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Abstract. If we replace k by a Lucas number, uk−vk

u−v
, in certain integral quotients

such as the binomial coefficients, the quotient remains integral. We show that this

substitution may be repeated indefinitely, while preserving the integrality, for a very
large class of quotients.

1. Introduction. The Lucas numbers [1] — or those of Lucas–Carmichael1 [2] —
are given by the expression uk−vk

u−v , where n is an integer ≥ 1, and u + v and uv are
rational integers which we suppose to be coprime. Thus, u and v are quadratic or
rational integers, which we further assume to be both non-zero and with a ratio which
is not a root of unity. The Lucas numbers are thus rational integers insofar as they
are integral symmetric functions of u and v whose elementary symmetric functions
u + v and uv are rational integers.

The numbers have been generalized by Lehmer [3], by taking, for n ≥ 1, uk−vk

u−v ,

if n is odd, and uk−vk

u2−v2 , if n is even, with (u + v)2 and uv rational coprime integers
and the same restrictions for u and v: non-zero, and u

v different from a root of unity.
These are rational integers since, in the two cases, the expression are written in an
integral way as functions of uv and (u + v)2.

We call Dn a Lucas–Carmichael or, equally, Lehmer number. These authors show
in particular two things: on the one hand2, that the g.c.d. of Dm and Dn is Dd, where
d is the g.c.d. of m and n, and, on the other hand, that if in the binomial coefficient
(m+n)!
m! n! , and certain other integral quotients, we replace k by Dk, the quotients remain

integral: it is well-known that, for example,

F1F2 · · ·Fm+n

F1F2 · · ·Fm · F1F2 · · ·Fn

is an integer, where Fn is the n-th Fibonacci number, the Fibonacci numbers being a
special instance of the numbers Dn. These two properties are proved independently
of one another.

1The inventor of these numbers and their principal properties is Lucas. However, Carmichael
generalizes certain results and corrects some errors in an exposé, which is much more direct, and

clearer at the same time.
2M. Ward [4] proves it once again for u and v integral
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In the following, we prove again, in a more direct fashion, the property of g.c.d.,
by generalizing to algebraic integers. Then, we use it to show that we can repeat the
substitution of n by |Dn| indefinitely:

n −→ |Dn| −→ |D|Dn|| −→ · · · ,

where the D are any Lucas or Lehmer numbers, while preserving the integrality, and
we can do this for a very large class of quotients. For example,

D1D2 · · ·Dm+n

D1D2 · · ·Dm ·D1D2 · · ·Dn
,

where D = uF −vF

u−v , is still an integer. We denote by (r, s) the positive g.c.d. of the
rational integers r and s. We denote by (u) the principal ideal generated by the
algebraic integer u and, for ease, we denote by (u, v) the g.c.d. of (u) and (v). We can
show straight away that (u + v, uv) = 1 of

(
(u + v)2, uv

)
= 1 is the same as having

(u, v) = (1).

2. Property of the g.c.d.. Iterations.

Lemma. Let u and v be two non-zero integers of an algebraic number field, whose
ratio is not a root of unity. We suppoe that (u, v) = (1). Then the g.c.d. of the
principal ideals

(
um−vm

u−v

)
and

(
un−vn

u−v

)
is the principal ideal

(
ud−vd

u−v

)
, where m and

n are positive integers, and d = (m,n). If m is even and n is odd, then
(

ud−vd

u−v

)
is

still the g.c.d. of
(

um−vm

u2−v2

)
and

(
un−vn

u−v

)
.

Proof. We have the identity

vm
(
un−m − vn−m

)
= un − vn − un−m (um − vm) ,

with m < n. If P is a prime ideal which divides (um− vm) and (un− vn), then it also
divides (vm)(un−m − vn−m), and thus one or the other of the two ideals. It cannot
divide (vm) since it would divide (v), and thus (u), which contradicts the fact that
(u, v) = (1). Also P divides (un−m − vn−m) and thus also (ud−vd), since d = αn−βm
and since (un − vn) divides (uαn − vαn), as (um − vm) divides (uαm − vαm). Thus,
we have (

um − vm

u− v
,
un − vn

u− v

)
=

(
ud − vd

u− v

)
.

For the second assertion, it is sufficient to verify that(
u + v,

un − vn

u− v

)
= (1).

In fact, for odd n, we have

un − vn

u− v
= (−1)(n−1)/2(uv)(n−1)/2 + (u + v)2P,
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where P is a polynomial in uv and (u + v)2, and, since a prime ideal dividing (u + v)
and

(
un−vn

u−v

)
would also divide (uv), we have a contradiction of (u, v) = (1).

The equality (a) = (b) between principal ideals is the same as saying that a = εb,
where ε is a unit of the number field. Since the only units of Q are 1 and −1, then,
passing from principal ideals to numbers, we have the following proposition.

Proposition 1. The g.c.d. of Dm and Dn is, up to sign, Dd, where d is the g.c.d.
of m and n.

And, since D1 = 1, we have

Corollary. If m and n are coprime, then Dm and Dn are coprime.

