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The major index generating function of standard Young
tableaux of shapes of the form “staircase minus rectangle”

C. Krattenthaler and M. J. Schlosser

Abstract. A specialisation of a transformation formula for multi-dimensional
elliptic hypergeometric series is used to provide compact, non-determinantal
formulae for the generating function with respect to the major index of stan-
dard Young tableaux of skew shapes of the form “staircase minus rectangle”.

1. Introduction

A standard Young tableau of skew shape λ/μ, where λ = (λ1, λ2, . . . , λn)
and μ = (μ1, μ2, . . . , μn) are n-tuples of non-negative integers which are in non-
increasing order and satisfy λi ≥ μi for all i, is an arrangement of the numbers
1, 2, . . . , |λ − μ| (where the last quantity denotes the sum of the respective differ-
ences of the integers,

∑n
i=1(λi − μi)) of the form

π1,μ1+1 . . . . . . . . . . . . . . . . . π1,λ1

π2,μ2+1 . . . π2,μ1+1 . . . . . . . . . . π2,λ2

. .
. ... . .

.

πn,μn+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . πn,λn

such that numbers along rows and columns are increasing. The major index of
a standard Young tableau T , denoted by maj(T ), is defined as the sum over all
i such that i + 1 appears in a lower row in T than i. It is well-known (see e.g.
[19, Prop. 7.19.11 in combination with Theorem 7.16.1 and (7.10) with xi = qi−1,
i = 1, 2, . . . , and yi = 0 for i ≥ 2]) that the generating function

∑
T qmaj(T ), where

the sum runs over all standard Young tableaux of shape λ/μ, equals

(1.1)
[
|λ− μ|]q! · det

1≤i,j≤n

(
1

[λi − i− μj + j]q!

)
,

where [m]q! := [m]q [m− 1]q · · · [1]q with [α]q = 1 + q + q2 + · · ·+ qα−1 = 1−qα

1−q .
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Figure 1. Two skew shapes of the form “staircase minus rectangle”

The purpose of this note is to provide formulae for this major index gener-
ating function for standard Young tableaux of shapes λ/μ, where λ is a staircase
shape, i.e., λ = (N,N − 1, . . . , N − n+ 1) for some positive integers N and n, and
μ is a rectangular shape, i.e., μ = (m,m, . . . ,m, 0, . . . , 0), for some non-negative
integer m and r repetitions of m (in the sequel we denote such partitions μ by
(mr), for short), which are (computationally) simpler than the determinantal for-
mula (1.1). Figure 1 shows the Young diagrams of two such shapes according to
standard English convention (cf. [18, p. 29]): the diagram on the left represents
the shape (6, 5, 4, 3, 2, 1)/(3, 3, 0, 0, 0, 0), and the diagram on the right represents
the shape (8, 7, 6, 5, 4, 3)/(2, 2, 2, 2, 0, 0). In particular, for N = n, the above an-
nounced formula reduces to a closed form product formula. To be precise, we show
that the generating function

∑
T qmaj(T ) for standard Young tableaux T of shape

(n, n− 1, . . . , 1)/(mr) (of which the left shape in Figure 1 is an example) equals

(1.2) q
1
2mr(r+m−2n)+(n+1

3 )(1 + q)(
n
2)−mr

[(
n+1
2

)
−mr

]
q
!

×
n∏

i=1

[i− 1]q2 !

[2i− 1]q!

r∏
i=1

[
i− 1

]
q2
! [n+m− r + 2i− 1]q!

[m+ i− 1]q2 ! [n−m− r + 2i− 1]q!
,

a result which was originally (implicitly) obtained by DeWitt [4, Theorem V.3] using
completely different means. She proves in fact the stronger result that a Schur s-
function of a shape of the form (n, n− 1, . . . , 1)/(mr) is the constant multiple of a
particular Schur P -function. If this is combined with Kawanaka’s product formula
for the principal specialisation of Schur P -functions (see [10] and [15]), then one
obtains the above formula. Furthermore, forN = n+1, we show that the generating
function

∑
T qmaj(T ) for standard Young tableaux T of shape (n+1, n, . . . , 2)/(mr)

equals

(1.3) (1 + q)(
n
2)−(m−1)rq

1
2mr(r+m−2n+2)+r(1−n−m)+(n+1

3 )+(n2)

×
[(

n+2
2

)
−mr − 1

]
q
!

n∏
i=1

[i− 1]q2 !

