J. Gillis<br>The Department of Applied Mathematics<br>The Weizmann Institute of Science<br>Rehovot, Israel

## B. Reznick

The Department of Mathematics University of Illinois Urbana, IL 61801
and
D. Zeilberger

The Department of Theoretical Mathematics The Weizmann Institute of Science Rehovot, Israel

Abstract: We raise conjectures concerning the positivity of the power series coefficients of multi-variate rational functions. We also give a short proof of a result of Askey and Gasper that $(1-x-y-z+4 x y)^{-8}$ has positive power series coefficients for $\beta \geqslant(\sqrt{17}-3) / 2$.

We show how Ismail and Tamharkar's proof that

$$
(1-(1-\lambda) x-\lambda y-\lambda x z-(1-\lambda) y z+x y z)^{-\alpha} \quad(0 \leqslant \lambda \leqslant 1)
$$

has positive power series coefficients for $\alpha=1$ implies Koorwinder's result that it does so for $\alpha \geqslant 1$.

1. We are interested in the following

Problem 1: Give necessary and sufficient conditions on multi-variate polynomials $P\left(x_{1}, \ldots, x_{n}\right)$ and $Q\left(x_{1}, \ldots x_{n}\right)$ such that $P / Q=\sum a_{\alpha_{1}} \ldots \alpha_{n}{ }^{x_{1}}{ }^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ has non-negative power-series coefficients, i.e. $a_{\alpha_{1}, \ldots \alpha_{n}} \geqslant 0$ for all $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in N^{n}$.

Szego [6] proved that $1 /[(1-r)(1-s)+(1-r)(1-t)+(1-s)(1-t)]$ has positive power series coefficients. Askey and Gasper [2] established a similar result for $[1-r-s-t+4 r s t]^{-1}$ and also for some other rational functions. However, it seems that no attack on the general problem has yet been made. The most general result to date is that of Askey and Gasper [2] :

Theorem 2 : $\left[1+(1-\rho) \rho^{-1}(r+s+t)+(\rho-2) \rho^{-1}(r s+r t+s t)+(3-\rho) \rho^{-1} r s t\right]^{-1}$ expanded as a series of powers of $r, s, t$, has non-negative coefficients for $\rho \geqslant 2$.

We refer the reader to Askey's monograph [1] (Ch. 6) for a fascinating
account of the history of this problem up to 1975. In 1978 Koorwinder [5] proved that for $0 \leqslant \lambda \leqslant 1$ and $\alpha \geqslant 0,[1-(1-\lambda) r-\lambda s-\lambda r t-(1-\lambda) s t+r s t]^{-\alpha-1}$ has positive coefficients. Ismail and Tamhankar [4] gave an elementary proof of this result ( for $\alpha=0,1, \ldots$ ) using MacMahon's Master theorem. This result (for $\lambda=1 / 2$ ) was proved independently by Gillis and Kleeman [3] who also gave an elementary proof of a result equivalent to Koorwinder's theorem [5] that $[1-x-y-z-u+4 x y z+4 x y u+4 x z u+4 y z u-16 x y z u]^{-1}$ has positive power series coefficients.

In the general case, write

$$
P=\sum p_{\beta} x^{\beta}=\sum_{|\beta| \leqslant N} p_{\beta_{1}} \ldots \beta_{n} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}
$$

and

$$
Q=\sum_{|\beta| \leqslant N} q_{\beta} x^{\beta}=1+\sum_{\mid \beta \nmid \leqslant N}^{\beta \neq 0} \mid q_{\beta} x^{\beta}=1+Q^{\prime} \text {, (say), (here }
$$

$\left.|\beta|=\beta_{1}+\ldots+\beta_{n}\right)$.

Now, $P / Q=P\left(1+Q^{\prime}\right)^{-1}=P \sum_{n=0}^{\infty}(-1)^{n} Q^{\prime n}$.

