) H Wie,—p; (@)

(q; q>T " () f<qﬁi_ujtj_i) f(qui_ﬁjﬂtj_i) a 1<i<j<i(k) W1 —pjsa (q'ui_ijrltj_i>7

1<i<j<l

with f(u) = (tu; ¢)oo/ (qU; @)oo and wy(u) = (tu; q)s/(qu; q)s-
Since k — p is a horizontal strip, the length [(k) of k is at most equal to n + 1, so we
can write kK = (1 + 61, .., fbn + 65, 0 1), with |#] = r. Then

) I o
o= T sy T st

(Q; Q)r 1<i<j<l(k) 1<i<i<i(r)+1

ﬁ(t;q)ej I (tvi/vs; @), (qui/tvy; q)e,

(4;9)s (qui/vii@)e, (wi/vii@)e,

j=1 i 1<i<j<ntl
where for 1 <7 <n+1 we set u; = ¢*t~" and v; = ¢"t™" = ¢¥iu,.

In a second step we translate this result in terms of A,, Macdonald polynomials. Given
the dominant weight A, we choose pt = (f1, ..., ftn+1) to be the unique element of Cy such
that .11 = 0, i.e. with length < n. For 1 <4 < n we have y; = 7 A;. As for
the partition x (with length < n + 1), it belongs to C, with o = Y ,_ (kr — Kkt1)wi =
Y pe i (A + 0 — Ogy1)wy,. Hence the statement. O



Remark. On the right-hand side of the Pieri formula, the condition A + p € P* is

necessarily satisfied as soon as dg(u1, ..., u,41;7) # 0. Using the correspondence between
dominant weights and partitions, this may be verified on the Pieri formula
Py Pu = > r/n Pr-

k=(p1+01,...,pen+0n,0n 1)

We only have to show that ¢/, necessarily vanishes when the multi-integer ~ is not a par-
tition. But then there is an index i such that x; < ;41 so that the factor (qu;/tviy1; q)a,,,
in ¢/, writes out as

(1 _ q1+#i—ﬁi+1) ... (1 _ q#i_#i-ﬁ—l).
Due to k; < ki1 this product would be # 0 only if u; < p;11, which is impossible since
1 is a partition.
From now on, we fix some integer 1 < k < n. Substituting r — |0| for 6, the Pieri
formula may be written in the more explicit form

Prwl P/\: Z d@(ula"'vun—l—l;r) P>\+p7
0:(617---79k—17(‘)é|92+17---y9n+1)€Nn
ST
with
p= Z (0; = Oi1)wi + Op—q w1 + (r — |0]) (we — wr—1) — Op41 wi,
1<i<n
i1,k
and
1
7 ( r t C] r—|0| = t q
do(Ur, ..., Ups1;T) =
( i) (tQ>rQQr|G|HQQ9
J#k
k—
y H (tvi/vs;q)e, (qui/tvs;q)s, 1—[1 (tvi/vr; @)r—jo) (qus/tvr; @)r—o)
L<izjenss @Vl V3 Doy (i v @e; iy (qui/ v @)r—oy - (Ui/Vks @)r—a
J#k

Here u;,v; (1 < i < n+ 1) are as in Theorem 3.1, except vy = ¢" %y, The sum is
restricted to |0| < r since 1/(q;q)s = 0 for s < 0.

In a second step, we concentrate on the situation A\, = 0. Then each term on the
right-hand side vanishes unless 6,7 = 0. Indeed, if Ay = 0, one has u; = tugy; and
Vke1 = ¢"+1uyy . Hence for i = k and j = k + 1 the factor (qu;/tv;; q)s; evaluates as

(quk/tvk—i—l;Q)Okﬂ = (ql O Q)9k+1 59k+170'