[2i]q!

r∏
i=1

[
i− 1

]
q2
! [n+m− r + 2i− 1]q!

[m+ i− 1]q2 ! [n−m− r + 2i]q!

×
r∑

�=0

(−1)rq2nl1

(1− q2)r

[
r
�

]
q2

(
q−2n; q2

)
�

(
qn+m−r; q2

)
r−�

(
qn−m−r+1; q2

)
r−�(

qn+m−r+1; q2
)
r−�

.
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Here, the shifted q-factorials are defined by (α; q)k := (1−α)(1−αq) · · · (1−αqk−1)
for k ≥ 1, and (α; q)0 := 1.

In general, if N = n + s, where s is a non-negative integer, we are able to
express the major index generating function for standard Young tableaux of shape
(n + s, n + s − 1, . . . , s + 1)/(mr) as an �s/2�-fold basic hypergeometric sum, see
Theorem 1 in Section 2. If n is large compared to r and s, then this formula is
computationally superior to the determinantal formula (1.1).

A notable feature of the proof of Theorem 1 that we give here is that we
require a basic hypergeometric specialisation of a transformation formula for multi-
dimensional elliptic hypergeometric series due to Rains and, independently, Coskun
and Gustafson; see Section 3.

2. The main result

In this section we present our main result, a multi-dimensional basic hyperge-
ometric series which gives the major index generating function for standard Young
tableaux of a skew shape that is the difference between a staircase and a rectangle.

Theorem 1. Let N,n,m, r be non-negative integers with N ≥ n and N−r+1 ≥
m. If N−n is even, the generating function

∑
T qmaj(T ) for standard Young tableaux

T of shape (N,N − 1, . . . , N − n+ 1)/(mr) equals

(2.1) (−1)(
(N−n)/2

2 )+ 1
2 r(N−n)(1 + q)(

n
2)−(

(N−n)/2
2 )−mr(1− q)−(

(N−n)/2
2 )−r(N−n)

× q
1
2mr(r+m−2n)+ 1

2 r(N−n)( 1
2 (N−3n)−m+1)+(n+1

3 )+(N−n)((n2)+(
(N−n)/2

2 ))

×

[(
N+1
2

)
−
(
N−n+1

2

)
−mr

]
q
![

r + N−n−2
2

]
q2
!(N−n)/2

[
N+n−2

2

]
q2
!(N−n)/2

∏(N+n)/2
i=1 [i− 1]q2 !∏n

i=1[N − n+ 2i− 1]q!

×
r∏

i=1

[
N−n

2 + i− 1
]
q2
! [n+m− r + 2i− 1]q!

(
qn+m−r+2i; q2

)
(N−n)/2

[m+ i− 1]q2 ! [N −m− r + 2i− 1]q!

×
∑

0≤�1<�2<···<�(N−n)/2≤r+N−n−2
2

q
∑(N−n)/2

i=1 (N+n−2(2i−1))li
∏

1≤i<j≤N−n
2

[�j − �i]
2
q2

·
N−n

2∏
i=1

([
N−n−2

2 + r
�i

]
q2

(
q2−N−n; q2

)
�i

(
qn+m−r−2i+1; q2

)
r+i−�i−1

·
(
qN−m−r−2i+2; q2

)
r+i−�i−1(

qN+m−r−2i+2; q2
)
r+i−�i−1

)
,
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while, if N − n is odd, it equals

(2.2)

(−1)(
(N−n+1)/2

2 )+ 1
2 r(N−n+1)(1 + q)(

n
2)−(

(N−n+1)/2
2 )−mr(1− q)−(

(N−n+1)/2
2 )−r(N−n)

× q
1
2mr(r+m−2n+2)+ 1

2 r(N−n+1)( 1
2 (N−3n+1)−m)+(n+1

3 )+(N−n)(n2)+(N−n+1)((N−n+1)/2
2 )

×

[(
N+1
2

)
−
(
N−n+1

2

)
−mr

]
q
![

r + N−n−1
2

]
q2
!(N−n+1)/2

[
N+n−1

2

]
q2
!(N−n+1)/2

∏(N+n+1)/2
i=1 [i− 1]q2 !∏n

i=1[N − n+ 2i− 1]q!

