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Abstract. In this article, we define functions analogous to Ramanujan’s function
f(n) defined in his famous paper “Modular equations and approximations to π”. We
then use these new functions to study Ramanujan’s series for 1/π associated with the
classical, cubic and quartic bases.

1. Introduction

Let q = eπiτ with Im τ > 0 and let

ϑ2(q) =

∞∑
k=−∞

q(k+1/2)2 , ϑ3(q) =

∞∑
k=−∞

qk
2
, and ϑ4(q) =

∞∑
k=−∞

(−1)kqk
2
.

Further, let

P (q) = 1− 24

∞∑
k=1

kqk

1− qk

and

α(q) =
ϑ42(q)

ϑ43(q)
. (1.1)

In his paper “Modular equations and approximations to π”, S. Ramanujan gave a
table [19, Table III] expressing the function

f(`) :=
`P (q2`)− P (q2)

ϑ23(q)ϑ
2
3(q

`)
(1.2)

in terms of α(q) and α(q`) for ` = 2, 3, 4, 5, 7, 11, 15, 17, 19, 23, 31 and 35. (To be exact,
Ramanujan actually defined f as f(l) = `P (q2`)−P (q2), i.e., without the denominator
in (1.2). We have modified Ramanujan’s function for simplicity of the entries in the
table.) Examples of such relations are

f(3) = 1 +
√
α(q)α(q3) +

√
(1− α(q))(1− α(q3)),
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and

f(7) = 3
(

1 +
√
α(q)α(q7) +

√
(1− α(q))(1− α(q7))

)
.

Unfortunately, Ramanujan did not provide any proofs of these identities. Ramanujan’s
table for f(`) was reproduced by J.M. Borwein and P.B. Borwein in their book “Pi and
the AGM” [5, p. 159, Table 5.1]. The Borweins remarked that “The verification that
f(`) has the given form is tedious but straightforward for small `. For larger `, we rely
on Ramanujan.” This remark added more mysteries to Ramanujan’s table of identities
for f(`).

In the paragraph after Table III of [19], Ramanujan outlined the relation of these
identities with his series for 1/π [19, Section 13]. A more detailed explanation of
Ramanujan’s method of deriving series for 1/π using f(`) was first made available by
the Borweins in their book [5, Chapter 5].

Let

η(τ) = q1/12
∞∏
k=1

(
1− q2k

)
be the Dedekind η-function. It is immediate that

P (q2) = 12q
dη(τ)

dq
· 1

η(τ)
,

and we can rewrite f(`) in terms of the Wronskian of η(τ) and η(`τ) as follows:

f(`) =
12

η(τ)η(`τ)ϑ23(q)ϑ
2
3(q

`)
det

 η(τ) η(`τ)

q
dη(τ)

dq
q
dη(`τ)

dq

 . (1.3)

In this article, we define analogues of f(`) by replacing the Wronskian involving η(τ)
in (1.3) by Wronskians of various theta functions. For example, associated with the
classical Jacobi theta functions, we define the function

D`(q) =
1

ϑ33(q)ϑ
3
3(q

`)
det

 ϑ3(q) ϑ3(q
`)

q
dϑ3(q)

dq
q
dϑ3(q

`)

dq

 .

The relation of D`(q) with the series for 1/π is illustrated in the following theorem:

Theorem 1.1. Let N > 2 be an integer and let

αN = α
(
e−π
√
N
)
, (1.4)

where α(q) is given by (1.1). Then

1√
Nπ

=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
k (1− 2αN )− 2√

N
DN

(
e−π/

√
N
))

(4αN (1− αN ))k . (1.5)
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Comparing (1.5) with the following simplified version of the Borweins’ series (see
(5.5.13) of [5])

1√
Nπ

=

∞∑
k=0

(
1
2

)3
k

(k!)3

(
k (1− 2αN ) +

1− 2αN
3

− σ(N)

6
√
N

)
(4αN (1− αN ))k ,

where

σ(N) = f(N)

∣∣∣∣
q=e−π/

√
N

,

we conclude that (1.5) is perhaps the simplest form of Ramanujan’s series for 1/π
associated with the “classical base”. Using (1.5), we can derive a series for 1/π whenever

αN and −DN

(
e−π/

√
N
)

are known. For example, we will show using modular equations

satisfied by α(q), α(q13) and D13(q) that

α13 =
1

2
− 3

√
−18 + 5

√
13,

and

−D13

(
e−π/

√
13
)

=
(−7 + 3

√
13)
√
−18 + 5

√
13

4
.

The series corresponding to N = 13 is then given by

1(
6
√

13
√
−18 + 5

√
13
)
π

=

∞∑
k=0

(
1
2

)3
k

(k!)3

(
k +

1

4
− 7

156

√
13

)(
649− 180

√
13
)k
. (1.6)

The identity (1.6) was implicitly given by the Borweins [5, p. 172, Table 5.2a]1 but since
Ramanujan did not provide an expression for f(13), the Borweins probably arrived at
the series without using any specific identity associated with f(13).

The article is organized as follows: In Section 2, we use the general series found by
H.H. Chan, S.H. Chan and Z.-G. Liu [9, Theorem 2.1] to prove Theorem 1.1. We then
state a result that is an extension of [9, Theorem 2.1] and use it to derive the following
analogue of (1.5):

Theorem 1.2. Let N > 1 be a positive integer and αN be given as in (1.4). Then

1√
Nπ

=

∞∑
k=0

(
1
2

)3
k

(k!)3

(
1 + αN
1− αN

k + âN

)(
−4

αN
(1− αN )2

)k
, (1.7)

where

D̂`(q) =
1

ϑ34(q)ϑ
3
4(q

`)
det

 ϑ4(q) ϑ4(q
`)

q
dϑ4(q)

dq
q
dϑ4(q

`)

dq

 (1.8)

1Tables 5.2a and 5.2b on page 172 of [5] list certain quantities which are used in formulas for 1/π
given by the Borweins in their book as (5.5.13) and (5.5.14), respectively. We should warn the reader
that our notation is different from that used by the Borweins. In particular, the Borweins’ λ?(r) and

λ?′(r) translate in our notation to α(r) and
√

1− α(r), respectively, while the Borweins’ α(r) can be

expressed as
(
π−1 − 4

√
r(q d

dq
(log(ϑ4(q)))

)
/ϑ4

3(q) evaluated at q = e−π
√
r (see [5, (5.1.10)]).
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and

âN = − 2√
N

√
αN

1− αN
D̂N

(
e−π/

√
N
)

+
1

2(1− αN )
.

Note that for odd prime `,

D̂`(q) = D`(−q). (1.9)

Using (1.7), we derive some explicit examples, some of which are due to the Borweins.
The series which we will prove with complete details is

1√
6π

=
∞∑
k=0

(
1
2

)3
k

(k!)3

(√
3
(

2−
√

2
)
k +

2

3

√
3− 5

12

√
6

)
(−1)k

(
17− 12

√
2
)k
. (1.10)

Series (1.10) follows from the values

α6 = 35 + 24
√

2− 20
√

3− 14
√

6,

and

D̂6

(
e−π/

√
6
)

=

√
111

16
+ 5
√

2 +
33

8

√
3 +

45

16

√
6.

We observe that the terms in the sum on the right-hand side of (1.10) have alternating
signs. Although series with alternating signs in the “quartic base” are present in Ra-
manujan’s work [19, (35)–(38)], no series with alternating signs in the “classical base”
was recorded by Ramanujan. It is likely that the study of series such as (1.10) began
with the Borweins.

In Section 3, we study the function D`(−q2) and express D`(−q2) in terms of Haupt-
moduls when ` = 3, 5, 7, 11 and 23.