Therefore if A\, = 0 the Pieri formula can be written as

Prwl P)\ = E d@(’u,l, ey U1, Uy Uk42y - -+ 5 Unt1, /{?,7”) P)\+p,

6=(01,...,05—-1,0,0,0k42,-..,0n11)EN""1
|0]<r



with

p= Z (0; — Oip1)wi + Oy w1 + (r — [0]) (Wi — wWr—1) — Okt2 W1,
1<i<n
ik 1 k41
and
Jg(ul, ey U1, Uk, U g2y« e oy U1 Ky T) =

n+1
(g5 0)r (£ @)rjo) I (t; 9o, 0 (tvi/vj; @o, (qui/tvj;q)e,
G (G Drpr 7 (GDo 22, (@Ui/vis e, (Wifvii Qe

i#£k,k+1 ik, k+1
J#kk+1

m~ (tvi/vi; @)r—jo) (qus [tV @)r—o) ﬁ (tvr/vj;@)e, (qui/t?vj;q)s,

L1 (quifves @)r—o) (Wi vk @)r—jo) Pt (que/visq@)e,  (ur/tvj;q)e,

2

X

Here the notations are the same as before, including vy = ¢"~?luy,. For j > k + 2 we have
used

(tvr/vy; @)o; (qui/tvg; @)e; (tuksr /v Qo (quisr/tvg;@)o,  (toe/vss e, (qua/t2vs;q)o,
(que/vj; Q)ej (ur /v Q)ej (qUk+1/v5; C])ej (Upt1/vj; Q)ej (que/vj; Q)ej (ur/tvy; Q)ej 7

which is a direct consequence of v = U1 = ug/t.
In a third step, we perform some relabelling in order to remove the two 0’s appearing in

6. For that purpose, for n indeterminates (ug, u1, ..., u,_1) and @ = (0y,...,0,_1) € N~ 1,
we define
Dy(ug,u1, ..., Un_1;k,7) =

(q/t)"" tUO, 1:[ C]wmuz;Q)ei H (tvz'/vj;CI)ej (qui/tvj;Q)Hj

(qtuo; Doy -y (@ @or (@"tui;@)o, =2 (qui/vis e, (wifvssq)s,

n—1
(ui/uo; q)o, (qui/tuo; @)o,—rsio  (Ui/tuo; @)o,—r+o) (twi/uo; q)e,
o (quiftuoiq)o,  (wi/uo; @o,—rvi) (qui/Tuo; @)o,—r+jo) 1y (qui/U0; Qe

Lemma. If we write

q "t i =0,
w; = < q "u; [tuy, 1<i<k-1,
q " uipe [y, E<i<n-—1,
we have
Do(wo, w1, ..., Wp—13k,7) = do,,.. 00 1.0,0,0000-1) (ULs -+ o s Ukt s Uiy Uy 2, + - - 5 Unp15 By 7).



Proof. Merely by substitution, and using v, = ¢"~?lu;, we only have to prove

—r n+1 _r . )
(q/)"! U (@7 St q)a, (H2u/ug; q)o,
(@'t 5, (@977 us @)e; (gtu;/uk; @),

k-1 L,
(g, ftug; @), (bui/un; @o, (qui/wis @oi—r+io) (ui/ur; @)o,—r+po

im1 (qlel_rui/qu Qo (quif/ur; Q)o, (twi/we; @)o,—rsio] (qui/tur; Qo,—rvio]

X

(g;q 16| H (tvy/q"Pluy; q)r—|o| (qui/tqrilwuk;Q)r—w
r—|0]

(t; Q) (qui/ " Plug; )i (wif/q 1%k q)r—o)

Y (tq g v q)e, (qua/tPus; @),

>< .
k12 (g1 e fvgs q)e, (un/tvg; a)e,

We have obviously

(@ ftus @)o, (wi/uri @o,—r+io) _ (qui/ta"" ur; @)rjg

(q|9|*rui/uk; Q)Gi (quz/tuk Q) 0;—r+|6| (ui/qri‘gluk; q)r7|9\ .
Using the identities

