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Abstract

We give a generating function for one source under-diagonal directed
animals convex following their direction. This family of animals is a
subset of the general directed animals introduced in theoretical physics
as a model for the study of the directed percolation. The generat-
ing function parameters are the horizontal semi-perimeter, the vertical
semi-perimeter, the area and the first column height of a family of poly-
ominoes in bijection with those animals.

1 Introduction

Consider the infinite square lattice Il = Z x Z. A wunit step is a couple of
points (p1,p2) € I* such that py = (¢,7) and p; = (i + ¢,j + o) where the
couple (€, 0) can take the subsequent values: (1,0,) for the Fast step, (—1,0)
for the West step, (0,1) for the North step and (0, —1) for the South step. A
path in a subset P of Il between two points p and ¢ is a sequence of points
P =p1,p2, ..., e = ¢ all in P, such that, for all 4, 1 <i¢ <k —1, (p;,piy1) is a
unit step.

A directed animalis a subset P of 1 such that every point in P can be reached
from particular points called sources (or roots), following a path in P using only
North and East unit steps. Such a path is called a directed path. The direction
of the animal is then North-East. Usually, the sources of P are located on a
line perpendicular to the principle diagonal for which the equation is y = z.
The associated polyomino of an animal is obtained by centering every point of
the animal in a unit square.

The enumeration of directed animals and polyominoes took its sources in the
statistic physics theory and was studied by physicists like H.N.V. Temperley
[Te], Dhar [Dh], Enting & Guttmann [EG], Lin [Li], V. Hakim & J.P. Nadal
[HN] as well as by combinatorists like D. Gouyou-Beauchamps & X.G. Viennot
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[GV], J.G. Penaud [Pel], M.P. Delest [De], S. Dulucq [DD], Fedou [Fe], M.
Bousquet-Mélou [BM1], E. Barcucci & R. Pinzani & R. Sprugnoli [BPS], S.
Frereti¢ & D. Svrtan [F'S] and J.C. Lalanne [Lal.

We are interested here by the enumeration of one source directed animals,
convex following their direction. We call them diagonally convezx directed an-
imals (deda for short). We give an example of 26 points deda in figure 1. An
under-diagonal deda is a deda without points over the line crossing its source
and parallel to the diagonal of equation y = z.

Figure 1: A 26 points deda

2 Definitions

In relation to polyominoes, we normally think in terms of columns rather than
diagonals. So, accordingly, we “stand up” our animals transforming diagonals
into columns.

Let ¢ be an application which transforms the under-diagonal deda’s into col-
umn convex directed polyominoes. We call F the image of the under-diagonal
deda’s by ¢. is a simple rotation of the under-diagonal deda diagonals around
their base (i.e. intersection with the axis Ox) of I1/4 in the trigonometric sense

(Fig. 2).

Figure 2

Let us now give a characterisation of the set F:

Let F' be a column convex polyomino. C4,Cs,...,C, are the columns of F.
Consider that the plan is provided with a reference system (O, z,y) such that
Fis in the rectangle 0 < 2 <n, 0 <y < m (Fig. 3). Let [b;, s;] the projection
of C; over the axis Oy, in a parallel direction to Oz; the base (resp. top) of the
column C; is b; (resp. s;). An element F' of F can have only one column, and
in this case, it is reduced to one box. If it has two columns or more, it verifies
the next four conditions:

(i)by = by =0 and s3 > 51 — 1

(ii)Ve, such that 2 <i <n— 1,6, < b4y <5, — 1

(iii)Ve, such that 2 < ¢ <n—11if s,.1 < s; then 5,41 > s;,—1 and b;11 < 5,1 —1
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(iv) sp, < Spo
@ 1s roughly a bijection between the deda’s and F.

Figure 3

We can consider that a column convex polyomino is a path which begins by a
North step and finishes by a West step in the point of coordonates (0,0) using
North, East, South and West steps without crossing the same point more than
once and without containing the factor W SE. This path constitutes the border
of the polyomino.

The vertical perimeter (resp. horizontal perimeter) of a polyomino is the num-
ber of North and South (resp. East and West) steps in the path representing it.
The perimeter of a polyomino is then the sum of the vertical and the horizontal
perimeter.

The area of a polyomino (resp. animal) is the number of squares (resp. points)
it contains.

We define the diagonal perimeter of an under-diagonal deda as the perimeter
of its image by ¢.