In Section 4, we use the identities established in Section 3, modular equations satisfied
by α(q) and α(q`), Theorem 1.1 and Theorem 1.2 to derive several explicit series for
1/π. We also provide a table of identities associated with D`(q) that is an analogue
of Ramanujan’s table for f(`). This table of formulas allows us to derive series for
1/π associated with primes other than 3, 5, 7, 11 and 23. In particular, we give an
expression for D13(q), for which its counterpart f(13) is missing in Ramanujan’s table.
The discovery of an expression for D13(q) in terms of α(q) and α(q13) leads to a proof
of (1.6).

In Section 5, we turn our attention to the Borweins’ cubic theta functions (see [6],
[7]) and define the following cubic analogue of D`(q):

C`(q) =
1

a2(q)a2(q`)
det

 a(q) a(q`)

q
da(q)

dq
q
da(q`)

dq

 ,

where

a(q) =

∞∑
m,n=−∞

qm
2+mn+n2

.

Using C`(q), we present Theorem 5.1 and Theorem 5.2, which are cubic analogues of
Theorem 1.1 and Theorem 1.2, respectively. Ramanujan did not offer any series for



WRONSKIANS OF THETA FUNCTIONS AND SERIES FOR 1/π 5

1/π arising from the class of series given in Theorem 5.2. The first few examples of
such series are given by H.H. Chan, W.-C. Liaw and V. Tan [14].

We also derive representations of C`(q) in terms of Hauptmoduls for ` = 2, 5 and 11
and provide a table of identities representing C`(q) in terms of the cubic singular modu-
lus. This table is an analogue of Ramanujan’s table for f(`). Using the representations
of C`(q) in terms of Hauptmoduls and cubic singular modulus, we derive several series
for 1/π associated with the cubic base.

In Section 6, we state the following quartic analogue of Theorem 1.1:

D⊥` (q) =
1√

A3(q)A3(q`)
det

 A(q) A(q`)

q
dA(q)

dq
q
dA(q`)

dq

 ,

where

A(q2) =
η8(τ) + 32η8(4τ)

η4(2τ)
.

Instead of providing a table for D⊥` (q) analogous to Ramanujan’s table for f(`) for
the purpose of deriving Ramanujan’s series for 1/π in the quartic base, we establish
a relation between D⊥` (q) and D`(q) and show that Ramanujan’s series for 1/π in the
quartic base can be derived from the table of identities for D`(q). In particular, we
provide a proof of Ramanujan’s series

1

π
= 2
√

2
∞∑
k=0

(
1
2

)
k

(
1
4

)
k

(
3
4

)
k

(1)3k
(1103 + 26390k)

(
1

992

)2n+1

.

This series is perhaps Ramanujan’s most famous series for 1/π as it was the series used
by B. Gosper in 1985 to compute π to 17526200 digits (cf. [1, p. 387 and p. 685]).

2. New representations of the Ramanujan–Borweins series for 1/π for
the “classical base”

Let Q denote the field of rational numbers. We begin this section with a general
series for 1/π given by H.H. Chan, S.H. Chan and Z.-G. Liu [9, Theorem 2.1].

Theorem 2.1. Suppose Z(q), X(q) and U(q) are functions satisfying

rZ(e−2π
√
r/s) = Z(e−2π/

√
rs),

q
dX(q)

dq
= U(q)X(q)Z(q) (2.1)

and

Z(q) =
∞∑
k=0

AkX
k(q), Ak ∈ Q.

Suppose

MN (q) =
Z(q)

Z(qN )
,
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for a positive integer N > 1. Let

aN =
U(q)X(q)

2N

dMN (q)

dX(q)

∣∣∣∣
q=e−2π/

√
Ns

,

bN = U(e−2π
√
N/s),

and

XN = X(e−2π
√
N/s).

If the series
∞∑
k=0

(bNk + aN )AkX
k
N

converges, then √
s

N

1

2π
=

∞∑
k=0

(bNk + aN )AkX
k
N .

We will now establish Theorem 1.1 using Theorem 2.1.

Proof of Theorem 1.1. We begin by applying Theorem 2.1 with Z(q) = ϑ43(q) and

X(q) = 4α(q) (1− α(q)) .

This implies that XN = 4αN (1− αN ). It is known that [9, (3.5)]

Z(q) =
∞∑
k=0

(
1
2

)3
k

(k!)3
Xk(q), (2.2)

and this implies that

Ak =

(
1
2

)3
k

(k!)3
.

The function ϑ3(q) satisfies the transformation formula (see for example [2, p. 43,
Entry 27(ii)])

ϑ23

(
e−π/

√
N
)

= N1/2ϑ23

(
e−π
√
N
)
, (2.3)

and this implies that

Z
(
e−π/

√
N
)

= NZ
(
e−π
√
N
)
.

In other words, the integer s in Theorem 2.1 is 4.
Next, from [2, p. 120, Entry 9(i)]

q
dX(q)

dq
= (1− 2α(q))X(q)Z(q) (2.4)

we conclude that U(q) = 1− 2α(q) and that

bN = 1− 2αN .

In order to complete the proof of Theorem 1.1, it remains to verify that

aN = − 2√
N
DN

(
e−π/

√
N
)
. (2.5)



WRONSKIANS OF THETA FUNCTIONS AND SERIES FOR 1/π 7

This follows by observing that

1

MN (q)
q
dMN (q)

dq
= −4ϑ23(q)ϑ

2
3(q

N )DN (q). (2.6)

From (2.6) and (2.4), we deduce that

q
dMN (q)

dq
=
dMN (q)

dX(q)
q
dX(q)

dq
= ϑ43(q)U(q)X(q)

dMN (q)

dX(q)
= −4

ϑ63(q)

ϑ23(q
N )
DN (q).

Hence,

U(q)X(q)
dMN (q)

dX(q)

∣∣∣∣
q=e−π/

√
N

= −4ϑ23(e
−π/
√
N )

ϑ23(e
−π
√
N )

DN (e−π/
√
N ),

and (2.5) follows from (2.3). �

We now proceed to prove Theorem 1.2. We need the following generalization of [9,
Theorem 2.1].

Theorem 2.2. Suppose Z(q), X (q) and U(q) are functions satisfying

Z
(
e−2π/

√
rs
)

= rZ
(
e−2π
√
r/s
)
C
(
e−2π
√
r/s
)
,

where C(q) is a certain function in q,

q
dX (q)

dq
= U(q)X (q)Z(q)

and

Z(q) =
∞∑
k=0

AkX k(q), Ak ∈ Q.

Suppose

MN (q) =
Z(q)

Z(qN )
,

for a positive integer N > 1.
Let

aN =
U
(
e−2π/

√
Ns
)
X
(
e−2π/

√
Ns
)

2N

dMN (q)

dX (q)

∣∣∣∣
q=e−2π/

√
Ns

+
U
(
e−2π
√
N/s
)
X
(
e−2π
√
N/s
)

2C
(
e−2π
√
N/s
) dC(q)

dX (q)

∣∣∣∣
q=e−2π

√
N/s

,

bN = U(e−2π
√
N/s),

and

XN = X (e−2π
√
N/s).

If the series
∞∑
k=0

(bNk + aN )AkXk
N
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converges, then √
s

N

1

2π
=
∞∑
k=0

(bNk + aN )AkXk
N .

The differences between Theorem 2.2 and Theorem 2.1 are the transformation for-
mulas for Z(q) and Z(q), which resulted in a difference between aN and aN . Theorem
2.2 can be proved in exactly the same way as Theorem 2.1. Note that Theorem 2.2 is
a generalization of [9, Theorem 2.1] since in the latter case, the corresponding function
C(q) is 1.