Q/au q)n n
q/b;q)n (@/b)",
q' "/ a; Q)
q'="/b; @)k

:<
(bg™™ @) (
<( (a/b)",

we get

(b fug; Qo (qua/uns Qo,—rio) (@' " ur/tus; q)r o) (/g
(qui/ur; @)o, (twif/ur; @)oi—rsio)  (q%un/ui; @)ool E
(/g g q), )
 (qui/qm1Plug; q)r—|o) '

Similarly we obtain

(t/a)" (@ tug; @)o, (b0 lun/vj5 ),
(q191="u;j fug; q)o, (g1 ug fvj5 q),

(q/1)" (t%u;/uk; q)o, _ (quk/t%j;fJ)ej.
(qtu;/uk; q)o, (ur/tvj; q)o;

Finally we have proved the following Pieri formula.

Theorem 3.2. Let A = ZZ L Awi be a dominant weight and r € N. Assume A\, = 0 for
some fixred 1 < k < n. Define

T, i=0,
w; = { g TR AagheieL 1<i<k-—1,
g TS ke N ki3, k<i<n—l1.
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We have

PT’w1 P)\: Z DQ(UO,Uq,...,Un_l;kf,r)P)\+p,
9:(91,...,9n_1)EN”71
o|<r
with
k-2
p= (0; — Oip1)wi + Ok w1 + (r — |0]) (wr — wr—1) — Ok wWit1 + Z o — 0i_1)w;.
i=1 i=k+2

Remark. For k = 1,2 (resp. k = n, n — 1) the first (resp. the last) sum in the above
expression of p must be understood as zero. This convention will be kept in the next
sections.

4 A recurrence formula

Given two multi-integers 3 = (B1,...,8u_1), &K = (K1, ..., Kn_1) € Z"', we write 8 > &
for B; > k; (1 < i < n—1). We say that an infinite (n — 1)-dimensional matrix F' =
(f8r)g.rezn—1 is lower-triangular if fz, = 0 unless § > k. When all f,, # 0, there exists a
unique lower-triangular matrix G = (guy)yezn-1 such that

Z fﬁn Oky = 5677

B>k>y

for all 8,y € Z" ', where dg, is the usual Kronecker symbol. We refer to F' and G as
mutually inverse.

Such a pair of infinite multidimensional inverse matrices is given in the Appendix,
as a corollary of [3, Theorem 2.7] (and, in fact, equivalent to the latter). This result is
essential for our purpose.

Given n indeterminates (ug,u1,...,Un_1), 0 = (01,...,0,_1) € N*"1 and k,r € N
with 1 < k < n, we define

Coy....on 1 (Uos Uty .o U3 Ky T) =

q\@\ (t*u0; q) |a| H q/t q (qui; ), I (qui/tvj; @)o, (tui/vj; q)e,
(qtuos @)jo) +1 (0o, qtuz,Q)l r<izien (quifvgi@)e; (wifvj; @)e,
k—1

x H ((ui/tu07 )Gi

- (qui/tPuo; 4o,

n—1

qtuo/ui; q)r (tuo/ui;q) (tu;/uo; q)

tuo/uw ) (quo/uw r H quz/u07 )9

(
( i=k
n—1
1 ; 1=ty v, — U
det |vf 71—t - ZS
A(v) I<i g1 [U’ ( 11— g v; —tug ||’

with A(v) the Vandermonde determinant [[,,_,., ,(v; —v;). Here is our main result.




Theorem 4.1. Let A = Y7 | Nw; be a dominant weight. Assume A\, = 0 for some fized

1 < k <n. For any positive integer r < A\x_1 the weight
)\(r) =+ r(wk — wk,l) = A+ Tk

is dominant. Define

o, i=0,
u; = q—r-l-Z?;} )\jtkfifl’ 1<i<k-—1,
qfrfzégvﬂ Ajph—i=3 k<i<n-—1.
We have
P)\(r) = Z Cg(Uo,ul,... ,un,l;k,'r’) P(r_|9|)w1 P)\er,
9:(91,...,07L,1)€Nn_1
1o]<r
with

E

_92 n
p= (0; — Oiv1)wi + Op—1 wi—1 — Op w1 + Z (Oi—o — 0i_1)w;.