3 Generating function for F

We always cover polyominoes from the left to the right. The first column is
the left hand column.

Let G(x,y,z,t) be the generating function of the polyominoes of F involving
the parameters: horizontal semi-perimeter (by z), vertical semi-perimeter (by
y), area (by z) and the height of the first column (by ?).

To simplify, we put: G(1) = G(z,y,z,1) and G(tz) = G(x,y, z,tz).

The next lemma gives us an equation satisfied by G(z,y, z,1):

Definition 3.1 Let M be the set of polyominoes being not in F and if we
duplex their first column they become elements of F.
M(z,y,z,t) is the generating function of the elements of M.

I
[
[ 1]

Figure 4: An element of M
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Lemma 3.2 The generating function G(t) of the family F and the generating
function M(t) of the family M satisfy the next system of equations:

tzx T
G =ayzt+ aaya =YY T T — e )
+a(1 —|—2 ZQtyQ)(G(tz) + M(tz)) (1)
M(t) = %(G(tz) + M(tz)) + 2ty G(t) (2)
(1 — zyt) 1 — zty

proof: The method we use is the same used by M. Bousquet-Mélou in [BM2].
It consists in taking off the first column of the polyominoes we want to enu-
merate and in giving the generating function of the rest. In our case, taking
off the first column of the polyominoes of F, such that the height of their
first column is lower or equal to the height of their second column, leads us to
another family of polyominoes £. Obviously, this new family of polyominoes
contains F.

Note that L=F U M and FN M = .

O

To solve the system of equation {(1),(2)}, we introduce the following notations:

t
alt) = ZT x

b(t) =

=y~ )’ (= 20— )’

c(t) = x(1 4+ yzt), d(t) = xy=t,

2,242

_aytztt _ 1

L(t)=G(t)+ M(t).
The equality (2) gives:

L(t) = e(t)G(1) + f(1)L(1z) (3)
When we substitute ¢ by ¢z in (3), we obtain:

L(tz) = e(tz)G(tz) + f(tz)L(tzQ) (4)

By doing the same substitution in (1), we obtain the following equation:
G(tz) = a(tz)G(1) — b(tz)G(tz) + c(tz)L(tz) + d(tz) (5)

The equalities (1) and (5) give expressions for L(tz) and L(tz?). Lets transfer
them into (4). We can then write the following theorem:
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Theorem 3.3 The generating function G(x,y,z,t) of the polyominoes of F ac-
cording to the horizontal semi-perimeter (by x), vertical semi-perimeter (by
y), area (by z) and the height of the first column (by t) satisfies the following
equation:

Gl1) = AWG() + BUG() + COG() + D) ()
where:
A0 = oty Ny - )4 eayeeey ¢ L0
o = {50, D) = ) - LR
and so: Gy = 20F <1>1+_F‘g(>1<)1 - E(1)

where:

=Y U A(t2'), et F(t) =Y UD(tz")
>0 i>0
where: U, s a sequence which satisfies the following equation:

Uy=1, U, =B(t) and U,=C(tz""*) U, + B(tz""1HU,_1

Corollary 3.4 The area generating function G(1,1,z,1) of F is:
F
G(L,1,2z,1) = ——

1—-F
1 o 222+4)(1 o Zi-}—S)(l o Zi+2) o (1 o 22i+2)22i+5
here: FE = Z-H : . . U;
where ;Z — ) (] — 2i13)(1 — 2+2)2(] — zitl)

1 o 222+4)(1 o Zi+2) o (1 _I_ Zi-l—l)ZQi-I—S

and F = zz'"l : . U;
; (1 _ 222—|—4)(1 _ ZH—?)
where (Uy,) is a sequence satisfying the following recurrence:
2
—z
Uo - 1, U1 -

(14 gty %)
_I_Zn—l ZQn
(1)1 a1

2’2 1 2n
+ (1_22n+2)(1_ln+1)(1_2n) Un—l

and U, =

4 Semi-perimeter generating function of F

We note that G(t ZthT and M (¢ Z m,t".
r>1 r>2
By developing the formulas (1) and (2), we obtain the following formulas for

g and m,.:
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for r > 1,
1 —(yz)"
g = 22" ((g, + m:) + y(gro1 + myo1) + %‘Z;G(l)
r k
=222 (¥2) ") (7)
k=1 h=1

for r > 2,

r—2 r—1
m, =" Y (r—k—1y" g +mi)+ > 2 Fy g, (8)

k=1 k=1

Consider now the particular case where z:=1 and y:=x :
In this case, we note thatG(1) = G(z, z,1,1).
Using (1) and (2), we notice that G(t) is rational. Hence,