Proof of Theorem 1.2. It is known from Jacobi’s triple product identity [2, p. 37, (22.4)]
that

ϑ4(q) =
η2(τ/2)

η(τ)
, (2.7a)

and [2, p. 36, Entry 22])

ϑ2(q) = 2
η2(2τ)

η(τ)
. (2.7b)

Using (2.7) and [2, p. 43, Entry 27(iii)]

η(−1/τ) =
√
−iτη(τ), (2.8)

we deduce that

ϑ44

(
e−π/

√
N
)

= Nϑ42

(
e−π
√
N
)

= Nϑ44

(
e−π
√
N
) ϑ42(e−π√N)
ϑ44

(
e−π
√
N
) . (2.9)

Note that if we let Z(q) = ϑ44(q) in Theorem 2.2, then s = 4 and

C(q) =
ϑ42(q)

ϑ44(q)
.

Using Jacobi’s identity (see [2, p. 40, Entry 25(vii)] or [5, (2.1.10)])

ϑ43(q) = ϑ42(q) + ϑ44(q), (2.10)

we find that

C(q) =
ϑ42(q)

ϑ43(q)

ϑ43(q)

ϑ44(q)
=

α(q)

1− α(q)
, (2.11)

where α(q) is given by (1.1).
Next, observe that

Z(q) = ϑ44(q) = ϑ43(−q).
Therefore, by (2.2), we deduce that

Z(q) =
∞∑
k=0

AkX k(q),

where

Ak =

(
1
2

)3
k

(k!)3
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and

X (q) = 4α(−q)(1− α(−q)).
Using (2.10), we observe that

α(−q) = − α(q)

1− α(q)
, (2.12)

and hence

X (q) = −4
α(q)

1− α(q)
. (2.13)

Next, (2.1) holds with q replaced by −q and therefore,

U(q) = 1− 2α(−q) =
1 + α(q)

1− α(q)
, (2.14)

where the last equality follows from (2.12). Letting q = e−π/
√
N , we deduce from (2.13)

and (2.14) that

XN = −4
αN

1− αN
and

bN =
1 + αN
1− αN

.

Using the argument as in the proof of Theorem 1.1, we may write the first term of aN
involvingMN in terms of D̂`(q). The second term of aN follows from (2.11), (2.13) and
(2.14). Substituting the expressions of aN ,bN , and XN in Theorem 2.2, we complete
the proof of Theorem 1.2. �

The series (1.7), in a slightly different form, was discovered by the Borweins [5,
p. 182, (5.5.14)].

3. The functions D`(q) and D̂`(q)

In this section, instead of working with D`(q), we derive identities for D̂`(q) given
by (1.8).

We first establish the following fact:

Theorem 3.1. Let ` be an odd prime and let

ω` =

{
2 if ` ≡ 1 (mod 4),

1 if ` ≡ 3 (mod 4).

Then D̂ω`
` (q2) is a modular function on Γ0(2`) + W`, where Γ0(N) + We denotes the

group generated by Γ0(N) and

We =

(
a
√
e b/

√
e

cN/
√
e d

√
e

)
,

with e|N , gcd(N/e, e) = 1 and det(We) = 1.
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Proof. Let

T (τ) := ϑ4(q
2) =

η2(τ)

η(2τ)
, (3.1)

where the product representation of ϑ4(q
2) follows from (2.7a).

Let

Γ0(N) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}
.

For

U =

(
a b
c d

)
∈ Γ0(2),

let

U ◦ τ :=
aτ + b

cτ + d
.

It is known, using the transformation formula of the η-function (see for example [18,
p. 163] or [10, Theorem 1.2]) and (3.1), that

T (U ◦ τ) = ξ(a, b, c, d)(cτ + d)1/2T (τ) (3.2)

where
ξ(a, b, c, d) =

( c
d

)
eπi(d−1−cd/2)/4.

Identity (3.2) implies that if

Ψ(τ) =
1

T (τ)

dT

dτ
(τ),

then

Ψ (U ◦ τ) =

(
c

2(cτ + d)
+ Ψ (τ)

)
(cτ + d)2. (3.3)

Next, let ` be an odd prime and observe that for

V =

(
α β
γ δ

)
∈ Γ0(2`),

`Ψ (` (V ◦ τ)) =

(
γ

2(γτ + δ)
+ `Ψ (`τ)

)
(γτ + δ)2.

Note that since
V ∈ Γ0(2`) ⊂ Γ0(2),

(3.3) also holds for the matrix V , and we find that

S`(τ) = `Ψ(`τ)−Ψ(τ)

is a modular form of weight 2 on Γ0(2`). By (3.2), we find that
(
T 2(`τ)T 2(τ)

)ω` is a
modular form of weight 2ω` on Γ0(2`). Therefore,(

S`(τ)

T 2(`τ)T 2(τ)

)ω`
is a modular function on Γ0(2`).

Next, by using (3.2), we conclude that(
S`(W` ◦ τ)

T 2(`(W` ◦ τ))T 2(W` ◦ τ)

)ω`
=

(
S`(τ)

T 2(`τ)T 2(τ)

)ω`
.
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Observe that by (1.8), we find that

D̂ω`
` (q2) =

(
S`(τ)

T 2(`τ)T 2(τ)

)ω`
.

This implies, from the transformation properties of

(
S`(τ)

T 2(`τ)T 2(τ)

)ω`
, that D̂ω`

` (q2) is

a modular function on Γ0(2`) +W`. �

We now use Theorem 3.1 to derive identities for D̂`(q). We first determine prime
numbers ` for which all modular functions associated with Γ0(2`) + W` are rational
functions of a single function, which we shall call a Hauptmodul. From the table in
[12, p. 14], we find that this occurs when ` = 3, 5, 7, 11 and 23. For such a prime `, we
construct a Hauptmodul Hl (which a priori is not unique) for the corresponding field
of functions for Γ0(2`) +W` and obtain the following identities:

Theorem 3.2. Let

H` = H`(τ) =

(
η(2τ)η(2`τ)

η(τ)η(`τ)

) 24
`+1

.

Then

D̂3(q
2) = 2H3, (3.4a)

D̂2
5(q2) = 4H2

5 (1 + 4H5),

D̂7(q
2) = 2H7 (1 + 3H7) ,

D̂11(q
2) = 2H11

(
1 + 4H11 + 5H2

11

)
, (3.4b)

D̂23(q
2) = 2H23

(
1 + 5H23 + 13H2

23 + 20H3
23 + 20H4

23 + 11H5
23

)
. (3.4c)

Remark 3.1. We note that since q = eπiτ , the identities given in Theorem 3.2 can all

be expressed in terms of q2. Replacing q2 by q, we obtain identities for D̂`(q) in terms
of

H`(τ/2),

for ` = 3, 5, 7, 11 and 23, and these functions are in terms of infinite products with
variable q. Replacing q by −q and using

∞∏
k=1

(1− (−q)k) =
∞∏
k=1

(1− q2k)3

(1− qk)(1− q4k)
, (3.5)

we obtain identities from Theorem 3.2 expressingD`(q) in terms of Dedekind η-functions
η(τ/2), η(τ), η(`τ/2) and η(`τ).

4. Explicit examples of Theorems 1.1 and 1.2

In this section, we first derive explicit series for 1/π from Theorem 3.2 for N =
3, 5, 7, 11 and 23. We give complete details only for the case N = 3. We then derive
explicit series from Theorem 1.2 for N = 6, 10, 14, 22 and 46. We need to work harder
deriving these series as our identities in Theorem 3.2 are only for ` = 3, 5, 7, 11 and 23
instead of 6, 10, 14, 22 and 46. Again we give complete details only for the case N = 6.
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4.1. Case N = 3.