×
r∏

i=1

[
N−n+1

2 + i− 1
]
q2
! [n+m− r + 2i− 1]q!

(
qn+m−r+2i+1; q2

)
(N−n−1)/2

[m+ i− 1]q2 ! [N −m− r + 2i− 1]q!

×
∑

0≤�1<�2<···<�(N−n+1)/2≤r+N−n−1
2

q
∑(N−n+1)/2

i=1 (N+n+1−2(2i−1))li

·
∏

1≤i<j≤N−n+1
2

[�j − �i]
2
q2

N−n+1
2∏

i=1

([
N−n−1

2 + r
�i

]
q2

·
(
q1−N−n; q2

)
�i

(
qn+m−r−2i+2; q2

)
r+i−�i−1

(
qN−m−r−2i+2; q2

)
r+i−�i−1(

qN+m−r−2i+2; q2
)
r+i−�i−1

)
.

Proof. According to Formula (1.1), the major index generating function for
standard Young tableaux which we want to compute is equal to

[(
N+1
2

)
−
(
N−n+1

2

)
−mr

]
q
! det
1≤i,j≤n

⎛
⎜⎝
⎧⎪⎨
⎪⎩

1

[N + 1− 2i−m+ j]q!
j ≤ r

1

[N + 1− 2i+ j]q!
j > r

⎞
⎟⎠ .

We now do a Laplace expansion with respect to the first r columns. In this way we
obtain[(

N+1
2

)
−
(
N−n+1

2

)
−mr

]
q
!

×
∑

1≤k1<···<kr≤n

(−1)(
r+1
2 )+

∑r
i=1 ki det

1≤i,j≤r

(
1

[N + 1− 2ki −m+ j]q!

)

· det
1≤i≤n, i/∈{k1,...,kr}

r+1≤j≤n

(
1

[N + 1− 2i+ j]q!

)
.

Using the simple determinant evaluation

det
1≤i,j≤s

(
1

[Xi + j]q!

)
= q2(

s+1
3 )+

∑s
i=1(i−1)Xi

s∏
i=1

1

[Xi + s]q!

∏
1≤i<j≤s

[Xi −Xj ]

(which is readily established by writing [α]q = (1− qα)/(1− q) for every q-integer,
factoring out common denominators of rows, and reduction to a Vandermonde
determinant), the above determinants can be evaluated, so that we arrive at a
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multi-dimensional series of basic hypergeometric type:

(2.3)
[(

N+1
2

)
−
(
N−n+1

2

)
−mr

]
q
!

×
∑

1≤k1<···<kr≤n

(−1)(
r+1
2 )+

∑r
i=1 kiq2(

r+1
3 )+2(n−r+1

3 )

· q
∑r

i=1(i−1)(N+1−2ki−m)+
∑n−r

i=1 (i−1)(N+1+r)

· q−2
∑n

i=1(i−1)i+2
∑r

i=1(ki−1)ki+2
∑r

i=1 i((ki+1
2 )−(ki+1

2 ))

·
n∏

i=1

1

[N + n+ 1− 2i]q!

r∏
i=1

[N + n+ 1− 2ki]q!

[N + 1− 2ki −m+ r]q!

·
∏

1≤i<j≤r

[
(N + 1− 2ki −m)− (N + 1− 2kj −m)

]
q

·
∏

1≤i<j≤n

i,j /∈{k1,...,kr}

[
(N + 1− 2i+ r)− (N + 1− 2j + r)

]
q

=
[(

N+1
2

)
−
(
N−n+1

2

)
−mr

]
q
!

n∏
i=1

1

[N + n+ 1− 2i]q!

∏
1≤i<j≤n

[2j − 2i]q

×
∑

1≤k1<···<kr≤n

(−1)(
r+1
2 )+

∑r
i=1 kiq2(

r+1
3 )+2(n−r+1

3 )+(N+1−m)(r2)+(N+1+r)(n−r
2 )

· q−4(n+1
3 )+2r(n+1

2 )+2
∑r

i=1 (
ki
2 )−2

∑r
i=1(2i−1)ki

·
r∏

i=1

[N + n+ 1− 2ki]q!

