Maß- und Integrationstheorie (WS 10/11)

Shantanu Dave & Günther Hörmann

Aufgabe 5

1 (Rechnen mit Indikatorfunktionen) Seien Ω und I Mengen und $A, B \subseteq \Omega$ sowie $A_i \subseteq \Omega$ für $i \in I$. Zeige folgende Eigenschaften der entsprechenden charakteristischen Funktionen:

- (a) $A \subseteq B \iff \mathbf{1}_A \le \mathbf{1}_B$
- (b) $A \cap B = \emptyset \iff 1_{A \cup B} = 1_A + 1_B$ (insbesondere gilt $1_{A^c} = 1 1_A$)
- (c) $1_{A \cap B} = 1_A \cdot 1_B$
- (d) Für $A = \bigcup_{i \in I} A_i$ ist $\mathbbm{1}_A = \sup_{i \in I} \mathbbm{1}_{A_i}$ (punktweise Gleichheit)

(Bem.: analog ist $1_{\bigcap_{i \in I} A_i} = \inf_{i \in I} 1_{A_i}$)

- $\boxed{\mathbf{2}}$ Sei (Ω, \mathcal{A}) ein messbarer Raum und für $n \in \mathbb{N}$ sei $f_n \colon \Omega \to \overline{\mathbb{R}}$ eine messbare Funktion. Zeige, dass die Menge $\{\omega \in \Omega \mid (F_n(\omega))_{n \in \mathbb{N}} \text{ konvergiert}\}$ zu \mathcal{A} gehört.
- $\boxed{\bf 3}$ Sei (Ω,\mathcal{A}) ein messbarer Raum und $f\colon\Omega\to\overline{\mathbb{R}}$ eine Funktion. Zeige:
- (a) f ist messbar $\iff f^+$ und f^- sind messbar
- (b) f ist messbar $\implies |f|$ ist messbar, ABER die Umkehrung gilt im Allgemeinen nicht!

zu §10. Integral im Stile von Lebesgue

- 4 Betrachte den Borel-Lebesgue-Maßraum (\mathbb{R} , \mathcal{B} , λ), wobei \mathcal{B} die Borel- σ -Algebra und λ das Lebesgue-Maß bezeichnet. Ist die Dirichletfunktion $u=1_{\mathbb{Q}}$ eine Elementarfunktion? Falls ja, was ist dann der Wert des Integrals $\int u \, d\lambda$?
- $\boxed{\mathbf{5}}$ Sei (Ω, \mathcal{A}) ein messbarer Raum und \mathcal{M}^+ die Menge der nichtnegativen messbaren numerischen Funktionen darauf. Zeige, dass jede beschränkte Funktion aus \mathcal{M}^+ sogar gleichmäßiger Limes einer monoton wachsenden Folge von Elementarfunktionen ist.
- **6** Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $A \in \mathcal{A}$. Ist die charakteristische Funktion $\mathbb{1}_A$ in jedem Fall integrierbar?