Following Remark 3.1, we deduce from (3.4a) that

D3(q) = −2
η3(τ)η3(3τ)

ϑ33(q)ϑ
3
3(q

3)
, (4.1)

where we have used (3.5) and the product representation of ϑ3(q) [2, p. 36, Entry 22]):

ϑ3(q) =
η5(τ)

η2(2τ)η2(τ/2)
. (4.2)

Let τ = i/
√

3 in (4.1). Observe that

D3(e
−π/
√
3) = −2

η6(i
√

3)

ϑ63(e
−π
√
3)
, (4.3)

where we have used (2.3) and (2.8).
Next, using (2.7a), (4.2) and (2.7b), we immediately deduce Jacobi’s identity [17,

pp. 515–517]

η24(τ) =
1

28
ϑ243 (q)

ϑ82(q)

ϑ83(q)

ϑ84(q)

ϑ83(q)
. (4.4)

Letting q = e−π
√
n in (4.4), we deduce that

η6(i
√
N)

ϑ63(e
−π
√
N )

=
1

22

√
αN (1− αN ), (4.5)

where we have used (2.10). It remains to compute α3. It is known that [2, p. 230,
Entry 5(i)] (

(1− α(q))
(
1− α(q3)

))1/4
+
(
α(q)α(q3)

)1/4
= 1. (4.6)

When q = e−π/
√
3,

α(e−3π/
√
3) = α(e−π

√
3), (4.7)

and

α(e−π/
√
r) = 1− α(e−π

√
r), (4.8)

with r = 3. Identity (4.8) is a consequence of (2.10) and (2.8). Substituting (4.7) and
(4.8) into (4.6), we conclude that

α3(1− α3) =
1

24
,

which implies that

α3 =
1

2
−
√

3

4
. (4.9)

Let N = 3 in (4.5). Substituting (4.9) in the resulting equation, we deduce using (4.3)
that

D3(e
−π/
√
3) = −1

8
.

From (1.5), we deduce the following Ramanujan series for 1/π:
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1

π
=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
3

2
k +

1

4

)
1

4k
.

We have learnt from our derivation of the series corresponding to N = 3 that in order
to derive a series for 1/π corresponding to N = 3, 5, 7, 11, 23 from Theorem 1.1 and
Theorem 3.2, we only need the value of αN . As such, for the following derivations of
the series for 1/π corresponding to N = 5, 7, 11, 23 we will only discuss the evaluation
of αN .

4.2. Case N = 5.

The value of α5 can be determined from the following modular equation of degree 5
[2, p. 280, Entry 13(i)]:(

α(q)α(q5)
)1/2

+
(
(1− α(q))

(
1− α(q5)

))1/2
+ 2

(
16α(q)α(q5) (1− α(q))

(
1− α(q5)

))1/6
= 1.

This modular equation allows us to conclude that

α5 =
1

2
−
√
−2 +

√
5.

Therefore, the series we obtain from (1.5) and Theorem 3.2 is

1

π
=
∞∑
k=0

(
1
2

)3
k

(k!)3

((
2

√
−10 + 5

√
5

)
k +

√
−22 + 10

√
5

2

)(
9− 4

√
5
)k
.

4.3. Case N = 7.

The value α7 can be derived from the following modular equation of degree 7 [2,
p. 314, Entry 19(i)]:(

α(q)α(q7)
)1/8

+
(
(1− α(q))

(
1− α(q7)

))1/8
= 1. (4.10)

This implies that

4α7(1− α7) =
1

64
,

1− 2α7 =
3

8

√
7,

and

α7 =
1

2
− 3

16

√
7.

The series we obtain from (1.5) and Theorem 3.2 is

1

π
=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
21

8
k +

5

16

)(
1

64

)k
.
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4.4. Cases N = 11 and 23.

We first observe that our series obtained in this article depend entirely on the value
of α`(1−α`). The degree of the polynomial satisfied by α`(1−α`) increases in general
with `. In fact, if

`+ 1

8
=
ν

s

with (ν, s) = 1, then (α`(1− α`))s/8 satisfies a polynomial equation of degree ν which

can be derived from a Russell-type modular equation. For example, (α7(1− α7))
1/8

satisfies a polynomial equation of degree 1 (see (4.10)). For N = 11 and 23, we have to
solve cubic polynomial equations since 12/8 = 3/2 and 24/8 = 3/1. For more discussion

on the evaluations of (α`(1− α`))s/8 and modular equations, see [13] and [20].
We now continue with N = 11. The modular equation given by Ramanujan is [2,

p. 363, Entry 7(i)](
α(q)α(q11)

)1/4
+
(
(1− α(q))(1− α(q11))

)1/4
+ 2

(
16α(q)α(q11)(1− α(q))(1− α(q11))

)1/12
= 1.

This implies that

α11(1− α11) = − 1

12

(
27 + 21

√
33
)1/3

+
2(

27 + 21
√

33
)1/3 +

1

16
.

The series we obtain from (1.5) and Theorem 3.2 is

1

π
=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
k
√

11 ·
√

1− δ + 2

(
δ1/6 − 2δ1/3 +

5

4
δ1/2

))
δk,

where

δ = −1

3

(
27 + 21

√
33
)1/3

+
8(

27 + 21
√

33
)1/3 +

1

4
.

A modular equation of degree 23 can be found in [2, p. 411, Entry 15(i)] and is given
by (

α(q)α(q23)
)1/8

+
(
(1− α(q))(1− α(q23))

)1/8
+ 22/3

(
α(q)α(q23)(1− α(q))(1− α(q23))

)1/24
= 1.

Let X23 = 4α23(1 − α23). From the above modular equation of degree 23, we deduce
that

X23 =
1

384

5µ2 − 1660− 44µ

µ
,

where

µ =
(

4724 + 924
√

69
)1/3

.

The associated series we obtain from (1.5) and Theorem 3.2 is

1

π
=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
k
√

23 ·
√

1−X23 + 2d23

)
Xk

23,
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where

d23 =
√

2X
1/12
23 − 5X

1/6
23 +

13
√

2

2
X

1/4
23 − 10X

1/3
23 + 5

√
2X

5/12
23 − 11

4
X

1/2
23 .

As mentioned in the beginning of this article, the Borweins remarked that to derive
series for 1/π given in Theorem 1.1 corresponding to N = 11 and 23, they needed to
rely on Ramanujan’s expressions for f(11) and f(23). We have shown here that this is
not necessary and that these series can be constructed from the new identities (3.4b)
and (3.4c).

Remark 4.1. We have cited [2] for modular equations of various degrees found by
Ramanujan and used them to evaluate αN . These modular equations are what we
called Russell-type modular equations. They were studied systematically by R. Russell
[20]. In fact, it is possible for us to construct Russell-type modular equations of any
odd prime degree using the results found in [20]. For more details on how to compute
such modular equations and their cubic analogues, see [13].

Remark 4.2. We observe that Russell-type modular equations of degree ` give us
polynomials satisfied by α`. But in order to determine α`, we still face the problem
of finding the zeroes of polynomials. For example, in the case of 11 and 23, we need
to find roots of polynomials of degree 3. In other words, obtaining αn using modular
equations works only for relatively small composite or prime n. For certain n, especially
those which are squarefree, we can compute αn without using modular equations. This
requires class field theory and explicit Shimura’s reciprocity law. For more details, see
[8], [11], [15], [16] and [21].

We have seen how Theorem 3.2 can be used to derive explicit series for 1/π. We now
use these identities to derive examples for Theorem 1.2. In [5], the Borweins provided
only examples to their series for even N . As such, we will first restrict our attention to
the derivation of special cases of Theorem 1.2 when N is even.

Before we proceed, we observe that if ` is a prime, then

D̂2`(q)ϑ
2
4(q)ϑ

2
4(q

2`) = D̂`(q)ϑ
2
4(q)ϑ

2
4(q

`) + `D̂2(q
`)ϑ24(q

`)ϑ24(q
2`). (4.11)

From the above, we know that we will need to derive a formula for D̂2(q) and this is
given by

D̂4
2(q) =

1

642
α4(q)

(1− α(q))3
. (4.12)

The relation (4.12) can be proved by observing that both D̂2(q
2) and α(q2) are modular

functions invariant under Γ0(4). Note that

D̂2(q) 6= D2(−q),
even though

D̂`(q) = D`(−q),
for odd prime ` (see (1.9)).