[N + 1− 2ki −m+ r]q!

r∏
i=1

1

[2ki − 2]q!! [2n− 2ki]q!!

∏
1≤i<j≤r

[2kj − 2ki]
2
q

= (−1)(
r
2)(1+q)(

n
2)−(n−1)r(1−q)−r(r−1)

× q2(
r+1
3 )+2(n−r+1

3 )+(N+1−m)(r2)+(N+1+r)(n−r
2 )−4(n+1

3 )+2r(n+1
2 )−2r2

×
[(

N+1
2

)
−
(
N−n+1

2

)
−mr

]
q
!

×
n∏

i=1

[i− 1]q2 !

[N + n+ 1− 2i]q!

r∏
i=1

[N + n− 1]q!

[n− 1]q2 ! [N −m+ r − 1]q!

×
∑

0≤k1<···<kr≤n−1

q−2
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− q−2(ki−kj))2

·
r∏

i=1

(
qN−m+r−1; q−2

)
ki

(
qN−m+r−2; q−2

)
ki

(q2n−2; q−2)ki

(qN+n−1; q−2)ki
(qN+n−2; q−2)ki

(q−2; q−2)ki

,

where the double q-factorials are defined by [2α]q!! = [2α]q [2α−2]q · · · [2]q, and, by
convention, kr+1 = n+ 1.

At this point, we should note that we may change the range of summation to

(2.4) 0 ≤ k1 < · · · < kr ≤
⌊
1
2 (N −m+ r − 1)

⌋
.
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Indeed, the summand in (2.3) vanishes for kr > n − 1 because of the term
(q2n−2; q−2)ki

, unless this incident is “neutralised” by vanishing terms in the de-
nominator. However, since n ≥ r, we have

(2.5) N −m+ r − 1 ≤ N + n− 2,

except if m = 0 and n = r. In the latter case, one sees directly that, due to
cancellation of terms, the extension to (2.4) does not change the sum, whereas in
the former case the inequality (2.5) guarantees that the summand still vanishes for
n− 1 < ki ≤ 1

2 (N −m+ r − 1).
This last observation makes it possible to apply the transformation formula in

Corollary 4 in Section 3. In order to do so, we have to distinguish between N − n
being even or odd. If N − n is even, then we have

(q2n−2; q−2)ki

(qN+n−2; q−2)ki

=

(
qN+n−2−2ki ; q−2

)
(N−n)/2

(qN+n−2; q−2)(N−n)/2

.

We then apply (3.5) with q replaced by q−2, s = N−n
2 , b = qN−m+r−1, c =

qN−m+r−2, d = qN+n−2, f = qN+n−1 to the sum in (2.3). After considerable (but
routine) manipulation of the arising expression, the result turns out to equal (2.1).

If N − n is odd, then we have

(q2n−2; q−2)ki

(qN+n−1; q−2)ki

=

(
qN+n−1−2ki ; q−2

)
(N−n+1)/2

(qN+n−1; q−2)(N−n+1)/2

.

Here, we apply (3.5) with q replaced by q−2, s = N−n+1
2 , b = qN−m+r−1, c =

qN−m+r−2, d = qN+n−1, f = qN+n−2 to the sum in (2.3). Once again, after
lengthy, but routine, manipulation of the arising expression, we arrive at (2.2). �

3. A transformation formula for elliptic hypergeometric series and its
consequences

In this section we derive the transformation formula for multi-dimensional ba-
sic hypergeometric series which is used crucially in the proof of Theorem 1 in the
previous section. It arises by specialising and taking appropriate limits in a trans-
formation formula for multi-dimensional elliptic hypergeometric series. In order to
state this formula, we first need to introduce “elliptic notation.” Given a complex
number p with |p| < 1, we define a (rescaled) theta function θ(x; p) by

θ(x; p) =

∞∏
j=0

(1− pjx)(1− pj+1/x).

Furthermore, out of these “bricks,” we build elliptic shifted factorials. Namely,
fixing another complex parameter, q say, and a non-negative integer m, we set

(a; q, p)m = θ(a; p) θ(aq; p) · · ·θ(aqm−1; p),

where the right-hand side is understood as 1 if m = 0. For convenience, we also
employ the short notation

(a1, a2, . . . , ak; q, p)m = (a1; q, p)m (a2; q, p)m · · · (ak; q, p)m.

