
Average Execution Times of Series–Parallel Networks

W. J. Gutjahr and G. Ch. Pflug
Institute of Statistics and Computer Science

University of Vienna

Abstract

The papers investigates a model for series–parallel processing structures developed by
E. Gelenbe. We show that, under the so–called combinatorial distribution assumption, the
average total execution time of a series–parallel processing structure cannot grow essentially
slower than n1/2, where n is the number of primitive tasks in the structure.

1 Introduction

Since MacMahon’s article [7], published exactly a hundred years ago, series–parallel networks
have found continuous interest among combinatorialists (a survey and some new results are
given in Moon [8]). In the present paper, we study a combinatorial parameter of such networks
which plays an important role in the analysis of partially parallel processing structures.

In [2], chapter 5, Gelenbe develops a model for series–parallel processing structures. He
supposes that a program is composed of (primitive) tasks; some of them are to be performed in
series, others may be performed in parallel. The execution times of the tasks are independent
identically distributed random variables. The question is: what can be said about the execution
time of the whole program?

Obviously, an answer to this question will not only depend on the execution time distribu-
tion of a task, but also on the assumed distribution of processing structures. If we consider
the processing structure as (deterministically) given, then the derivation of properties of the
total execution time is a computational problem. This is the usual viewpoint in the theory of
project planning, where processing structures with random execution times of primitive tasks
are represented by PERT–networks. Recent results on this version of the problem can be found
in Yazici-Pekergin and Vincent [9].

In Gelenbe’s model, however, also the processing structure is considered as a random variable.
He assumes that the structure originates as the result of a branching process (which models
stepwise refinement of a program). Given the execution time distribution of a task and the
characteristic parameters of the branching process, Gelenbe shows how to compute numerically
the execution time distribution of the program.

This approach has two drawbacks:

• It does not supply information on the average total execution time, since there is no way
to determine the (infinite) tail of the distribution.

1



• As the result of the branching process, processing structures of different size may occur.
Their properties get “mixed” in the model. One does not obtain information on the
behavior of processing structures of a given size n.

In this paper, we follow the usual line of investigation in the average case analysis of algo-
rithms (see e. g. Kemp [5]): The average performance of the system is studied as a function of
the “problem size” n, with the emphasis on the examination of the asymptotic behavior of this
function. Applied to the present problem, this approach means that we have to condition the
processing structure resulting from Gelenbe’s branching process on a fixed size n.

(Series–parallel) processing structures will be represented by series–parallel networks:

Definition 1.1. A series–parallel network (abbreviated SPN) is defined by:

(i) A task, denoted by �, is a SPN.

(ii) If N1, . . . , Nk (k ≥ 2) are SPNs, then also series (N1, . . . , Nk) and parall (N1, . . . , Nk) are
SPNs.

series (N1, . . . , Nk) resp. parall (N1, . . . , Nk) means that N1, . . . , Nk are executed in series
resp. in parallel.

We measure the size of an SPN by the number of tasks contained in it. For example,
series (parall (�,�,�),�) is an SPN of size 4.

Without loss of generality, we may confine ourselves to SPNs where the operations “series”
and “parall” always have exactly two operands. For example, the SPN series (N1, . . . , N4) may
also be represented as

series (N1, series (N2, series (N3, N4))).

(Clearly, this representation is not unique.)
An SPN with this restriction may be represented in an obvious way by a binary tree, where

the operations “series” and “parall” are internal nodes, and the tasks are leaves.

Gelenbe’s probabilistic model, applied to SPNs of the described “binary” type, is the follow-
ing:

a) Start with an unspecified symbol ×.

b) Replace each ×

– by � with probability 1− w,

– by parall (×,×) with probability αw,

– by series (×,×) with probability (1− α)w.

(0 < w < 1, 0 ≤ α ≤ 1).

If w < 1/2, w = 1/2 and w > 1/2, this yields a subcritical, critical and supercritical binary
splitting process, respectively (cf. Jagers [4], p. 20). In the subcritical and in the critical case,
the resulting SPN is almost surely finite.

α may be interpreted as the degree of parallelism.

2



It can be shown (cf. Kolchin [6], Aldous [1], Gutjahr [3]) that conditioning the family tree of
a Galton–Watson branching process to a fixed number m of nodes leads to uniform distribution
on the family of trees with m nodes (the so–called combinatorial distribution model). Since
in binary trees with n leaves the total number of nodes is m = 2n − 1, we obtain uniform
distribution in our case also by conditioning on n leaves. So our distribution model can be
described as follows:

• Choose a binary tree with n leaves (each such tree being equally likely),

• assign “parall” or “series” to its internal nodes, independently with probabilities α resp.
1− α.

2 Growth of the average total execution time

Now let F0 denote the distribution of the execution time of a single task, given by its distribution
function. First of all, we consider the case where F0 is the point mass in 1, i. e. we assume
deterministic execution time 1 for each task. If one knows the SPN N , then the total execution
time τ of N can be computed recursively in the following way:

τ(�) = 1, (1)

τ (parall (N1, N2)) = max (τ(N1), τ(N2)), (2)

τ (series (N1, N2)) = τ(N1) + τ(N2). (3)

For a binary tree t, let τ̄(t) be the expected value of τ(N) for all SPNs N whose tree
structure is t. In other words, τ̄(t) is obtained by taking the expected value of τ(N) for all
different assignments of “parall” resp. “series” to the internal nodes of t, weighted by their
probabilities.