We are now ready to derive explicit series for 1/π arising from Theorem 1.2 for
N = 6, 10, 14, 22 and 46.
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4.5. Case N = 6.

From (4.11), we find that

D̂6(e
−π/
√
6) = D̂3(e

−π/
√
6)
ϑ24(e

−π
√

3
2 )

ϑ24(e
−π
√
6)

+ 3D̂2(e
−π

√
3
2 )
ϑ24(e

−π
√

3
2 )

ϑ24(e
−π/
√
6)
.

In order to derive a series for 1/π using Theorem 1.2, we will need to derive the following
identities:

α6 = 35 + 24
√

2− 20
√

3− 14
√

6, (4.13a)

α2/3 = 35− 24
√

2− 20
√

3 + 14
√

6, (4.13b)

D̂2
3

(
e−π/

√
6
)

=

(
5

2
+

3

2

√
3

)2

, (4.13c)

D̂2
2

(
e
−π

√
3
2

)
= −41

16

√
6 +

99

16
− 35

8

√
2 +

29

8

√
3, (4.13d)

ϑ44

(
e
−π

√
3
2

)
ϑ44

(
e−π/

√
6
) = 5 +

8

3

√
3 + 2

√
6 +

10

3

√
2, (4.13e)

ϑ44

(
e
−π

√
3
2

)
ϑ44

(
e−π
√
6
) = −3 + 2

√
2 + 2

√
3−
√

6. (4.13f)

Assuming that the above identities hold, we find that

D̂2
6

(
e−π/

√
6
)

=

D̂3

(
e−π/

√
6
) ϑ24(e−π√ 3

2

)
ϑ24

(
e−π
√
6
) + 3D̂2

(
e
−π

√
3
2

) ϑ24

(
e
−π

√
3
2

)
ϑ24

(
e−π/

√
6
)


2

=
111

16
+ 5
√

2 +
33

8

√
3 +

45

16

√
6.

Therefore,

â6 =
2√
6

√
α6

1− α6

(
−D̂6(e

−π/
√
6)
)

+
1

2(1− α6)

= −
(

1

4
+

1

6

√
6− 1

6

√
3

)
+

1

2(1− α6)

=
2

3

√
3− 5

12

√
6.

Now, using the value of α6, we immediately compute

1 + α6

1− α6
=
√

3
(

2−
√

2
)

and −4
α6

(1− α6)2
= −17 + 12

√
2.
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Hence, by Theorem 1.2, we obtain the following identity

1√
6π

=
∞∑
k=0

(
1
2

)3
k

(k!)3

(√
3
(

2−
√

2
)
k +

2

3

√
3− 5

12

√
6

)(
−17 + 12

√
2
)k
,

which is (1.10) in the introduction.
We still have to show the identities in (4.13). Observe that using (1.1), Jacobi’s

identity (2.10) and the product representations of ϑj(q) for j = 2, 3, 4 given in (2.7b),
(4.2) and (2.7a), we find that

−4
α(q)

(1− α(q))2
= −64

η24(τ)

η24(τ/2)
. (4.14)

We now recall the following modular equation of Ramanujan which is a consequence of
[2, Chapter 17, Entry 12], namely,

U(τ) +
1

U(τ)
− 2 = V (τ) +

64

V (τ)
+ 16, (4.15)

where

U(τ) =

(
η(τ)η(6τ)

η(2τ)η(3τ)

)12

and V (τ) =

(
η(τ)η(3τ)

η(2τ)η(6τ)

)6

.

Substituting τ = i/
√

6 in (4.15), we find, using the evaluation formula (4.3) for the
η-function, that

V (i/
√

6) = 8.

This implies that

4
α6

(1− α6)
2 = 64

(
η(i
√

6)

η(i
√

3/2)

)24

= 17− 12
√

2,

and

4
α2/3(

1− α2/3

)2 = 64

(
η(i
√

2/3)

η(i/
√

6)

)24

= 17 + 12
√

2.

This implies (4.13a) and the identity (4.13b).
The above method of deriving α2` using α2/` and a modular equation is due to

Ramanujan. For more details, see [19, Section 2] where α10 is derived.
Identity (4.13c) follows from the identity

D̂2
3(e−π/

√
6) =

1

16

√
16

α1/6α3/2

(1− α1/6)2(1− α3/2)2
=

1

16

√
16

(1− α6)(1− α2/3)

α2
6α

2
2/3

=

(
5

2
+

3

2

√
3

)2

,

where we have used the identity (see (4.8))

1− α1/r = αr.

Identity (4.13d) follows immediately from (4.12) and (4.13b).
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To prove (4.13e) and (4.13f), we observe that by (2.9), it suffices to compute

ϑ44(e
−π
√

2/3)

ϑ44(e
−π/
√
6)
.

To finish this final task, we recall two identities, namely (see for example [5, (2.1.6)])

ϑ23(q) + ϑ24(q) = 2ϑ3(q
2), (4.16)

and [2, p. 214, (24.15)]

ϑ23(q)

ϑ23(q
2)

=
1−

√
α(q2)√

1− α(q)
. (4.17)

From (1.1), (2.10), (4.16) and (4.17) we conclude that

ϑ24(q)

ϑ24(q
2)

=
1√

1− α(q2)

(
2− ϑ23(q)

ϑ23(q
2)

)
=

1√
1− α(q2)

(
2−

1−
√
α(q2)√

1− α(q)

)
.

This implies that

ϑ44(e
−π/
√
6)

ϑ44(e
−π
√

2/3)
=

1

1− α2/3

(
2−

1−√α2/3√
1− α1/6

)2

= −3− 2
√

2 + 2
√

3 +
√

6.

As indicated earlier, (4.13e) and (4.13f) follow from this computation.

4.6. Case N = 10.

We now discuss the other cases of N , namely, N = 10, 14, 22 and 46. It is clear from

our discussion of the case N = 6, to derive a series for 1/π from D̂N (q), we need, with
help of the identities from Theorem 3.2, only the values for α2p and α2/p. In the case of
N = 6, we use modular equation (4.15) to derive α6 and α2/3. We now discuss another
method of deriving α2p and α2/p and we will illustrate this alternative method using
the case N = 10. Let ξ(q) be the right-hand side of (4.14), namely,

ξ(q) = −64
η24(τ)

η24(τ/2)
.

Let ξn = ξ(e−π
√
n). Then it can be shown (see [8] and [11]) that

ξ10
ξ2/5

+
ξ2/5

ξ10
= 103682.

Next, using (2.8), we deduce that for any positive real number n,

ξ2nξ2/n = 1. (4.18)

Solving the above equation and using (4.18) for any positive integer n, we deduce that

ξ210 = 51841− 23184
√

5,

which implies that

ξ10 = −161 + 72
√

5.



WRONSKIANS OF THETA FUNCTIONS AND SERIES FOR 1/π 19

Using (4.14), we deduce that

α10 = 323 + 144
√

5− 102
√

10− 228
√

2.

Similarly, we obtain

α2/5 = 323− 144
√

5− 102
√

10 + 228
√

2.

Using these values and following what we have done for N = 6, we deduce that

1√
10π

=
∞∑
k=0

(
1
2

)3
k

(k!)3

((
3
√

10− 6
√

2
)
k +

23

20

√
10− 5

2

√
2

)(
−161 + 72

√
5
)k
.

4.7. Case N = 14.

The series for 1/π for N = 14 is not given by the Borweins. We now supply the
missing series. We find, following the method illustrated in [8] and [11], that(

ξ14
ξ2/7

)1/24

+

(
ξ2/7

ξ14

)1/24

= 1 +
√

2.

This yields

ξ14 = −
(

1

2

√
2 +

1

2
− 1

2

√
−1 + 2

√
2

)12

.

Using a formula of Ramanujan [4, Theorem 1.2], we deduce that

α14 =

(
−2
√

2− 2 +

√
8
√

2 + 11

)2(√
10 + 8

√
2−

√
8
√

2 + 11

)2

.