The following result is a special case of a multi-dimensional 12V11 transfor-
mation formula conjectured by Warnaar (let x = q in [20, Conj. 6.1]), which has
subsequently been proven (in more generality) by Rains [13, Theorem 4.9] and,
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independently, by Coskun and Gustafson [3]. In the present form the identity has
been stated in [16, Theorem 3.2] (with a small typo corrected).

Theorem 2. Let a, b, c, d, e, f be indeterminates, let m be a nonnegative integer,
and r ≥ 1. Then we have

(3.1)
∑

0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

θ(qki−kj ; p)2 θ(aqki+kj ; p)2

×
r∏

i=1

θ(aq2ki ; p)(a, b, c, d, e, f, λaq2−r+m/ef, q−m; q, p)ki

θ(a; p)(q, aq/b, aq/c, aq/d, aq/e, aq/f, efqr−1−m/λ, aq1+m; q, p)ki

=

r∏
i=1

(b, c, d, ef/a; q, p)i−1

(λb/a, λc/a, λd/a, ef/λ; q, p)i−1

×
r∏

i=1

(aq; q, p)m (aq/ef ; q, p)m+1−r (λq/e, λq/f ; q, p)m−i+1

(λq; q, p)m (λq/ef ; q, p)m+1−r (aq/e, aq/f ; q, p)m−i+1

×
∑

0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

θ(qki−kj ; p)2 θ(λqki+kj ; p)2

×
r∏

i=1

θ(λq2ki ; p) (λ, λb/a, λc/a, λd/a, e, f, λaq2−r+m/ef, q−m; q, p)ki

θ(λ; p) (q, aq/b, aq/c, aq/d, λq/e, λq/f, efqr−1−m/a, λq1+m; q, p)ki

,

where λ = a2q2−r/bcd.

We now show that, by suitable specialisation, the above elliptic hypergeometric
transformation formula reduces to the following transformation formula for multi-
dimensional basic hypergeometric series of different dimensions.

Corollary 3. For all non-negative integers m, r and s, we have

(3.2) ∑
0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2

·
r∏

i=1

(dqki ; q)s (b; q)ki
(q−m; q)ki

(q; q)ki
(f ; q)ki

=
q(

r+s
3 )+(r+1

3 )+s(r2)−m(r+s
2 )

f(
r
2) (q; q)s−1

r+s−1

r∏
i=1

(b; q)i−1 (bq
s+r+i−m−1/f ; q)m−r+1

(qi−m/f ; q)m−i+1

×
r+s−1∏
i=1

(q; q)i−1 (q; q)m
(q; q)m−i

r+s−1∏
i=r

(dq1−r/b; q)i
(q; q)r+s−i−1 (d; q)i−r (fq1−r−s/b; q)i

×
∑

0≤�1<�2<···<�s≤r+s−1

q
∑s

i=1(2i−1)�i
∏

1≤i<j≤s

(1− q�i−�j )2

·
s∏

i=1

(d; q)�i (fq
1−r−s/b; q)�i (q

1−r−s; q)�i
(q; q)�i (dq

1−r/b; q)�i (q
−m; q)�i

.
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Proof. In (3.1), we let p = 0, d → aq/d, f → aq/f , and then a → 0. After
having performed these substitutions and limits, we arrive at

(3.3)
∑

0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2

·
r∏

i=1

(b; q)ki
(c; q)ki

(e; q)ki
(q−m; q)ki

(q; q)ki
(d; q)ki

(f ; q)ki
(bceq2r−m−1/df)ki

=

r∏
i=1

(b; q)i−1 (c; q)i−1 (eq/f ; q)i−1

(dq1−r/c; q)i−1 (dq1−r/b; q)i−1 (bceqr/df ; q)i−1

×
r∏

i=1

(f/e; q)m+1−r (dfq
1−r/bc; q)m−i+1

(dfq1−r/bce; q)m+1−r (f ; q)m−i+1

×
∑

0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2

·
r∏

i=1

(dq1−r/c; q)ki
(dq1−r/b; q)ki

(e; q)ki
(q−m; q)ki

(q; q)ki
(d; q)ki

(dfq1−r/bc)ki
(eqr−m/f)ki

.

