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Abstract. The reciprocal f ∗(x) of a polynomial f(x) of degree n is defined by

f ∗(x) = xnf(1/x). A polynomial is called self-reciprocal if it coincides with its

reciprocal.

The aim of this paper is threefold: first we want to call attention to the fact

that the product of all self-reciprocal irreducible monic (srim) polynomials of

a fixed degree has structural properties which are very similar to those of the

product of all irreducible monic polynomials of a fixed degree over a finite field

Fq. In particular, we find the number of all srim-polynomials of fixed degree by

a simple Möbius-inversion.

The second and central point is a short proof of a criterion for the irreducibility

of self-reciprocal polynomials over F2, as given by Varshamov and Garakov in

[10]. Any polynomial f of degree n may be transformed into the self-reciprocal

polynomial fQ of degree 2n given by fQ(x) := xnf(x+x−1). The criterion states

that the self-reciprocal polynomial fQ is irreducible if and only if the irreducible

polynomial f satisfies f ′(0) = 1.

Finally we present some results on the distribution of the traces of elements

in a finite field. These results were obtained during an earlier attempt to prove

the criterion cited above and are of some independent interest.

For further results on self-reciprocal polynomials see the notes of chapter 3,

p. 132 in Lidl/Niederreiter [5].

1 The rôle of the polynomial xq
n+1 − 1

Some remarks on self-reciprocal polynomials are in order before we can state the

main theorem of this section.

• If f is self-reciprocal then the set of roots of f is closed under the inversion

map α 7→ α−1 (α 6= 0).
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• If f ∈ Fq[x] is irreducible and if the set of roots of f is closed under inversion,

then

f ∗(x) =

{

−f(x) if f(x) = x− 1 ∧ q 6= 2

f(x) otherwise
.

• If f is self-reciprocal and f(−1) 6= 0 then f has even degree.

As a consequence, self-reciprocal irreducible polynomials have even degree with

the only exception of f(x) = x + 1. The following theorem provides the means

for finding the product of all srim-polynomials of fixed degree:

Theorem 1

i) Each srim-polynomial of degree 2n (n ≥ 1) over Fq is a factor of the

polynomial

Hq,n(x) := xqn+1 − 1 ∈ Fq[x].

ii) Each irreducible factor of degree ≥ 2 of Hq,n(x) is a srim-polynomial of

degree 2d, where d divides n such that n/d is odd.

Proof:

i) If f is srim of degree 2n then {α, αq, αq2, . . . , αq2n−1

} is the set of roots of f

in Fq2n . Because this set is closed under inversion we have

∃!j ∈ [0, 2n− 1] : αqj = α−1

which means that α is a root of Hq,j. Obviously Hq,j(x) | xq2j−1 − 1. On

the other hand f(x) | xq2n−1 − 1, so that 2n | 2j. It follows that j = n.

ii) Let g be an irreducible factor of degree ≥ 2 of Hq,n. As a consequence, a

root α of g satisfies αqn = α−1, i.e. the set of roots of g is closed under

inversion. From this we know that g is self-reciprocal of even degree 2d, say.

By the arguments given in i) it follows that 2d divides 2n and g is both a

factor of Hq,d and Hq,n. The gcd of these polynomials is xgcd(qn+1,qd+1) − 1.

It follows that n/d is odd. ⊠

If we define Rq,n(x) as the product of all srim-polynomials of degree 2n (n ≥ 1)

over Fq then Theorem 1 takes the form:

Hq,n(x) = (x1+eq − 1)
∏

d|n

n/d odd

Rq,d(x) (1)
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where eq ≡ q mod 2, i.e. x1+eq − 1 collects the single linear factor x + 1 if q is

even resp. the two linear factors (x+ 1)(x− 1) if q is odd.

If we further use the ’normalization’

H0
q,n(x) := Hq,n(x)/(x

1+eq − 1)

then we can invert the product-formula (1) by Möbius-inversion to get

Lemma 2 The product Rq,n(x) of all srim-polynomials of degree 2n satisfies

Rq,n(x) =
∏

d|n

d odd

H0
q,n/d(x)

µ(d) (2)

Note that due to the fact that
∑

d|n µ(d) = 0 for n > 1 the normalization is of

concern only in the case n = 2s (s ≥ 0), i.e.