Similarly, we find that

α2/7 =

(
−2
√

2− 2 +

√
8
√

2 + 11

)2(√
10 + 8

√
2 +

√
8
√

2 + 11

)2

.

From the values of α14, we should expect the series for 1/π to be very complicated. We
will list the algebraic numbers needed to generate the series:

X14 = − 4α14

(1− α14)2
= −

(
1

2

√
2 +

1

2
− 1

2

√
−1 + 2

√
2

)12

,

b14 =
1 + α14

1− α14
,

V14 =
ϑ44(e

−π
√

7/2)

ϑ44(e
−π/
√
14)

(
D̂2(e

−π
√

7/2)
)2

=
1

56(1− α14)
,

U14 =
ϑ44(e

−π
√

7/2)

ϑ44(e
−π
√
14)

(
D̂7(e

−π/
√
14)
)2

= 4h214(1 + 3h14)
2√α2/7,

where

h14 =

(
(1− α14)(1− α2/7)

162α2
14α

2
2/7

)1/8

=

√
11

4
+

7

4

√
2 +

1

4

√
217 + 154

√
2.
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Then

1√
14π

=

∞∑
k=0

(
1
2

)3
k

(k!)3

(
b14k +

2√
14

√
α14

1− α14

(
−
√
U14 − 7

√
V14

)
+

1

2(1− α14)

)
Xk

14.

Note that in the case of N = 14, it is difficult to derive the series without knowing
the explicit formula given by Theorem 1.2 and the corresponding identities given in
Theorem 3.2. The complexity of the constants arising in this series is perhaps why the
series is not given by the Borweins in their book.

4.8. Case N = 22.

Following the method illustrated in [8] and [11], we find that√
ξ22
ξ2/11

+

√
ξ2/11

ξ22
= 39202.

This yields

ξ22 = −
(

19601− 13860
√

2
)
,

and
α22 = 39203 + 27720

√
2− 11820

√
11− 8358

√
22.

The corresponding series is

1

2(−5
√

2 + 7)π
=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
−33k +

17
√

2− 33

4

)(
−19601 + 13860

√
2
)k
.

4.9. Case N = 46.

The series for 1/π for N = 46 is not given by the Borweins. Following the method
illustrated in [8] and [11], we find that(

ξ46
ξ2/23

)1/24

+

(
ξ2/23

ξ46

)1/24

= 3 +
√

2.

This implies that

ξ46 = −

(
3

2
+

√
2

2
− 1

2

√
7 + 6

√
2

)12

.

Therefore,

α46 =

(
26 + 18

√
2− 3

√
147 + 104

√
2

)2(√
1332 + 936

√
2− 3

√
147 + 104

√
2

)2

,

and

α2/23 =

(
26 + 18

√
2− 3

√
147 + 104

√
2

)2(√
1332 + 936

√
2 + 3

√
147 + 104

√
2

)2

.

The following constants will give rise to an explicit series for 1/π associated with N =
46:
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b46 = 78

√
147 + 104

√
2 + 54

√
2

√
147 + 104

√
2

− 3
√

2

√
147 + 104

√
2

√
661 + 468

√
2,

X46 = −

(
3

2
+

√
2

2
− 1

2

√
7 + 6

√
2

)12

,

V46 =
1

23 · 23(1− α46)
,

U46 =
(
2h46

(
1 + 5h46 + 13h246 + 20h346 + 20h446 + 11h546

))2√
α2/23,

where

h46 =

(
(1− α46)(1− α2/23)

162α2
46α

2
2/23

)1/24

.

Then

1√
46π

=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
b46k +

2√
46

√
α46

1− α46

(
−
√
U46 − 23

√
V46

)
+

1

2(1− α46)

)
Xk

46.

We have, in our attempt to prove some of the Borweins’ identities [5, p. 172, Ta-
bles 5.2a, 5.2b], used (1.5) to derive series for 1/π when N is odd and (1.7) when N is
even. We would like to emphasize here that these restrictions are not necessary. Indeed
if we consider N = 6, 10 and 22, we obtain from (1.5) the following series for 1/π:

The identity

1√
Nπ

=
∞∑
k=0

(
1
2

)3
k

(k!)3
(bNk + aN )Xk

N

is true when

b6 = −69− 48
√

2 + 40
√

3 + 28
√

6,

a6 = −30− 21
√

2 +
52

3

√
3 +

73

6

√
6,

X6 = −18872− 13344
√

2 + 10896
√

3 + 7704
√

6,

b10 = −645 + 456
√

2 + 204
√

10− 288
√

5,

a10 = −290 + 205
√

2 +
917

10

√
10− 648

5

√
5,

X10 = −1662776 + 1175760
√

2 + 525816
√

10− 743616
√

5,

and

b22 = −78405− 55440
√

2 + 23640
√

11 + 16716
√

22,

a22 = −36542− 25839
√

2 +
121196

11

√
11 +

171397

22

√
22,

X22 = −24589219256− 17387203680
√

2 + 7413928560
√

11 + 5242439160
√

22.
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Similarly, we also found series associated with (1.7) when N is odd. For example,
when N = 3 and 7, we have relatively simple series which were missing so far. These
are respectively

1√
3π

=
∞∑
k=0

(
1
2

)3
k

(k!)3

((√
15− 8

√
3
)
k + 6− 10

3

√
3

)(
−416 + 240

√
3
)k
,

and

1√
7π

=
∞∑
k=0

(
1
2

)3
k

(k!)3

((
255− 96

√
7
)
k + 112− 296

7

√
7

)(
−129536 + 48960

√
7
)k
.

There is also a series for the case N = 5 and it is given by

1√
Nπ

=
∞∑
k=0

(
1
2

)3
k

(k!)3

(
b̂Nk + âN

)
X̂k
N ,

where

b̂5 = 35 + 16
√

5− 72

√√
5− 2− 32

√
5
√

5− 10,

â5 = 15 +
34

5

√
5− 18

√√
5− 2− 8

√
5
√

5− 10− 1

5

√
1990 + 890

√
5,

X̂5 = −4936− 2208
√

5 + 10160

√√
5− 2 + 4544

√
5
√

5− 10.

We note that identities such as those given in Theorem 3.2 exist only when Γ0(2`) +
W` has genus 0, or according to [12, p. 14], when ` = 3, 5, 7, 11, 23. In order to compute
D`(q) for primes other than 3, 5, 7, 11 and 23, we introduce modular functions similar
to those used by Ramanujan in his representations of f(`).

In Table 1, we state the value of N and in each entry, set

α = α(q), β = α(qN ).

Table 1: Table of identities for DN (q)

N = 3

D3(q) = − (αβ(1− α)(1− β))1/4

2
.

N = 5

Let

X =

(
210αβ(1− α)(1− β)

)1/6
8

,

then
D2

5(q) = 4X2(1− 4X).
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N = 7

Let

X =
(αβ(1− α)(1− β))1/8

2
,

then

D7(q) = −2X(1− 3X).

N = 11

Let

X =

(
24αβ(1− α)(1− β)

)1/12
2

,

then

D11(q) = −2X(1− 4X + 5X2).

N = 13

Let

X =
(αβ(1− α)(1− β))1/2

16
,

and

Y =
1− (αβ)1/2 − ((1− α)(1− β))1/2

8
,

then

10XD4
13(q) + (−116X − 404XY 2 + 528XY − Y 2 + Y 3 + 1280X2)D2

13(q)

− 16X − 20Y 5 − 16000X2Y − 176XY 2 + 2112X2 + 4Y 4

+ 37824X2Y 2 − 3504XY 3 + 8240XY 4 − 23040X3 + 192XY = 0.