In this multi-dimensional Whipple transformation we let e → ∞. This yields the
identity

∑
0≤k1<k2<···<kr≤m

q
∑r

i=1(m−2r+2i)ki

(
df

bc

)∑r
i=1 ki ∏

1≤i<j≤r

(1− qki−kj )2

·
r∏

i=1

(b; q)ki
(c; q)ki

(q−m; q)ki

(q; q)ki
(d; q)ki

(f ; q)ki

=

(
dq1−r

bc

)(r2) r∏
i=1

(b; q)i−1 (c; q)i−1

(dq1−r/c; q)i−1 (dq1−r/b; q)i−1
· (dfq

1−r/bc; q)m−i+1

(f ; q)m−i+1

×
∑

0≤k1<k2<···<kr≤m

q
∑r

i=1(m−r+2i−1)kif
∑r

i=1 ki

∏
1≤i<j≤r

(1− qki−kj )2

r∏
i=1

(dq1−r/c; q)ki
(dq1−r/b; q)ki

(q−m; q)ki

(q; q)ki
(d; q)ki

(dfq1−r/bc; q)ki

.
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This identity becomes more elegant if we replace q by 1/q, b by 1/b, c by 1/c, d by
1/d, and f by 1/f , namely

(3.4) ∑
0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2
r∏

i=1

(b; q)ki
(c; q)ki

(q−m; q)ki

(q; q)ki
(d; q)ki

(f ; q)ki

=

(
bc

dq1−r

)r(m−r+1) r∏
i=1

(b; q)i−1 (c; q)i−1

(dq1−r/c; q)i−1 (dq1−r/b; q)i−1
· (dfq

1−r/bc; q)m−i+1

(f ; q)m−i+1

×
∑

0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2

·
r∏

i=1

(dq1−r/c; q)ki
(dq1−r/b; q)ki

(q−m; q)ki

(q; q)ki
(d; q)ki

(dfq1−r/bc; q)ki

.

Now we let c = dqs in this transformation formula, where s is a non-negative integer.
Due to the term (q−r−s+1; q)ki

, on the right-hand side we are now summing over
all k1, k2, . . . , kr with 0 ≤ k1 < k2 < · · · < kr ≤ r + s− 1. Let

{�1, �2, . . . , �s} = {0, 1, . . . , r + s− 1}\{k1, k2, . . . , kr},

with �1 < �2 < · · · < �s. After some simplification, we obtain (3.2). �

Remarks. (1) The multiple Whipple transformation (3.3) also follows from
letting t = q2 in [2, Eq. (5.10)], followed by the principal specialisation formula for
the Macdonald polynomial Pλ(q, t).

(2) The transformation formula (3.2) is one of the rare examples of a trans-
formation formula between multi-dimensional (basic) hypergeometric series of dif-
ferent dimension. Other examples that we are aware of are [6, Sec. 8], [7], [8],
[9, Thm. 2.2], [12, Conjecture in Sec. 1], [14, Thm. 3.1], and [21, Thm. 4.1].

For our purpose, we shall have need of a more flexible statement of the trans-
formation formula in Corollary 3. More precisely, in our application in the proof
of Theorem 1, we have a pair (qM ; q−2)ki

(qM+1; q−2)ki
of Pochhammer symbols

in the numerator of our multi-dimensional sum (see (2.3)), and consequently we
would like a statement of (3.2) in which the roles of (b; q)ki

and (q−m; q)ki
are in-

terchangeable. Indeed, by a standard polynomial argument (see e.g. [1, Sec. 5.1] or
[17, Sec. 2.3.4]), one is able to show the following “symmetric” form of Corollary 3.
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Corollary 4. Let one of b and c be of the form q−m, where m is a non-
negative integer. Then we have