Rq,n(x) =
∏

d|n

d odd

Hq,n/d(x)
µ(d), if n 6= 2s (s ≥ 0)

As a consequence of (2) we are able to count the number of srim-polynomials of

fixed degree:

Theorem 3 Let Sq(n) denote the number of srim-polynomials of degree 2n

over Fq.

Sq(n) =















1
2n
(qn − 1) if q is odd ∧ n = 2s

1
2n

∑

d|n
dodd

µ(d) qn/d otherwise

(3)

Remarks

• Carlitz determined the numbers Sq(n) in his paper [2]. Our proof via

Möbius-inversion avoids his lengthy calculations with L-series.

• Note the analogy of this procedure to the usual determination of the number

of all irreducible polynomials of fixed degree n over Fq:

Nq(n) =
1

n

∑

d|n

µ(d) qn/d

(cf. Lidl/Niederreiter [5]). The rôle of xqn−1 − 1 in the case of irreducible

polynomials is played by the polynomial xqn+1 − 1 in the case of self-

reciprocal irreducible polynomials.
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• As is well known (cf. Miller [9]), formula (3) has an interpretation as the

number of all primitive self-complementary necklaces of length n in q colors

- even if q is not a prime power. This is proved by means of de Brujin’s

method of counting.

2 Construction of irreducible self-reciprocal

polynomials

In Galois theory it is occasionally useful to remark that for any self-reciprocal

polynomial f(x) of even degree 2n, x−nf(x) is a polynomial g(y) of degree n in

y := x + x−1. Proceeding in the reverse direction we use this substitution to

construct self-reciprocal polynomials (cf. also Andrews [1], Carlitz [2] and Miller

[9]).

Definition For f(x) =
∑n

i=0 aix
i, a0 6= 0 6= an set

fQ(x) := xnf(x+ x−1) =

n
∑

i=0

ai(1 + x2)ixn−i

The self-reciprocal polynomial fQ of degree 2n has a simple behaviour with

respect to reducibility:

Lemma 4 If f is irreducible over Fq of degree n > 1 then either fQ is a srim-

polynomial of degree 2n or fQ is the product of a reciprocal pair of irreducible

polynomials of degree n which are not self-reciprocal.

Note: two polynomials g and h constitute a reciprocal pair if

∃γ ∈ F∗
q : g

∗(x) = γh(x)

Proof: If α is a root of fQ then α + α−1 is a root of f , by definition of fQ. The

irreducibility of f implies that α + α−1 has degree n, i.e.

(α + α−1)q
n

= α + α−1 (n mimimal!) (4)

This is equivalent to (αqn+1 − 1)(αqn−1 − 1) = 0. So, either (αqn+1 − 1) = 0,

which by Theorem 1 means that fQ is irreducible. Or (αqn−1 − 1) = 0, which

means that each irreducible factor of fQ is of degree n. If such a factor would be

srim (which would be possible only in case n even) then αqn/2+1 − 1 = 0 would

contradict to the minimality of n in (4). ⊠

This property of the transformation f 7→ fQ can be put in a different way:
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• If n > 1 then

IQq,n(x) =
Rq,n(x)Iq,n(x)

Rq,n/2(x)

where Rq,n/2(x) = 1 if n is odd and Iq,n(x) denotes the product of all

irreducible monic polynomials of degree n over Fq.

• Furthermore, this relation allows a different way to deduce the formula in

Theorem 3 for the number of srim-polynomials.

For the proofs of these two remarks cf. Götz [3].

It is natural to ask for conditions for the coefficients of f which guarantee that fQ

is irreducible. In the case of the smallest field (q = 2) Varshamov and Garakov

[10] gave the following answer:

Theorem 5 Let f be an irreducible polynomial over F2. Then fQ is irreducible

if and only if f ′(0) = 1, i.e. the linear coefficient of f is 1.