Using the multinomial theorem and collecting terms one sees that the $a_{\alpha}$ 's in $P / Q=\sum a_{\alpha} x^{\alpha}$ are polynomials in the $p_{\beta}{ }^{\prime} s$ and $q_{\beta}{ }^{\prime} s$; $a_{\alpha}=a_{\alpha}\left(p_{\beta}, q_{\beta}\right)$. The conditions on the $p_{\beta}{ }^{\prime} s$ and $q_{\beta}{ }^{\prime} s$ are therefore that they satisfy the infinite set of polynomial inequalities

$$
\begin{equation*}
a_{\alpha}\left(p_{\beta}, q_{\beta}\right) \geqslant 0, \alpha \in \mathbb{N}^{n} . \tag{1}
\end{equation*}
$$

We conjecture that the required $p_{\beta}, q_{\beta}$ are in fact solutions of a finite set of polynomial inequalities.

Conjecture 3 : For every integer $M$, there are polynomials $\left\{A_{i}\right\}_{i=1}^{K}$ such that for $P$ and $Q$ of degree $M, P / Q$ has non-negative power series coefficients if and only if

$$
A_{i}\left(p_{\beta}, q_{\beta}\right) \geqslant 0, \quad i=1, \ldots K .
$$

If the above conjecture turns out to be true then it may be that the $A_{i}$ 's can be taken among the $a_{\alpha}{ }^{\prime} s$ thus leading to

Conjecture 4 : For every pair of positive integers $M, n$ there exists an integer $L$ such that if $P$ and $Q$ are polynomials in $n$ variables of degree $M$, and $P / Q=\sum_{\alpha \in v^{n}} a_{\alpha} x^{\alpha}$, then $a_{\alpha} \geqslant 0$ for $|\alpha| \leq L$ implies $a_{\alpha} \geqslant 0$ for every $\alpha$.

These conjectures are still unproved. However for the special case of functions of the type $1 /[1-x-y-z+A x y+B x z+C y z+D x y z]^{-1}$ we have established the following result, based on an observation of Askey [1] and a theorem of Koorwinder [5].

Proposition 5: Let $0 \leqslant \mu_{1}, \mu_{2}, \mu_{1}+\mu_{2} \leqslant 1, \mu_{3} \leqslant 1$, then

$$
\begin{aligned}
F\left(\mu_{1}, \mu_{2}, \mu_{3} ; x, y, z\right)= & 1 /\left[1-\left(1-\mu_{1}\right) x-\left(1-\mu_{2}\right) y-\left(1-\mu_{3}\right) z+\left(1-\mu_{1}-\mu_{2}\right) x y+\right. \\
& \left.\left(1-\mu_{1}-\mu_{3}\right) x z+\left(1-\mu_{2}-\mu_{3}\right) y z+\left(\mu_{1}+\mu_{2}+\mu_{3}-1\right) x y z\right]
\end{aligned}
$$

has positive power series coefficients.

Proof: Koorwinder [5] (see also Ismail and Tamhankar [4]) proved that
(2) $\int_{0}^{\infty} e^{-u} L_{n}(\lambda u) L_{m}((1-\lambda) u) L_{k}(u) d u \geqslant 0$,

$$
\text { for } 0 \leqslant \lambda \leqslant 1 \text {. It is known that for any } c \text {, }
$$

(3) $L_{n}(c u)=\sum\binom{n}{k}(1-c)^{n-k_{c} k_{k}} L_{k}(u)$.

It follows from (2) and (3) that for $0 \leqslant c_{1}, c_{2}, c_{3} \leqslant 1$,

$$
\int_{0}^{\infty} e^{-u} L_{n}\left(c_{1} \lambda u\right) L_{m}\left(c_{2}(1-\lambda) u\right) \quad L_{k}\left(c_{3} u\right) d u \geqslant 0
$$

and hence

$$
\int_{0}^{\infty} e^{-u} L_{n}\left(\mu_{1} u\right) L_{m}\left(\mu_{2} u\right) L_{k}\left(\mu_{3} u\right) d u \geqslant 0
$$

for $\mu_{1}+\mu_{2} \leqslant 1,0 \leqslant \mu_{3} \leqslant 1,0 \leqslant \mu_{1}, \mu_{2}$. But the generating function of these numbers (Askey [1], p. 47) is precisely $F\left(\mu_{1}, \mu_{2}, \mu_{3}, x, y, z\right)$. This establishes proposition 5.