(3.5) ∑
0≤k1<k2<···<kr

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2
r∏

i=1

(dqki ; q)s (b; q)ki
(c; q)ki

(q; q)ki
(f ; q)ki

= (−1)(
r+s
2 ) q(

r+1
3 )+s(r2)

f(
r
2) (q; q)s−1

r+s−1

r∏
i=1

(b; q)i−1 (q/f ; q)∞ (bcqs+r+i−1/f ; q)∞
(cqi/f ; q)∞ (bqs+i/f ; q)∞

×
r+s−1∏
i=1

(q; q)i−1 (c; q)i

r+s−1∏
i=r

(dq1−r/b; q)i
(q; q)r+s−i−1 (d; q)i−r (fq1−r−s/b; q)i

×
∑

0≤�1<�2<···<�s≤r+s−1

q
∑s

i=1(2i−1)�i
∏

1≤i<j≤s

(1− q�i−�j )2

·
s∏

i=1

(d; q)�i (fq
1−r−s/b; q)�i (q

1−r−s; q)�i
(q; q)�i (dq

1−r/b; q)�i (c; q)�i
.

Sketch of Proof. The assertion is obvious if c = q−m, where m is a non-
negative integer, because in that case the identity in (3.5) is directly equivalent to
(3.2).

On the other hand, let us now suppose that b is of the form b = q−β , for some
non-negative integer β. On the right-hand side of (3.2), we write

(q; q)m
(q; q)m−i

= (qm−i+1; q)i = (−1)iqim−(i2)(q−m; q)i

and
(bqs+r+i−m−1/f ; q)m−r+1

(qi−m/f ; q)m−i+1
=

(bqs+r+i−m−1/f ; q)∞ (q/f ; q)∞
(bqs+i/f ; q)∞ (qi−m/f ; q)∞

.

Since we are currently assuming that b = q−β for some non-negative integer β, the
above relation can be rewritten in the form

(3.6)
(bqs+r+i−m−1/f ; q)m−r+1

(qi−m/f ; q)m−i+1
=

(q/f)s+i−β−1

(qi−m/f ; q)s+r−β−1
.

Consequently, the expression in (3.6) is rational in c = q−m, and therefore as well
the expressions on both sides of (3.5). Under a fixed choice of the parameters
r, s, b = q−β, one also sees that the degrees in c of numerator and denominator
of these rational functions are bounded. Now comes the “polynomial argument”:
Identity (3.5) holds for infinitely many c’s (namely for all c’s of the form c = q−m,
where m is a non-negative integer), hence it must hold for arbitrary c, that is, for
c considered as an indeterminate. This finishes the proof of this corollary. �

For the convenience of the reader, we state the special cases of (3.5) where
s = 0 and s = 1 explicitly below. Namely, if we let s = 0, then (3.5) reduces to

(3.7)
∑

0≤k1<k2<···<kr≤m

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2
r∏

i=1

(b; q)ki
(q−m; q)ki

(q; q)ki
(f ; q)ki

= (−1)(
r
2)q(

r
2)(m−r+1)br(m−r+1)

r∏
i=1

(b; q)i−1 (q; q)m (fq1−i/b; q)m−r+1 (q; q)i−1

(f ; q)m−i+1 (q; q)m−i+1
,
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where m is a non-negative integer, while for s = 1 Identity (3.5) reduces to

(3.8) ∑
0≤k1<k2<···<kr

q
∑r

i=1(2i−1)ki

∏
1≤i<j≤r

(1− qki−kj )2
r∏

i=1

(1− dqki) (b; q)ki
(c; q)ki

(q; q)ki
(f ; q)ki

= (−1)(
r+1
2 ) q

(r+1
3 )+(r2)

f(
r
2)

r∏
i=1

(q; q)i−1 (b; q)i−1 (c; q)i (q/f ; q)∞ (bcqr+i/f ; q)∞
(cqi/f ; q)∞ (bqi+1/f ; q)∞

×
r∑

�=0

q�
(d; q)� (dq

1−r+�/b; q)r−� (q
−r; q)�

(q; q)� (fq−r+�/b; q)r−� (c; q)�
,

where one of b or c is of the form q−m, where m is a non-negative integer. We
point out that (3.7) has been explicitly stated earlier in [11, Theorem 6], where
two different proofs were provided: one proceeded by showing that this formula
comes from the principal specialisation of the obvious expansion of a rectangular
Schur function in two sets of variables, while the other derived it by specialising a
multi-dimensional q-beta integral formula due to Evans and Kadell.
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