Definition 2.1. We denote by en the average value of τ̄ for all binary trees with n leaves. Thus,
en is the average total execution time of SPNs of size n in our model.

For rational α = p/q (p, q integers), it is possible to compute en by means of a recursion:
The numbers an,k of SPNs N of size n with τ(N) ≤ k are given recursively by

an,k =
n−1∑
j=1

{
paj,kan−j,k + (q − p)

k−1∑
l=1

(aj,l − aj,l−1)an−j,k−l

}
(n > 1, 1 ≤ k ≤ n),

an,0 = 0 (n ≥ 1),

an,k = an,n (n > 1, k > n),

a1,k = 1 (k ≥ 1),

and one easily finds

en = n− 1
an,n

n−1∑
k=1

an,k.

Hence the numbers en can be computed numerically. For α = 1/2, e. g., one obtains:

3



n 10 20 30 40 50 60 70 80
en 4.989 8.598 11.866 14.929 17.852 20.667 23.395 26.051

It would be tempting to derive (e. g. by generating function methods) information on the
asymptotic behavior of (en) from the recursion above, but this seems to be very difficult. So
we follow another approach. We try to “translate” information on τ̄ from the corresponding
unconditioned branching process (the binary splitting process described in Section 1) to the
size–conditioned process.

The same approach can be applied to a far more general class of problems (see Gutjahr [3]).
We shall use the following relation, which is proved in [3]:

Lemma 2.1. Let Π be a function assigning to each binary tree t a real value Π(t). Let ecrit be
the expected value of Π(t) for family trees t of a critical binary splitting process, and let en be
the expected value of Π(t) for binary trees t with n leaves, where each such tree has the same
probability. Then

∞∑
n=1

enn
−3/2 <∞ iff ecrit <∞.

We apply this lemma to the function Π = τ̄ defined above (such that Definition 2.1 is
consistent with the definition of en in Lemma 2.1). This makes it possible to derive a kind of
asymptotic upper bound for the growth of the numbers en. In order to formulate the result, the
following definition is useful:

Definition 2.2. The growth exponent η of a series (en) of real numbers is the number

η = inf{y : en = O(ny) (n→∞)}.

For the proof of the result, we need a technical lemma concerning the recursion

ak+1 = ak(1− γak), (4)

which resembles the famous logistic recursion

ak+1 = γak(1− ak)

investigated in biodynamics and chaos theory.

Lemma 2.2. Let γ > 0. For the numbers ak defined by (4) and by an initial value a1 with
0 < a1 ≤ 1/(2γ), the estimation

ak > a2/k (k ≥ 1)

holds.
Proof. Let

f(x) = x(1− γx). (5)

f(x) is increasing in the interval [0, 1/(2γ)]. We show by induction ak ≤ 1/(kγ) (k ≥ 2). The
case k = 2 is clear. For k ≥ 2, one finds

ak+1 = f(ak) ≤ f
(

1
kγ

)
≤ 1

(k + 1)γ
.

4



Next, we show by induction ak ≥ a2/(k − 1) (k ≥ 2). k = 2 is clear again. For k ≥ 2,

ak+1 ≥ ak(1− γ/(kγ)) ≥ a2/k = a2/((k + 1)− 1).

Hence
ak > a2/k (k ≥ 2),

and evidently a1 > a2.

Theorem 2.1. For each degree of parallelism α < 1, the average total execution times en given
by Definition 2.1 have a growth exponent η ≥ 1/2.

Proof. The case α = 0 is clear, so assume 0 < α < 1. Because of Lemma 2.1, it is sufficient to
show that ecrit =∞, since

∑
enn

−3/2 =∞ implies that en = O(ny) cannot hold for an exponent
y < 1/2. Consider the critical binary splitting process. The start symbol × is replaced by the
symbol � with probability 1/2, by parall (×,×) with probability α/2, and by series (×,×) with
probability (1− α)/2. If the start symbol is “split”, i. e. not replaced by �, then the branching
processes starting with the left resp. the right successor of the root are identical in distribution
to the original binary splitting process. This yields the following recursion for the distribution
function of the total execution time:

F (k) =
1
2

+
α

2
F (k)2 +

1− α
2

(F ∗ F ) (k) (k ≥ 1), F (0) = 0, (6)

where ∗ denotes the convolution of distribution functions. Since τ(N) ≥ 1, one has

τ(N1) + τ(N2) ≥ max (τ(N1), τ(N2)) + 1.