N = 17

Let

X =

(
24αβ(1− α)(1− β)

)1/6
4

,

and

Y =
1− (αβ)1/2 − ((1− α)(1− β))1/2

8
,

then

D2
17(q) = 4

64X3Y − 11X2Y − 4X2 − 24XY + 31XY 2 − 32X3 + Y 2 + 3X − 8Y 2

1− Y + 5X
.

N = 19

Let

X =
(αβ(1− α)(1− β))1/4

4
,

and

Y =
1− (αβ)1/4 − ((1− α)(1− β))1/4

4
,
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then

D19(q) =
2X + 2Y + 16Y 3 − 10Y − 18XY

Y − 1
.

N = 23

Let

X =

(
216αβ(1− α)(1− β)

)1/24
2

,

then

D23(q) = −2X(1− 5X + 13X2 − 20X3 + 20X4 − 11X5).

N = 29

Let

X =

(
αβ(1− α)(1− β)

256

)1/6

,

and

Y =
1− (αβ)1/2 − ((1− α)(1− β))1/2

8
,

then

A2D
4
29(q) +A1D

2
29(q) +A0 = 0,

where

A2 = −585689508612X2,

A1 = 123736544264XY + 3702335691264X2 + 97491959398X

+ 134904595824360X4 − 44395652981864X2Y 2 − 432321617914Y 3

− 42626822690432X5 − 29875947341036X3 − 9779263696654XY 2

+ 41705207079730X2Y − 8251360353152X4Y + 5451791661904XY 3

− 176409878302552X3Y,

A0 = 13753900119256887X2Y 3 − 4877930791543X

+ 2618284012843192X3Y + 2305243907550368XY 3

− 700939761749206XY 2 + 505394444931798X2Y

+ 96399537859592XY − 4086296883979928X2Y 2

− 14225126607270367X3Y 2 + 4709822410848252X5Y

+ 25397795278722548X3Y 3 − 16793873356376932X4Y 2

+ 1068896146837092XY 5 − 175149710486642X3

+ 5709212469240785X4Y − 3216747114074433XY 4

− 16394572380315964X2Y 4 − 1065063721978775X5

− 368335914073064X4 − 19806094957276X2

+ 6607217263199Y 5 − 204688220825404X6 − 25269791081528Y 6.

N = 31



WRONSKIANS OF THETA FUNCTIONS AND SERIES FOR 1/π 25

Let

X =
(αβ(1− α)(1− β))1/8

2
,

and

Y =
1− (αβ)1/8 − ((1− α)(1− β))1/8

8
,

then

D31(q) = −82X2 + 22X − 1536Y 3 − 8Y − 32XY + 160Y 2 + 896XY 2.

Using the identity associated with D29(q), we obtain Borweins’ series [5, p. 172]
associated with N = 58 in Theorem 1.2, namely,

1√
Nπ

=

∞∑
k=0

(
1
2

)3
k

(k!)3

(
b̂Nk + âN

)
X̂k
N ,

where

b̂58 = −6930
√

2 + 1287
√

58,

â58 = −6351

2

√
2 +

68403

116

√
58,

X̂58 = −192119201 + 35675640
√

29.

As in the case of N = 13 for Theorem 1.1, the Borweins derived the above series without
the knowledge of f(29) which is not listed in Ramanujan’s table for f(`).

Remark 4.3. Note that the above table contains identities analogous to Ramanu-
jan’s table for f(`). In particular, using the expression for D13(q), we obtain the
series given in (1.6), etc. The identities in the table were found with the assistance
of computer algebra, more precisely with F.G. Garvan’s qseries package (available at
http://qseries.org/fgarvan/qmaple/qseries/), using suitable functions such as X
and Y given in the table. Once an identity is found, the validity of the identity can
be established by first deriving a modular equation from the identity and then by ver-
ifying the respective modular equation by the standard technique of comparing the
q-series expansions of the modular functions which appear in the modular equation.
The identity to be proved is then one of the solutions of the modular equation.

5. Series for 1/π associated with the cubic theta function a(q)

In this section, we consider a cubic analogue of (1.5) and (1.7). Let

a(q) =
∞∑

m=−∞

∞∑
n=−∞

qm
2+mn+n2

,

and
1

α†(q2)
= 1 +

1

27

η12(τ)

η12(3τ)
.

The analogues of Theorems 1.1 and 1.2 are respectively given as follows:
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Theorem 5.1. Let N ≥ 2 be a positive integer,

α†N = α†
(
e−2π
√
N/3
)
,

and

CN (q) =
1

a2(q)a2(qN )
det

 a(q) a(qN )

q
da(q)

dq
q
da(qN )

dq

 .

Then √
3

N

1

2π
=

∞∑
k=0

(
1
2

)
k

(
1
3

)
k

(
2
3

)
k

(k!)3

(
b†Nk + a†N

)(
X†N

)k
, (5.1)

where

b†N = 1− 2α†N ,

a†N = −CN (q)√
N

∣∣∣∣
q=e−2π/

√
3N

,

and

X†N = 4α†N

(
1− α†N

)
.

Theorem 5.2. Let N ≥ 8 be a positive integer,

α̂†N = α†
(
− e−π

√
N/3
)
,

and

ĈN (q) =
1

a2(−q)a2(−qN )
det

 a(−q) a(−qN )

q
da(−q)
dq

q
da(−qN )

dq

 .

Then √
3

N

1

π
=

∞∑
k=0

(
1
2

)
k

(
1
3

)
k

(
2
3

)
k

(k!)3

(
b̂†Nk + â†N

)(
X̂†N

)k
, (5.2)

where

b̂†N = 1− 2α̂†N ,

â†N =
ĈN (q)√

N

∣∣∣∣
q=e−π/

√
3N

,

and

X̂†N = 4α̂†N

(
1− α̂†N

)
.

We now state a few identities for the cubic case similar to those in Theorem 3.2.
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Theorem 5.3. The following hold:
Let

H†` = H†` (τ) =

(
η(3τ)η(3`τ)

η(τ)η(`τ)

) 12
l+1

.

Then

C2(q
2) = −6

H†2

(1 + 9H†2)2
, (5.3)

C5(q
2) = −6H†5

1 + 4H†5 + 9H† 25

(1 + 9H†5 + 9H† 25 )2
,

C11(q
2) = −6H†11(τ)

U(H†11(τ))

V 2(H†11(τ))
,

where

U(s) = 1 + 5s+ 18s2 + 37s3 + 54s4 + 45s5 + 27s6,

and

V (s) = 1 + 9s+ 18s2 + 27s3 + 9s4.

The examples of (5.1) which follow from Theorem 5.3 are given as follows:

5.1. Case N = 2.

When N = 2, α†2 =

√
2− 1

2
√

2
, b†2 =

√
2

2
and X†2 =

1

2
. Using (5.3) and the fact that

H†2(i/
√

6) =
1

9
,

which follows from two instances of (2.8), we deduce that

C2(e
−2π/

√
6) = −1

6
.

The series for 1/π in this case is

3
√

3

π
=

∞∑
k=0

(
1
2

)
k

(
1
3

)
k

(
2
3

)
k

(k!)3
(6k + 1)

1

2k
.

For case N = 5 and 11, identity (5.1) holds for the following values:

b†5 =
11

23

√
5, a†5 =

4

75

√
5, X†5 =

4

125

and

b†11 = − 5

242

√
11 +

45

242

√
33, a†11 = − 13

726

√
11 +

3

121

√
33, X†11 = − 194

1331
+

225

2662

√
3.

When N = 2 and 5,

X̂†2 = −256− 153
√

3 and X̂†5 = −4,
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which have absolute values greater than 1. This implies that the right-hand side of
(5.2) diverges. In other words, the only identity from Theorem 5.3 that leads to a
series for 1/π via (5.2) is when N = 11 and is given by
√

3

π
=
∞∑
k=0

(
1
2

)
k

(
1
3

)
k

(
2
3

)
k

(k!)3

((
45

22

√
3 +

5

22

)
k +

13

66
+

3

11

√
3

)(
− 194

1331
− 225

2662

√
3

)k
.