The transformation $x \leftarrow\left(1-\mu_{1}\right) x, y \leftarrow\left(1-\mu_{2}\right) y, z+\left(1-\mu_{3}\right) z$ yields

Corollary 6: $(1-x-y-z+A x y+B x z+C y z+D x y z)^{-1}$ has non-negative power series coefficients if there exist $0 \leqslant \mu_{1}, \mu_{2}$, such that $\mu_{1}+\mu_{2} \leqslant 1$ and $0 \leqslant \mu_{3} \leqslant 1$ such that

$$
\begin{aligned}
& A=\left(1-\mu_{1}-\mu_{2}\right) /\left(1-\mu_{1}\right)\left(1-\mu_{2}\right), \quad B=\left(1-\mu_{1}-\mu_{3}\right) /\left(1-\mu_{2}\right)\left(1-\mu_{3}\right), \\
& C=\left(1-\mu_{2}-\mu_{3}\right) /\left(1-\mu_{2}\right)\left(1-\mu_{3}\right), \quad D \leqslant\left(\mu_{1}+\mu_{2}+\mu_{3}-1\right) /\left(1-\mu_{1}\right)\left(1-\mu_{2}\right)\left(1-\mu_{3}\right) .
\end{aligned}
$$

By eliminating $\mu_{1}, \mu_{2}, \mu_{-3}$ it is possible to obtain polynomial inequalities in $A, B, C, D$ which would ensure the positivity of the coefficients of $(1-x-y-z+A x y+B x z+C y z+D x y z)^{-1}$, as in conjecture 3 .
2. Some operations preserving the positivity of the coefficients .

If $p$ and $q$ have positive coefficients then so does, of course, pq. Slightly less trivial is

Proposition 7 : Let $a, b, c, d$ be polynomials in $x_{1}, \ldots, x_{n}$. If $\left(a-b x_{n+1}\right)^{-1}$.
and $\left(c-d x_{n+1}\right)^{-1}$ have positive coefficients, then so does $[a(\underline{x}) c(\underline{y})-b(\underline{x}) d(\underline{y})]^{-1}$.

Proof : $\left(a-b x_{n+1}\right)^{-1}=\sum\left(b^{r} / a^{r+1}\right) x_{n+1}^{r}$ thus $b^{r} / a^{r+1}$ has positive coefficients for every $E$ Similarly $d^{r} / c^{r+1}$ has positive coefficients. The same will therefore be true for $b^{r} d^{r} / a^{r+1} c^{r+1}$ and $\left[(b d)^{r} /(a c)^{r+1}=[a(\underline{x}) c(\underline{y})-b(\underline{x}) d(\underline{y})]^{-1}\right.$.

Example 8 : Ismail and Tamhankar [4] and Gillis and Kleeman [3] gave an elementary proof of Koorwinder's result that $[1-x-y-w x-w y+4 x y w]^{-1}=$ $[(1-x-y)-w(x+y-4 x y)]^{-1}$ has positive coefficients. Hence so also have $[(1-x-y)(1-z-u)-(4 x y-x-y)(4 z u-z-u)]^{-1}=$ $[1-x-y-z-u t+4(x y z+z y u+y z u)-16 x y z u]^{-1}$ but this is the generating function for $\int_{0}^{\infty} e^{-2 u} L_{m} L_{n} L_{k} L_{r}$, and so this quadruple integral is positive (see Koorwinder [5] and Gillis and Kleeman [3]).

Observation 9: If $p\left(x_{1}, \ldots, x_{n}\right)$ has positive coefficients and so do $q_{1}, \ldots, q_{n}$ then $p\left(q_{1}, \ldots, q_{n}\right)$ also has positive coefficients.