With a slight abuse of notation, let us call D the map sending n to the positive
integer |Dn| and Dˆthe map which sends the pair (n, m) to the pair (|Dn|, |Dm|). If
δ denotes the operator g.c.d., Proposition 1 becomes

D ◦ δ = δ ◦D .̂

Now let us take a finite sequence of maps D, and their composition product D, which
we call an iterated map, or simply an iteration. It is immediate by recurrence that
this result applies to any iteration, since:

D ◦D′ ◦ δ = D ◦ δ ◦D′ˆ= δ ◦Dˆ◦D′ˆ= δ ◦ (D ◦D′)̂ ,

and we have D ◦ δ = δ ◦D ,̂ where Dˆis the composition product of the D ’̂s. Thus we
have

Proposition 2. The g.c.d. of D(m) and D(n) is D(d), where d is the g.c.d. of m
and n.

Since, for all the maps D, D(1) = 1, we also have D(1) = 1, and the

Corollary. If m and n are coprime, then D(m) and D(n) are coprime.

Let D be an iterated map. If a is a positive integer, we call λ(a) the smallest integer
λ such that a divides D(λ) (if λ(a) does not exist, then we take it to be infinite). We
then have the following proposition.

Proposition 3. The integer a divides D(n) if and only if λ(a) divides n.

Proof. If a divides D(λ(a)), then a divides all the D(kλ(a)), k = 1, 2, . . . , as D(λ(a))
divides D(kλ(a)), since λ(a) divides kλ(a). Conversely, a divides only this sequence.
In fact, if a divides D(λ′), then, from Proposition 2, a also divides D(l), where l =
(λ(a), λ′) ≤ λ(a); but the minimality of λ(a) implies that λ(a) ≤ l. Thus l = λ(a)
and λ′ = kλ(a).

If F is a finite family of positive integers, let us call D(F ) the family of positive
integers D(n), where n runs through F , and #aF the number of multiples of the
integer a in a family F . The first part of the preceding proposition implies that
#aD(F ) ≥ #λ(a)F , while the second part implies the inverse inequality. Thus, we
have
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Corollary 1. #aD(F ) = #λ(a)F .

We can immediately obtain the following corollary.

Corollary 2. Let us take two infinite families, F and G, of positive integers. If, for
every integer a ≥ 2, we have #aF ≥ #aG, then, for every integer a ≥ 2, we also have
#aD(F ) = #aD(G).

3. Application to the iteration of integral quotients. We call the q-analogue
of a positive integer n the polynomial 1−qn

1−q , and we denote by Fq the family of q-
analogues of a family F . We denote by Π(F ) the product of the elements of a family
F . We prove in [8] the following results:

Π(Fq)
Π(Gq) is a polynomial if and only if, for all a ≥ 2, #aF ≥ #aG (Proposition 1),

and (its corollary): If the u are homogeneous forms of the same positive degree, con-
tinuous and positive in a cone K of Rn, then a necessary and sufficient condition for∏

u[u(X)]!εu
q , εu = ±1, to be a polynomial of Z[q], for X ∈ K, is that

∏
u[u(X)]!εu

be integral, for X ∈ K.

The notation [x] denotes the integer part of x, and n!q denotes the q-factorial, i.e.,
Π(Fq), if F is the family 1, 2, . . . , n. A cone is a subset of Rn, invariant for positive
homothety of centre O.

Since each Dn is a specialization of 1−qn

1−q , we have the following:

#aF ≥ #aG ⇐⇒ Π(Fq)
Π(Gq)

∈ Z[q] =⇒ Π(F )
Π(G)

∈ N.

Then Corollary 2 allows us to state the following theorem.

Theorem. Let D be any iteration.

(1) Let F and G be two infinite families of positive integers. If Π(Fq)
Π(Gq) is a polyno-

mial of Z[q], then Π(D(F ))
Π(D(G)) is an integer.

(2) Let us take a family of homogeneous forms u of the same degree > 0 on Rn,
and let K be a cone in which they are positive. If

∏
u[u(X)]!εu , εu = ±1, is

integral for X ∈ K, then

∏
u

(
D(1) · D(2) · · ·D([u(X)])

)εu

is integral for X ∈ K.

The theorem applies to all the polynomial q-analogues of quotients shown in [8], and
in particular to the Young numbers. It also applies to all the quotients of homogeneous
or linear forms whose integrality is shown in [5], [6] and [7].

Remark. In the first step of the iteration, we pass from #aF ≥ #aG, which implies
that Π(F )

Π(G) is integral, to Π(D(F ))
Π(D(G)) , an integer, and, at the same time, we see clearly that
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Π(Fq)
Π(Gq) ∈ Z[q]. We have the same thing at each step, when we passs from an integral
quotient to another integral quotient and a polynomial quotient simultaneously. At
this stage, we do not need the property of the g.c.d.. It is proved, by using, as
Carmichael does,

1− qn

1− q
=

∏
d|n

Φd,

where Φd is the d-th cyclotomic polynomial, and noting that, if #aF ≥ #aG, then
the family of divisors of F contains that of G. However, we cannot move onto the
next stage without having #aD(F ) ≥ #aD(G), which is proved by the property of
the g.c.d., and which is thus the key to this indefinite iteration.
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