N(t
60 = i1 )
where:
N(t) = t(by — bat + bgt* — byt® + bst?) (10)
D(t) = 1 — ayt + aqt* — ast® + aqt* (11)

The coeflicients are:

a;=(1+2)} az =23+ 2z + 2* — 2%), ag = 2*(3 + ), ay = 27,
by = 2% + xG(1), by = :1:2(1 +3z) + QxQG(l),
by = (3 + 3z — 2?) + 2°(1 — 2)G(1), by = 2*(3 — ),

bs = 2°(1 — x), (12)
G(t) — g1t
Let i)=Y gt = %
r>2
. _ M) .
we have: Gh(t) = D(D) (13)
Where:

Ni(t) = —a(2* + G(1))t® + 2°(a® + 2* + = + 3G(1))¢?
+a?(z? — 22° + 2* 4 (2° — 222 — 2 — 3)G(1))t
+a(z® — 2? + (2 + 1)G(1)) (14)

We notice, then, that the series G1(t) is rational according to ¢ such that the
upper term has a lower degree than the lower term.

So, using [Vi2], we have to solve the homogeneous linear recurrence with con-
stant coefficents of degree 4:
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for r > 2 Gra — Q19r43 + G2Gri2 — a3gry1 + aag, =0 (15)
If we write D(t) = [T\, (1 — A;t), the g,’s where r > 2 are written as follows:

4
for r > 2 gr = ZAZ.)\ZT—Z
=1
[A1, A2, A3 et A4 are given in the appendix]

When z — 0, we have:

But g, = O(2"*!), because the height of the first column is r. So, A; =0
Hence, for r > 2 Gr = ANLT2 + AN+ AN (16)

By summing (16) for r > 2 and by knowing that in this case, (7) gives us:
g1 = ? + z(G(1), we obtain:

G(z,z,1,1) = (= G(1))

(IQ ! X:; 1 fixi) (17)

1l —=z
and so:

Gt)y=g +1*> g t?
r>2
x 1A A
=1|2° 2 - t? : 1
(x+1—x(x +;1—)\i))+ ;1—@5 (18)

Using (13) and (16), we can say that A\ is a root of Ny (¢). So, the polynomials
D(t) and N;(t) have a same root. By calculating the resultant of the two
polynomials by eliminating the variable ¢, we obtain the following algebraic
equation :

G +22(1 — 2+ 23)G(1)? + 2(—1 4 3z — T2* 4 5a® — 22* + 2°)G(1)?
+2%(2 — bz + 622 — 32° + 22 G(1) + 2°(—1 4+ 2z —2* + 2%) =0 (21)

By writing Ni(A]"') = 0, we obtain the following theorem:

Theorem 4.1 The diagonal semi-perimeter generating function, of the under-
diagonal diagonally convexr directed animals, is:
2(a? — (2 + x4+ DA — (2 = 1)2A2 + (1 —2)A3
Gl 1) = 3 g — =@ D = (2= X+ (1= )X
= —23 4 322\ + z(xd — 222 —x — 3)AT 4 (22 + 1)A]

where a, is the number of the under-diagonal diagonally convex directed ani-

mals of diagonal semi-perimeter n. A\ is given in the appendiz.
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Appendix:

A =ps+ 11—2 S{pe—_p1)

. 1
)\2—]35_5 NG

)\3 — p5 _I_ 11_2 6(p6+p7)

A =ps — 11—2 /Pt
where:
p1 = x*(3z%(—4 + 32z — 88x% 4 1722° — 3122* + 2512° + 825 + 987
+482% + 5529 — 20210))(1/2)

b= lgs 28,6 1 28,7 2.8 1 5.0 1.1 113 1
SRR MERE SO R A A M A
P3 =327 — 570+ T T G A 58 A gl — 5t T g

pa = lla* +42° 4+ 22 — 120 + 3 + 12/p5 + 12/p>

ps =370+ 57+ 5+ 13V3p

pe = (1la* +42® + 22* — 122 + 3 — 6./ps — 6{’/}3_2)\/]3_4
pr = V3(122% — 302 — 152% — 92* — 2122 + 18z — 3)