Example 10: We know that $(1-x-y-z x-z y+4 x y z)^{-1}$ has positive coefficients (example 8 ); setting $z+z / 1-z$ we see that ( $1-z$ )/( $1-x-y-z+4 x y z$ ) also has positive coefficients. This result is stronger than Askey and Gasper's positivity result since $1 /(1-x-y-z+4 x y z)=(1-z)^{-1} \cdot(1-z) /(1-x-y-z+4 x y z)$. Indeed, writing

$$
\begin{aligned}
& (1-x-y-z+4 x y z)^{-1}=\sum a_{m, n}, k x^{m} y^{n} z^{k} \text {, then } \\
& (1-z)(1-x-y-z+4 x y z)^{-1}=\sum\left(a_{m, n, k}-a_{m, n, k-1}\right) x^{m} y^{n} z^{k}
\end{aligned}
$$

and we get that $a_{m, n, k} \geqslant a_{m, n, k-1}$, and by symmetry we get the
monotonicity result: -

$$
a_{m, n, k} \geqslant a_{m^{\prime}, n^{\prime}, k^{\prime}} \quad \text { if } m \geqslant m^{\prime}, n \geqslant n^{\prime}, k \geqslant k^{\prime} .
$$

Since $L_{n}^{(-1)}=L_{n}-L_{n-1}$ the above result is also equivalent to

$$
\int_{0}^{\infty} e^{-2 x} L_{n}^{(-1)}(x) L_{m}(x) L_{k}(x) d x \geqslant 0
$$

Proposition 10: Suppose that $a\left(x_{1}, \ldots, x_{n-1}\right)$ and $b\left(x_{1}, \ldots, x_{n-1}\right)$ are polynomials. If (i) $\left(a-b x_{n}\right)^{-1}$ has positive coefficients and (ii) $a^{-\beta}$ has positive coefficients for all $\beta>0$, then so does $\left(a-b x_{n}\right)^{-\alpha}$ for all $\alpha \geqslant 1$.

Proof: By hypothesis $\left(a-b x_{n}\right)^{-1}=\left[\left(b^{r} / a^{r+1}\right) x_{n}^{r} \quad\right.$ has positive coefficients, implying that so also does $b^{r} / a^{r+1}$ for every $r$. Since $(\underset{r}{-\alpha})(-1)^{r}$ is positive and $a^{1-\alpha}$ has positive coefficients, we see that

$$
\left(a-b x_{n}\right)^{-\alpha}=a^{1-\alpha} \sum_{r=0}^{\infty}(\underset{r}{-\alpha})(-1)^{r} b_{b}^{r} / a^{r+1} \text { has positive }
$$

coefficients.

Example 11 : Ismail and Tamhankar [4] give a proof of the positivity of the coefficients of $[1-(1-\lambda) x-\lambda y-\lambda x z-(1-\lambda) y z+x y z]^{-1}$. This, together with proposition 10, yields an elementary proof of Koorwinder's [5] result that $(1-(1-\lambda) x-\lambda y-\lambda x z-(1-\lambda) y z+x y z)^{-\alpha}$ has positive coefficients for all real $\alpha \geqslant 1$.

Proposition 12: If $[a(x, y)-b(x, y) z]^{-\alpha}$ and $[c(x, y)-d(x, y) z]^{-\alpha}$ have positive coefficients, so also does $[a(x, y) c(z, u)-b(x, y) d(z, u)]^{-\alpha}$.

Proof: Similar to that of Proposition 7.

Example 13: By Example 11 with $\lambda=1 / 2$.
$\left(1-\frac{1}{2} x-\frac{1}{2} y-\frac{1}{2} x z-\frac{1}{2} y z+x y z\right)^{-\alpha}=\left(1-\frac{1}{2} x \quad \frac{1}{2} y-\left(\frac{1}{2} x+\frac{1}{2} y-x y\right) z\right]^{-\alpha}$ has positive coefficients. Hence
$\left[\left(1-\frac{1}{2} x-\frac{1}{2} y\right)\left(1-\frac{1}{2} x^{\prime}-\frac{1}{2} y^{\prime}\right)-\left(\frac{1}{2} x+\frac{1}{2} y-x y\right)\left(\frac{1}{2} x^{0}+\frac{1}{2} y^{\prime}-x^{\prime} y^{0}\right)\right]^{-\alpha}$ $=\left[1-\frac{1}{2} x-\frac{1}{2} y-\frac{1}{2} x^{\prime}-\frac{1}{2} y^{\prime}+\frac{1}{2} x y x^{\prime}+\frac{1}{2} x y y^{\prime}+\frac{1}{2} x x^{\prime} y^{0}+\frac{1}{2} y x^{\prime} y^{\prime}-x y^{\prime} y^{0}\right]^{-\alpha}$ has positive coefficients for $\alpha \geqslant 1$. This yields an elementary proof of Koorwinder's [5] result that $\int_{0}^{\infty} e^{-2 x} L_{n}^{(\alpha)}(x) L_{m}^{(\alpha)}(x) L_{k}^{(\alpha)}(x) L_{r}^{(\alpha)}(x) d x \geqslant 0(\alpha \geqslant 0)$.