=1 i=k+2

Remark. The weight A+ p has no component on wy. Further, similarly as in Theorem 3.1
(see the Remark following the proof of that theorem), the condition A 4+ p € P7 is
necessarily satisfied in Theorem 4.2 as soon as Cy(ug, U1, - .., Up_1; k,7) # 0. We omit the
details which involve a tedious case-by-case analysis.

Proof. We make use of the multidimensional matrix inverse given in the Appendix. Let
B= B, Bn1), 6= (K1, oy bn1); vy = (Y1, Yn1) € Z" L. If we define

|%| K1+]k Kn—1+|k|

fﬁlﬂ :Oﬁl—fil ..... ﬁn,l—nn,l(q Ug, q Ury--.»q un—l;k77ﬂ_ |I{|))

— o] vty Tn—1+]Y .
Gky = D"fl_’Ylv---vﬂn—l_'Yn—l (q Up, q | ‘uh g | ‘un—la k‘,’f‘ - |’Y|)7

by this result, the infinite lower-triangular multidimensional matrices (f3)gezn-1 and
(Grry)syezn—1 are mutually inverse.

Now let us replace in Theorem 3.2 \; by A\; +7; — vipq for 1 < i < k— 2, A\;_1 by
)\k—l + Yk—1, )\k+1 by /\k+1 — Yk, >\z by /\l —|—%_2 — Yi—1 for k + 2 S 1 S n, r by r — |’7|,
respectively. Then wuy is replaced by ¢/7lug, and u; by ¢y, for 1 < i < n—1. In explicit
terms, we are considering the identity

P(r7|7|)w1 P)\-i-:y - Z De(qh'an C]%kub B 7q’yn_1+w‘un—1; ka r—= h/l) P/\-ﬁ-’y-i—p?
92(91,...,071,_1)61\]"71
o]<r
with
qirt727 =0,
w; = { g IS ki1 1<i<k-—1,
q—T—Z?jﬁLl Aj h—i=3 k<i<n-—1,

10



and

e
[\

p= (0; — Oip1)wi + Op—1 w1 + (r — |0]) (W — w—1) — Ok w1 + Z (0i—o — 0;—1)w;,
i=k+2

.

o
N -

N
I

(Vi = Yit1) Wi + Vo1 Wh—1 — Ve Wht1 + Z (Yic2 — Yie1)wi.
1 i=k+2

(2

After substituting the summation indices 6; — k; — ~; for 1 < i < n — 1, we obtain
exactly

> Gete = w, (yezr),
keZN—1
with
Ye = Priis Wy = Pl jyor Priss
and
k—2 n
K= (Ki = Kip1)wi + K1 wi—1 + (1 — |&]) (wWk — wr—1) — K W1 + Z (Ki—g — Ki—1)w;.
i=1 i=k+2

This immediately yields the inverse relation

Z fﬁnwﬁ = Yk (li S Zn_l).
B€Zn71
We conclude by setting k; =0 for all 1 <7 <n —1. O

Finally, by the substitutions r — Ay and \,_1 — Ag_1 + i, we obtain the following
very remarkable expansion.

Theorem 4.2. Let A ="' | \iw; be a dominant weight and k € N fired with 1 < k < n.
Define

q k2, i=0,
w; = { qZimi Nig—im1 1<i<k-—1,
q*Z}i}v Aigh—i=3 E<i<n-—1,

and it = X — Mg (W —wi—1) = A — Apeg. We have

P)\ = Z C@(“O) Uy« ooy Up—1; k’, )\k) P()\kf\bﬂ)wl P;H—pa
9:(91,...,971_1)6]\1"71
10]<Ag
with
k—2 n
p= Z(Qz —Oir1)w; + O wp—1 — O w1 + Z (Oi—o — 0i_1)w;.
i=1 i=k+2

11



Remark. Observe that the weights p and g + p have no component on wy.