Proof: Let α be a root of fQ; then β := α + α−1 is a root of f . β has degree n

over F2, because f is irreducible by assumption. On the other hand, α is a root

of g, where

g(x) := x2 − βx+ 1 ∈ F2n [x]. (5)

The status of quadratic equations in characteristic 2 is well known

(cf. MacWilliams and Sloane [6], p. 277):

The polynomial Ax2 +Bx+ C = 0 has

• one solution in case B = 0

• no solution in case B 6= 0 ∧ Tr(AC
B2 ) = 1

• two solutions in case B 6= 0 ∧ Tr(AC
B2 ) = 0

Define Tr(AC
B2 ) as the discriminant of the polynomial Ax2 + Bx + C = 0.Then

the discriminant of g(x) is Tr(β−2). Because Tr is the absolute trace, Tr(β−2) =

Tr(β−1). But Tr(β−1) = 1 means that the second highest coefficient in f ∗(x) is

one. This is equivalent to f ′(0) = 1. ⊠

Remark In their paper [10] Varshamov and Garakov assert on p. 409 that

“almost” all of their results could be generalized to higher characteristics. Our

proof of their criterion shows, that the crucial condition is the irreducibility of

g in equation (5). Exactly this equation is also the starting point of Carlitz’s

counting arguments. How the irreducibility of g can be expressed in terms of the

coefficients of f is by no means obvious. The condition β2 − 4 6∈ F2
q (q odd) has

to be investigated.

5



3 Trace-Polynomials over Fq.

In their proof of Theorem 5 Varshamov and Garakov in [10] perform some calcu-

lations with polynomials which − in a first attempt to simplify their proof − led

us to the following considerations.

Definition

i) For δ ∈ Fq the trace-polynomials are defined by

Tq,n(x, δ) :=

{

δ if n = 0

δ +
∑n−1

i=0 xqi if n > 0

ii) Fq,n(x, δ) denotes the product of all irreducible monic polynomials of degree

n over Fq, which have their second-highest coefficient equal to δ.

Observation Obviously, we have the relation Fq,n(x, δ) | Tq,n(x, δ) .

The next lemma gives the structure of Tq,n(x, δ):

Lemma 6 If q = ps is a prime power and δ ∈ Fq, then the trace-polynomials

satisfy

Tq,n(x, δ) =
∏

{

Fq,d(x, γ) ; d | n , γ ∈ Fq ,
n

d
· γ = δ (modp)

}

Proof:

“ ⊃ ” if f has the form f(x) = xd + γxd−1 + . . . and α is a root of f in Fqd then

by the transitivity of the trace:

Trn1 (α) = Trd1(Tr
n
d (α))

= Trd1(
n

d
α) =

n

d
· (−γ) = −δ (modp)

“ ⊂ ” if g(x) | Tq,n(x, δ) and g is irreducible of degree d, then d is a divisor

of n because (Tq,n(x, δ))
q − Tq,n(x, δ) = xqn − x. For a root α of g define

γ := −Trd1(α) and so g(x) is a factor of Fq,d(x, γ). ⊠

By another application of the Möbius-inversion we find
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Theorem 7

Fq,n(x, 0) =
∏

d|n Tq,n/d(x, 0)
µ(d) if p ∤ n

Fq,n(x, 0) =
∏

d|n ∧ p 6 |d

(

Tq,n/d(x, 0) / (xqn/pd
− x)

)µ(d)

if p | n

Fq,n(x, δ) =
∏

d|n ∧ p 6 |d

(

Tq,n/d(x, d
−1(modp) · δ

)µ(d)
if δ 6= 0

Remarks

• By combining Theorem 7 and Theorem 1, and with the help of a result which

is valid for F2 only, Götz [3] has given an alternative proof of Theorem 5.

• For the case q = 2 and δ = 1 Theorem 7 gives the remarkable information

that over F2 there are exactly as many srim-polynomials of degree 2n as

there are irreducible monic polynomials of degree n with linear coefficient

equal to 1 (by taking reciprocals). Theorem 5 provides an explicit bijection

between these two sets of polynomials.

Note added in proof 2

The case of odd characteristic was solved in [8]. The results were presented in

[4], § 2.7 and the proofs were further simplified in [7], § 3.3.
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