We end this section with cubic analogues of Ramanujan’s identities for f(`). In
Table 2, we will state the value of N and in each entry, set

α† = α†(q), β† = α†(qN ).

Table 2: Table of identities for CN (q)

N = 2

Let

X =

(
α†β†(1− α†)(1− β†)

)1/3
9

,

then
C2(q) = −6X.

N = 5

Let

X =

(
α†β†(1− α†)(1− β†)

)1/6
3

,

then
C5(q) = −6X(1− 5X).

N = 11

Let

X =

(
α†β†(1− α†)(1− β†)

)1/6
3

,

and

Y =
1−

(
α†β†

)1/3 − ((1− α†)(1− β†))1/3
9

,

then
C11(q) = −33XY + 3X − 6Y + 33Y 2.

N = 17

Let

X =

(
α†β†(1− α†)(1− β†)

)1/6
3

,

and

Y =
1−

(
α†β†

)1/3 − ((1− α†)(1− β†))1/3
9

,
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then

C17(q) =
6
(
−2X2 + 34X2Y + 51XY 2 − 14Y 2 − 9XY + Y + 51Y 3

)
8Y − 1

.

Remark 5.1. In the above table, we give an identity for ` = 17 to illustrate the fact
that we can compute C`(q) even when the genus of Γ0(3`) +W` is not zero. Applying
Theorem 5.2, together with the identity given above for C17(q) and the value

α̂†17 =
1

2
−
√

17

8
,

we obtain the series

12
√

3

π
=

∞∑
k=0

(
1
2

)
k

(
1
3

)
k

(
2
3

)
k

(k!)3
(51k + 7)

(
−1

16

)k
,

which was discovered by Chan, Liaw and Tan [14, (1.15)].

6. Quartic theory and Ramanujan’s most famous series for 1/π

In 1985, B. Gosper brought Ramanujan’s series for 1/π to the attention of the math-
ematical community by computing 17526200 digits of π using the series

1

π
= 2
√

2

∞∑
k=0

(
1
2

)
k

(
1
4

)
k

(
3
4

)
k

(1)3k
(1103 + 26390k)

(
1

992

)2k+1

(6.1)

(see [1, p. 387 and p. 685]). Series (6.1) was discussed in the book by the Borweins
(see [5, (5.5.23)]), where they remarked that they computed α(58) (see [5, (5.1.2)]) by
calculating a certain number d0(58) (see [5, (5.5.16)]) to high precision. In other words,
it appears that a rigorous proof has not been found for (6.1).

In this section, we will give a proof of (6.1). Identity (6.1) belongs to the quartic
theory (cf. [3]) and a quartic analogue of Theorem 1.1 is given by the following Theorem:

Theorem 6.1. Let

A2(q2) =
η16(τ)

η8(2τ)

(
1 + 32

η8(4τ)

η8(τ)

)2

=
η16(τ)

η8(2τ)

(
1 + 64

η24(2τ)

η24(τ)

)
,

and
1

α⊥(q2)
= 1 +

1

64

η24(τ)

η24(2τ)
.

Let

α⊥N = α⊥
(
e−π
√
2N
)
,

and

D⊥N (q) =
1√

A3(q)A3(qN )
det

 A(q) A(qN )

q
dA(q)

dq
q
dA(qN )

dq

 .

Then √
2

N

1

2π
=
∞∑
k=0

(
1
2

)
k

(
1
4

)
k

(
3
4

)
k

(k!)3

(
b⊥Nk + a⊥N

)(
X⊥N

)k
,
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where

b⊥N = 1− 2α⊥N ,

a⊥N = −
D⊥N (q)

2
√
N

∣∣∣∣
q=e−2π/

√
2N

,

and

X⊥N = 4α⊥N

(
1− α⊥N

)
,

In order to derive series for 1/π using Theorem (6.1), it appears that we need to
construct formulas analogous to those for DN (q) given in Table 1 in Section 5 for the
function D⊥N (q). Fortunately, this turns out to be unnecessary. We will show that the

knowledge of DN (q) is all we need in order to compute D⊥N (q). We begin with our
discussion with the following Theorem:

Theorem 6.2. Let Z(q) = ϑ43(q). Then

−D⊥` (q) =

√
Z(q)Z(q`)

A(q)A(q`)

(
1

1 + α(q)

√
Z(q)

Z(q`)
α(q)(1− α(q)) (6.2)

− `

1 + α(q`)

√
Z(q`)

Z(q)
α(q`)(1− α(q`))− 4D`(q)

)
.

Proof. The proof of (6.2) follows from the identity

A(q) = (1 + α(q))Z(q), (6.3)

which follows by observing that A(q2)/Z(q2) is a modular function on Γ0(4). Using
(6.3), we deduce that

A(q)

A(q`)
=

1 + α(q)

1 + α(q`)

Z(q)

Z(q`)
. (6.4)

Logarithmically differentiating (6.4), identifying the resulting expressions with D`(q)
and D⊥` (q), and using the identity

q
dα(q)

dq
= Z(q)α(1− α),

we complete the proof of (6.2). �

Identity (6.2) and Theorem 6.1 allow us to derive any series for 1/π for a positive
integer N from identities for DN (q) given in Table 1. For example, when N = 3, we
find, using the identity for D3(q) given in Section 4, that

α6 = 35 + 24
√

2− 20
√

3− 14
√

6,

α2/3 = 35− 24
√

2− 20
√

3 + 14
√

6,

D3(e
−π
√

2/3) =
5

2
− 3
√

3

2
,
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√

2/3)

Z(e−π
√
6)

= 3− 2
√

3 + 3
√

2−
√

6,√√√√Z(e−π
√

2/3)Z(e−π
√
6)

A(e−π
√

2/3)A(e−π
√
6)

=
1√
6

+

√
2

4
.

This yields

−D⊥3 (e−π
√

2/3) =
1√
6

and a⊥6 =

√
2

12
,

and we deduce the series

1√
6π

=
∞∑
k=0

(
1
2

)
k

(
1
4

)
k

(
3
4

)
k

(k!)3

(
2
√

2

3
k +

√
2

12

)
1

9k
.

Similarly, when N = 29, we find, using the modular equation for D29(q) derived in
Section 4, that

α58 = 384238403 + 71351280
√

29− 50452974
√

58− 271697580
√

2,

α2/29 = 384238403− 71351280
√

29− 50452974
√

58 + 271697580
√

2,

D29(e
−π
√

2/29) = 6351
√

29− 24184
√

2,√√√√Z(e−π
√

2/29)

Z(e−π
√
58)

= 37323 + 6930
√

29− 26390
√

2− 4900
√

58,√√√√Z(e−π
√

2/29)Z(e−π
√
58)

A(e−π
√

2/29)A(e−π
√
58)

=
13

198

√
29 +

1

4

√
2.

This yields

−D⊥29(e−π
√

2/29) =
4412

9801
and a⊥29 =

2206
√

2

284229
.

Together with

b⊥29 =
1820

9081

√
29 and X⊥29 =

1

994
,

we complete the proof of Ramanujan’s series (6.1).

Remark 6.1. We were made aware that an unpublished proof of Ramanujan’s series
(6.1) was discovered around 2015 by Yue Zhao [22], a young Electrical Engineering
student from Tsinghua University. Shaun Cooper also discovered another proof of
(6.1) shortly after the discovery of our proof.

Zhao also gave a first proof of Ramanujan’s series [5, p. 187]

4

π
=
∞∑
k=0

(−1)k
(
1
2

)
k

(
1
4

)
k

(
3
4

)
k

(1)3k
(1123 + 21460k)

(
1

882

)2k+1

,
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which corresponds to N = 37. A proof of the above identity using the method illus-
trated here would require an identity associated with D37(q) which is not present in
this article.
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