Epidemiologie und HIV-Tests

Cornelia Plunger, Nadja Reiterer

26. November 2009

Das ist Cornelia. Cornelia möchte Plasmaspenderin werden. Dafür braucht sie einen negativen Befund eines HIV-Tests. Deshalb geht sie ins Krankenhaus.

Als sie das Ergebnis sieht, erschrickt sie:

Befund positiv.

Ihre Freundin Nadja versucht sie zu beruhigen: Ich hab das mal berechnet. Die Wahrscheinlichkeit, dass du wirklich HIV-positiv bist, ist eher niedrig.

Warum ist das so?

Inhaltsverzeichnis

Beispiel

Inhaltsverzeichnis

Beispiel

Was ist Epidemiologie?

Inhaltsverzeichnis

Beispiel

Was ist Epidemiologie?

Lösung des Problems

Epidemiologie

- Wie treten Krankheiten in größeren Populationen auf?
- ▶ Welche Ursachen und Risikofaktoren kann man erkennen?
- ▶ Wie verbreitet sich die Krankheit in der Bevölkerung?
- Wie kann man Krankheiten prognostizieren?

Grundbegriffe

Prävalenz: Relativer Krankenbestand

P(Personkrank)

Wahrscheinlichkeit, dass eine Person zu einem bestimmten Zeitpunkt erkrankt ist

Prävalenz bei HIV

Population	Prävalenz
geringstes Risiko	0.00001
homosexuelle Männer	0.001
drogenabhängige Personen	0.01

Grundbegriffe

Diagnostische Tests

Untersuchung des Krankheitstatus einer Person

Problem: Jeder Test hat Mängel!

Lösung: Gütekriterien für diagnostische Tests

Gütekriterien für diagnostische Tests

Bedingte Wahrscheinlichkeit

```
P(pos.Testergebnis|Personkrank) = \frac{P(pos.Testergebnis \cap Personkrank)}{P(Personkrank)}
```

Gütekriterien für diagnostische Tests

Sensitivität

Bedingte Wahrscheinlichkeit *P*(*pos.Testergebnis*|*Personkrank*), d.h. Test reagiert richtig positiv

falsch negatives Ergebnis: Gegenwahrscheinlichkeit zu Sensitivität:

P(neg.Testergebnis|Personkrank) =

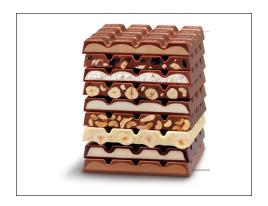
1 - P(pos. Testergebnis | Personkrank)

Gütekriterien für diagnostische Tests

▶ Spezifität

Bedingte Wahrscheinlichkeit P(neg. Testergebnis | Personnichtkrank)

d.h. Test reagiert richtig negativ


falsch positives Ergebnis: Gegenwahrscheinlichkeit zu Spezifität:

P(pos. Testergebnis | Personnichtkrank) =

1 - P(neg.Testergebnis|Personnichtkrank)

Für Cornelia sind diese Gütekriterien eigentlich uninteressant: Vielmehr würden sie die Vorhersagewerte interessieren, also wie hoch die Wahrscheinlichkeit ist, dass sie krank ist, wenn der Test positiv ist.

Wer hat Lust auf...

..?

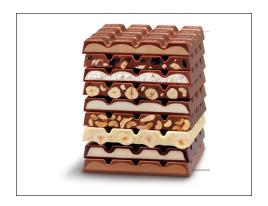
Vorhersagewerte

Wie hoch ist die Wahrscheinlichkeit, dass Cornelia krank ist, wenn der Test positiv ist?

Vorhersagewerte

Positiver Vorhersagewert:

Negativer Vorhersagewert:


Vorhersagewerte mit Hilfe des Bayes Theorem

Positiver Vorhersagewert:

$$P(krank|pos.Test) =$$

$$\frac{P(\textit{krank}) \cdot P(\textit{pos.Test}|\textit{krank})}{P(\textit{krank}) \cdot P(\textit{pos.Test}|\textit{krank}) + P(\textit{nichtkrank}) \cdot P(\textit{pos.Test}|\textit{nichtkrank})}$$

Hat noch wer Lust auf..

..?

Negativer Vorhersagewert mit Hilfe des Bayes Theorem

Wer kann analog zum positiven Vorhersagewert den negativen Vorhersagewert bestimmen?

Vorhersagewerte mit Hilfe des Bayes Theorem

Negativer Vorhersagewert:

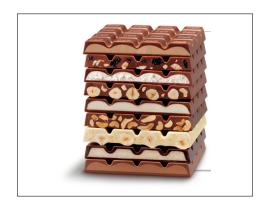
$$P(nichtkrank|neg.Test) =$$

$$P(nichtkrank) \cdot P(neg.Test|nichtkrank)$$

 $P(\textit{nichtkrank}) \cdot P(\textit{neg.Test}|\textit{nichtkrank}) + P(\textit{krank}) \cdot P(\textit{neg.Test}|\textit{krank})$

Was bedeutet das für Cornelia?

HIV-Test mit einer Sensitivität von 99 Prozent und einer Spezifität von 99,5 Prozent


Positiver Vorhersagewert:

$$P(krank|pos.Test) = \frac{0.00001 \cdot 0.99}{0.00001 \cdot 0.99 + 0.99999 \cdot 0.005} = 0.00198$$

Negativer Vorhersagewert:

$$P(\textit{nichtkrank}|\textit{neg.Test}) = \frac{0.99999 \cdot 0.995}{0.99999 \cdot 0.995 + 0.00001 \cdot 0.01} = 1.00000$$

Doping..

..für Geist und Körper gefällig?

Aufgabe

Wie hoch ist der positive bzw. der negative Vorhersagewert bei einer drogenabhängigen Person?

Prävalenz: 1 Prozent Sensitivität: 99 Prozent Spezifität: 99.5 Prozent

HIV

Population	Prävalenz	pos. Vorhersagewert	neg. Vorhersagewert
geringstes Risiko	0.00001	0.00198	1.00000
homosexuelle Männer	0.001	0.16541	0.99999
drogenabhängige Personen	0.01	0.66667	0.99990

Zusammenfassung

- Vorhersagewerte von Prävalenz abhängig:
 - Prävalenz für Einzelfälle nicht immer bekannt
 - ▶ Prävalenz gering ⇒ Nachteil für pos. Vorhersagewert
 - ▶ Neg. Vorhersagwerte nahe bei 1.
- Arzt muss Befund immer Ernst nehmen
- ▶ Bei hoher Sensitivität ⇒ Person sicher krank
- Anwender sollten deshalb gute Kenntnisse über Stochastik haben