The k£ = n special case is worth writing out explicitly.
Corollary. Let A = Y ", \w; be a dominant weight. Define uy = g Mt2 and u; =
gEis M=l (1 < <n—1). We have

P)\ = Z C@(Uo, ULy .oy Up—1, 1N, )\n) P()\n—\6|)w1 P'u',

9:(91,...,971,1)61\]”_1
101<An

with = Z?:_f(/\i +0; — Oi1)wi + (A1 + A+ Op1)wpo.

The reader may check that this is exactly Theorem 4.1 of [3] (with n +— n—1), written
for x1---x,.1 = 1, up to the normalization Q) = by P\ with

Y

i—1 .
n= 1] (qXi= il g)y I (tui/uj; @),
A — i— . -

(q1+Z?=f Ath—Z; Q)/\j 1<i<j<n (qui/uj; Q),\j

1<i<j<n

where we set u,, = 1/t.

5 Examples

In this section we write out the formulas in Theorem 4.2 explicitly for n = 2, 3.

5.1 The root system A,

For k = 2 we have ug = ¢~ /%, u; = ¢, and

o (tPug;@)o (q/t;0)0 (quisq)e  (u1/tug; q)e
(qtuo; @)o (4:q)0 (qtus; q)e (qui/t*uo;q)e

qtug/u; q)r (tuo/u1; q)y (1 =t v >

t2uo/u1; q)r (quo/us; q)r 1 —wv v —tuy

Ce(uoau1;277”) =q

o
(
After some simplifications, we obtain

2
PA1w1+>\2W2 - Z 09( )()‘> P()xz—@)wl P()\1+)\2+9)w1;
0eN

0(52)0\) = Cy(ug, u1; 2, X2)

o (@27 )0 (1/60)0 (5 0)0 (Ea™ ;@)1 (tgM T q)n, 1T — M2
(% g (@:0)s (ta50)0 (@5 @)0re (BP¢M50)5, 1—ghH

12



This result may be compared with the Jing—Jézefiak classical result [1], more precisely
its restriction to three variables (z7,xs,x3) subject to xjxexs = 1. Namely, given a
partition (p1, 12), the Macdonald symmetric function P, ,.,)(q,t) is given by

P(ul,uz) = Z CG (:u) ,P(,u2*9) P(u1+9)>

feN

(g ) (@70 Qe (g TH25) g
O (Bgmrq)u, (607270 q)e (@R Q) e
(1/t;q)0 (g2t q)g 1 — g ret?
(:q)0 (tgm=r2tliq)g 1 — gr—natf”

Our formula is equivalent to the main result of [1] by the correspondence A; = 3 — po,
A2 = o between dominant weights and partitions, recalled in Section 2.
For k = 1 we have ug = ¢~ /12, uy = ¢ 2 /t3, and

o (B0 (a/t 0 (qnia)o (b /wo; @) (1_ 1— to, —u>

x 17

Ce(uoﬂh; 1;7"> =

(qtuo; @) (4:@)0 (qtur; q)o (qui/uo;q)e 1— v v —tug
After some simplifications, we obtain
1
P)xlwl—f—)\ng Z O( ) )\1 0)wi P()\Q—G)LUQ7
9eN
with
Cél)(k) = Ce(uo, ug; 1, )\1)
o (1/tq)e (5 1/q)e  (*%1/q)s  (P¢M 7271 1/q)g 1 — tPgh A=
(G:0)0 (tgM=11/q)e (tg*2711/q)e (PgM 22711 /q)g 1 — t3ghtAe=0"

We thus recover exactly Perelomov, Ragoucy and Zaugg’s result given in [9, Theo-
rem 1(a)].