It will be shown that we get infinite average total execution time even if, in the definition of τ ,
we replace (3) by

τ (series (N1, N2)) = max(τ(N1), τ(N2)) + 1. (7)

By this replacement, (6) turns into

F (k) =
1
2

+
α

2
F (k)2 +

1− α
2

F (k − 1)2 (k ≥ 1), F (0) = 0. (8)

Solution of the quadratic equation yields

F (k) =
1
α

(
1−
√

1− α ·
√

1− α F (k − 1)2
)
. (9)

With gk = 1 − F (k), the expected value of a random variable with distribution F is finite iff∑
gk <∞. In terms of gk, (9) reads

gk+1 = β

[√
1 + (2gk − g2

k) / β − 1
]
, (10)

where β = (1− α)/α (0 < β <∞).

It is not difficult to show that the solution F of the functional equation (8) exists and that
F is a distribution function. Hence gk ↓ 0 (k →∞). Expansion of the square root in (10) and
some straightforward lower bound estimations lead to

gk+1 ≥ gk(1− γgk), (11)

5



where γ = (β + 1)/(2β).
Because of gk ↓ 0, there is an m such that gm+1 ≤ 1/(2γ). Let (ak) be the numbers defined

by (4) with a1 = gm+1. We show by induction that gm+l ≥ al (l ≥ 1). With f given by (5),

gm+l+1 ≥ gm+l (1− γgm+l) = f(gm+l).

Because of gm+l ≤ gm+1 ≤ 1/(2γ) and of f increasing in [0, 1/(2γ)],

f(gm+l) ≥ f(al) = al+1.

So gm+l ≥ al has been shown for all l.

Lemma 2.2 yields
al > a2/l = c/l

with c = f(gm+1). Thus also
gm+l ≥ c/l,

and hence
∑
gk diverges.

Now we return to the more general case of an arbitrary execution time distribution for the
single tasks.

Corollary. Let the distribution F0 of the execution time of a primitive task be arbitrary, except
the point mass in zero, and α < 1. Then Theorem 2.1 still holds.

Proof. Since F0 is not the point mass in 0, there is an ε > 0 such that F0(ε) < 1. Without loss
of generality one may assume ε = 1 (otherwise use another unit of time). Then if we replace F0

by the Bernoulli distribution with p = 1 − F0(1), all average execution times will decrease (or
at least remain constant). In this case we may use the “best case estimation”

τ (series (N1, N2)) =
{

max(τ(N1), τ(N2)) + 1 if τ(N1) > 0, τ(N2) > 0,
max(τ(N1), τ(N2)) otherwise

instead of (7). This leads to

F (k) =
1
2

+
α

2
F (k)2 +

1− α
2

{
(1− F (0))2 · F (k − 1)2 + [1− (1− F (0))2] · F (k)2

}
(k ≥ 1)

and
F (0) =

1
2

(1− p) +
1
2
F (0)2.

Hence
F (k) =

1
2

+
α̃

2
F (k)2 +

1− α̃
2

F (k − 1)2 (k ≥ 1), F (0) = 1−√p,

with α̃ = α + (1 − α)(1 − p). As in the proof of Theorem 2.1 one shows that F has infinite
expectation.

Without proof we remark that in the case α = 1 (pure parallelism), the growth exponent is
not always ≥ 1/2; it turns out that for α = 1 the numbers en have a growth exponent η ≥ 1/2
iff ∫ ∞

0

√
1− F0(t) dt =∞.

6



3 Conclusion

Theorem 2.1 and its corollary yield only rough information on the growth of the average total
execution times. Nevertheless, it seems remarkable that the result holds for arbitrary primitive
execution time distribution F0 and for any degree of parallelism α < 1. Informally speaking,
we have shown that the average total execution times of series–parallel processing structures
cannot grow essentially slower than n1/2, where n is the number of primitive tasks contained
in the processing structure. In the purely sequential case (α = 0), the average total execution
time is of order n. So our result states that in the indicated situation a speed–up of an order
larger than n1/2 cannot be expected — even if an unlimited number of processors is available, no
memory conflicts occur, the communication overhead is negligible and the degree of parallelism
is high.

As to the mathematical technique of our investigation, we used a branching process ap-
proach which can also be applied to other recursively defined structures under the combinatorial
distribution model.

References

[1] D. J. Aldous, The continuum random tree II: an overview, Proc. Durham Symp. Stochastic
Analysis 1990, Cambridge University Press (1991), 23 – 70.

[2] E. Gelenbe, Multiprocessor Performance, Wiley (1989).

[3] W. J. Gutjahr, Expectation transfer between branching processes and random trees, ac-
cepted for publication in: Random Structures and Algorithms.

[4] P. Jagers, Branching Processes with Biological Applications, Wiley (1975).

[5] R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms, Wiley–
Teubner Series in Computer Science (1984).

[6] V. F. Kolchin, Random Mappings, Optimization Software, New York (1986).

[7] P. A. MacMahon, The combination of resistances, The Electrician 28 (1892), 601 – 602.

[8] J. W. Moon, Some enumerative results on series–parallel networks, Annals of Discrete
Mathematics 33 (1987), 199 – 226.

[9] N. Yazici-Pekergin and J.-M. Vincent, Stochastic bounds on execution times of parallel
programs, IEEE Trans. Software Eng. 17 (1991), 1005 – 1012.

7