5.2 The root system Aj;
For k =1, 2,3 our formulas in Theorem 4.2 write respectively as

1
P>\1W1+>\2w2+>\3W3 - E C( P(/\1—i—j)W1 P(Az—i)wz-i-()\:s-i-i—j)wsv
(4,5)€N?

2
Z Ci(j)O‘) Plra—i—gun Pt datidwn + s —j)ws»

(4,9)ENZ

3
Z Cz(])(/\) Pirg—i—jyon Pou+i-jor+(Qa+rs+i)we

(4,§)EN?
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In order to make these expansions explicit, we need to evaluate the determinant of the 2
by 2 matrix A given by

Ay = o2 1—tl*11_tvk Vg — U] U — U
k 1 — v v —tug v —tug )’

with v; = ¢'ui, v = ¢?us.

More precisely we need to compute the quotient of this determinant by the Vander-
monde determinant v; — vo = ¢'u; — ¢’us. There is no evidence this quotient may be
written in canonical form. Inspired by the explicit result of [2, Theorem 1] (see below),
we write this quotient of determinants as

1—¢ 1—¢ )

: = (14¢! . .
1—qur 1—qiusg ( 1 — qiuy Jtus 1 — ¢Iug /tuy

det A (t—1)? 1—q%u; 1 — q¥uy
Gu —guz (t=¢)(t—¢)

, 1= q¢ 1—¢ @ 1—gi/t 1—¢//t
R q q/ ¢/ )

1 —quy 1 —qug 1 — qrug ftus 1 — qIug/tuy
The above identity (which is not trivial) may be easily verified by using any formal calculus

software.
Next, for (,7) € N? we define

vij<u07u17u2> =
i (Puos @iy (1/69)i (wi39)i (1/69); (usq); (677w /tug; q); (tg7ui/uz; ),
(qtuo; @)iv; (0)i (qtursq)i (q39); (qtus;q); (¢ ur/ugsq); (g 7ui/ug;q);
X (1—q2"u1 1 —q%uy 1—¢ 1—¢ )

L+t : :
1l—uwy  1—wuy ( 1 — quy ftus 1 — giug /tuy

- (qiul + C]ju2)

l-—¢ 1-¢ 1-¢'/t 1-¢/t
T—up 1—us 1 —quy/tug 1 — qlug/tuy |

It is readily verified that we have

Cij(“Oa Uy, Us; 1, 7“) tul/uo, )1 (tUZ/uO; q)j

quy /uo; q); (qua/uo; q);’

vij(UOa Uy, Ug)

(

(
Cij(uo, ur,u;2,7)  (wr/tuo; @) (qtuo/u1; q)r (tuo/u; q)r (tus/uo;q);
vij(u(b“hw) (qul/t Uo; q )z ( UO/UL )r (quo/ul;CI)r (qug/uo;q)j’

Cij(uo, ur,ug;3,7)  (ur/tuo;q)i (qtuo/u1; q)r (tuo/us; )
Vij(uo, ur, ug) (qui/t?uo; q)i (tuo/ur; q)r (quo/us;q)r
(ua/tuo; q); (qtug/uz; q)r (tuo/uz;q)r
(qua/t?uo; q); (Buo/u2; q)r (quo/ug; q)r
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Now, by Theorem 4.2 the respective recurrence coefficients are determined to be
C(l)()\) _ C’ij(q’)‘l/tQ, qf,\r,\z/t?)’ qulf,\rAg/#; 1, M),
O (V) = Ciyq72/2,0™ g2 /1,2, 0),
Ci (V) = Cyla ™ /82, 2,453, 0).
The cases k = 1,2 are new. For k = 3 we recover the first author’s earlier result in [2,
Theorem 1], more precisely the restriction of this result to four variables (xy, z9, 3, x4)

subject to zyzox3x4 = 1. Namely given a partition (pq, po, p3) and u = gt —#2 v = gh2=Hs
the Macdonald symmetric function P, 4, (¢, t) is given by

Plus ua,us) = Z Cij (1) Piug—i—g) Priua+i)

(4,5)€N?
with
_ it WE Qs (Vt9); (tuviq)i (vig); (978uiq); (qusg),
(:9)i  (:9); (qt?uv;q); (qtviq); (g 77tu;q); (qtu;q);
" (6 D pn—potij & Dpots (G Dpa—ieg (GO pn—po (G QD po—ps (€ Q) s
(6 Dpr—pati-i (G Dpoti (G Dps—imj G Do & Dpps @) s
(7@ ot (@00 @) pa—pus (@005 @) (V3 @)y 1 — ¢*tuv 1 — g%
(g7 + Q)uzﬂ' (t2u§q>u27u3 (t?’UU;q)us (tzv;q)% I—tuww 1-w

l—¢ 1-g7/ : N t—q  t—¢
x| 14+u . . (t—v “tu + ¢’ : > .
( * 1—q'u 1—qgit?u (g +q>1—q21tuv1—q21v

Cij (1)

The reader may check our formula is indeed equivalent to [2, Theorem 1] by using the
correspondence \; = i1 — 2, Ay = lg — l3, A3 = 3 between dominant weights and
partitions.

6 Final remark

The Macdonald polynomial Py, A = Y " | Aw;, is in bijective correspondence with the
symmetric function Py (1, ..., Tp1) With g = (p1,. .., ), i = 35— Aj, subject to the
condition zq - - - 2,41 = 1. Therefore the n recurrence relations that we have obtained for
P\ may be expressed in terms of P,(x1,...,Tnt1), subject to x1 -+ - 241 = 1.

One may wonder whether this restriction can be removed. Equivalently, being given
some fixed integer 1 < k < n, is it possible to expand the symmetric function P, in terms
of products Py P, for partitions p = (p1, ..., pn) satisfying pp = pr41?

Such a development has been obtained in [3] for £ = n, in which case p, = pp+1 = 0.
However this method cannot be used for other values of k.

Actually the Pieri expansion of PP, involves symmetric functions P, with o —p a
horizontal r-strip. Hence some of these partitions ¢ have length [(c) = n + 1. The only
exception occurs for k = n since in that case p, = 0 entails [(0) < n.

15



Therefore, except for £ = n, the Pieri multiplication does not conserve the space
generated by {Py, (k) < n}, and it is not possible to define a Pieri matrix to invert.

This difficulty does not arise in the A, framework. Then the Pieri matrix can be
defined, because the condition z; - - -z, 41 = 1 and the property [5, (4.17), p. 325]

P(al,...,an+1)<xlu S 7xn+1> = (131 T xn+1>0n+l P(a1—an+1,...,an—an+1,0) (xla s an—l-l)

allow to deal with partitions of length n + 1.

Appendix: A multidimensional matrix inverse

The following result (equivalent to one previously given in [3]) is crucial to obtain the
recursion formula in Section 4.
Lemma. Let t,ug,uq,...,u, be indeterminates and r,k € N with 1 < k < n+ 1. Define

-t (0 )il (atuo; il 77 (@/6 Dsime (@5 i3 q)p s,
(thOQQ>| Bl (t2u0;q)|“‘ i=1 (Q§ q)ﬁi*"?i (qﬁi+|ﬂ|+1tui§Q)5¢*Hi

fﬂm:q

k—1
H (wi/tuo; @) (qui/tuo; @)r;  (Wi/U0; @)jj—rins  (QUi/E*U05 Q)| —rts,

i=1 C]Uz/tzuo, )ﬁi (Ui/uo; Q)m‘ (qui/tUO; Q)|n|fr+m (Ui/tuo; q)‘ﬁ‘*T+fﬂ'

y ﬁ (tui/uwo; q); (qui/uo; @)

. (qui/uo; @)p; (twi/uo; q)s;

v H (qﬁi_ﬁj+1ui/tuj§ Q)ﬁj—ﬁj (qﬁi_ﬁjtui/uj; q)ﬁj—ﬁj
(qﬁiiﬁfrlui/uﬁ Q)ﬁj—fﬂj (qmiﬂjui/uﬁ q)ﬁj_ﬁj

(= )
(¢ u; — q"u,)
1 (qﬂluz - C]”Stus) ’

— <g>|n||7| <t2u0;Q)|H| (qtuﬂ;q)M - (t; q)lﬂ*%‘ (q%+|H|+1uiSQ>lﬂ*’n
v (qtuo; @) (203 @l 11 (@ Qe (@G @),

1<i<j<n
' _ ABitIEl 4,

gy (1 prr (L)
(1

—=

S

and

t

x H uz/UO) f@l (qui/t2u0; q)%‘ (qui/tuo; Q)|n|fr+m (Uz’/wo; Q)\n|fr+ni
(qui/tuo; @)r,  (uif/tuo; @)y, (Wi/U0s @) xj—rtr;  (QU/T2U05 Q) ) =rtrs

y ﬁ (tui /uo; @)w, (qui/uo; @)+,

(gt fuy; Q>Nj*')/j (q%_ﬁj—i_lui/tuj; q)lij*’yj
< 11

( m*nj+1u./u,- ) o (7¢7ﬁju,/u,. ) o :
q i/ Wi 4)rkj—; q i/ W53 4)kj—;

1<i<j<n

Then the infinite lower-triangular n-dimensional matrices (fgx)grezn and (Guny)nq eczn aTe
mutually inverse.
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Proof. Given two non-zero sequences () and ((,), and a pair of matrices (fg,) and (g.+)
which are mutually inverse, it is easily checked (using the trivial relation g—fdﬁv = 03y)
that the matrices (fsx&5/Cs) and (g (/&) are mutually inverse.

We choose

-1

t (qtuo; Q>\n| (quz/t Uos q m

n

uz/tan m H tuz/u()a K

quZ/U/O’ ) i

1=k

Y

% H (qui/uj; Q)mfnj (ui/uj; Q>f€i*’$j

1<i<j<n (tui/uj; q)ﬁi*ﬁj (qui/tuj; Q)Mfﬁj

k-1

(4 |5l (t2U0; Q)|n| (ui/uo; q)fii (qui/tuo; Q)\n|fr+m (Ui/tuo; q)|/€|fr+m
&= (4 11

t (qtu07 q>\n| i1 quz/tUOa )ni (uz/u(b q)|n|—r+ni (quz/tQUOa q>|n|—r+ni

n

XH (tu; /uo; @), I (qui/ujs Qni—r;  (WifUs5 @) r;—r;

iy (qui/uoy @w, |y (B /15 @)y (qUa /g5 Q)i

Y

together with the pair of mutually inverse matrices (fg.) and (gx,) as defined in [3,

Theorem 2.7].
Several elementary manipulations of ¢-shifted factorials eventually lead to the result

in the desired form. To give a sample, (concentrating only on the products over [, _,_ i<n
of ¢-shifted factorials) we use the simplification

H (qmianrlui/tuj; Q)ﬁi—fﬂ (qmiﬁjtui/uj; q)ﬁi—f%
1<i<j<n (qm_ﬁj—i_lui/uj; Q>ﬁi—f€i (qm_ﬁjui/uj; q)ﬁi—ﬁi

y H (qui/ujs Q) pi—p; (wi/us; @)pi—p; (R W55 Q) r—r; (QUi/TUS5 Q) nin;
1<i<j<n (tui/wj; @) p—p; (qui/tugs q)s—s; (qui/us; Qnri—r; (Ui/U55Q)w;—x,

H (qui/tuj; Q)ﬁi—ﬁj (ui/uj; q)’iz’_ﬁj (qui/uj; q)ﬁz‘—ﬁj (tui/uj; Q)Fvi—ﬁj _
(qui/uj; q)ﬁi_"ij (tui/uj; q)fﬁ—ﬁj (qui/tuj; Q)ﬁi—ﬁj (ui/uj; Q)Ni—ﬁj

1<i<j<n
H (qﬂi*ﬁj+1ui/tuj; q)gj_,@j (qﬂrﬁjtui/uﬁ Q)Bj—nj
r<idien (T U Q) gy (@0 TP g )
in the computation of fs, in the Lemma. O
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