## 3. A short proof of a result of Askey and Gasper

It follows from Example 9 and Proposition 10 that $(1-x-y-z+4 x y z)^{-\beta}$ has positive coefficients for $\beta \geqslant 1$. Askey and Gasper [2] extended this result to $\quad \beta \geqslant(\sqrt{17}-3) / 2$. This can be obtained quite simply by an extension of a method used in [3].

Suppose that $\beta>(\sqrt{17}-3) / 2$. Write

$$
R=1-x-y-z+4 x y z, \text { it is readily seen that }
$$

$\frac{\partial}{\partial x} R^{-\beta}=(1+2 z)\left[x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}+\beta\right] R^{-\beta}+2\left(y \frac{\partial}{\partial y}-z \frac{\partial}{\partial z}\right) R^{-\beta}$.
Substitute $R^{-\beta}=\left[D_{a+1, b, c} x^{a+1} y^{b} z^{c}\right.$ above, compare coefficients of $x^{a} y^{b} z^{c}$, and set $a \leftarrow a-1$ to get
$a D_{a, b, c}=(a+b-c+\beta-1) D_{a-1, b, c}+2(a-b+c-2+\beta) D_{a-1, b, c-1}$. Now, by symmetry, it is enough to prove positivity for $a \geqslant b \geqslant c$. The coefficients of the above recurrence are positive if $a \geqslant b \geqslant c>1$ and the
result will follow by induction if $D_{a, a, 1} \geqslant 0$ for all a.
Now

$$
D_{a, a, 1}=\frac{\beta(\beta+1) \ldots \cdot(\beta+2 a-2)}{(a-1)!^{2}} \quad\left[\frac{(\beta+2 a-1)(\beta+2 a)}{a^{2}}-4\right]
$$

But $(\beta+2 a-1)(\beta+2 a)-4 a^{2}=\beta^{2}-\beta+2 a(2 \beta-1)$ increases with a since $\beta \cong 0.56>0.5$, while $D_{1,1,1}=\beta\left(\beta^{2}+3 \beta-2\right)>0$, and the result follows.
4. Does $\left(1-\left(x_{1}+\ldots+x_{n}\right)+n!x_{1} \ldots x_{n}\right)^{-1}$ have positive power series coefficients?

We have already mentioned Askey and Gasper's result that $[1-(x+y+z)+4 x y z)^{-1}$ has positive power series coefficients. We are interested in $A_{n}$, the largest $A$ for which $\left(1-\left(x_{1}+\ldots+x_{n}\right)+A x_{1} \ldots x_{n}\right)^{-1}$ has non-negative coefficients. Since the coefficients of $x_{1} \ldots x_{n}$ in the above expansion is $n!-A_{n}$, we must certainly have $A_{n} \leqslant n$ !. We conjecture that for $n \geqslant 4, A_{n}=n!$. It may be seen that $A_{n} \geqslant(n-1)!$. i.e. that $\left[1-\left(x_{1}+\ldots+x_{n}\right)+(n-1)!x_{1} \ldots x_{n}\right)^{-1}$ has positive coefficients. The reason is that the coefficient of $x_{1}^{\alpha} \ldots x_{n}^{\alpha} \quad$ is the above expansion has combinatorial significance, namely, it is the number of words with $\alpha_{1} l^{\prime} s, \ldots, \alpha_{n} \quad n^{\prime} s$ such that no substring of $n$ letters which ends with the letter " $n$ " can be a permutation (e.g. with $n=4$, the six words 1234, 1324, 2134, 2314, 3124, 3214 are not allowed as subwords) (see Zeilberger [7] for details).

```
Let us state
```

Proposition 14 : Let $\left(1-\left(x_{1}+\ldots+x_{n}\right)+n!x_{1} \ldots x_{n}\right)^{-1}=\sum A_{\alpha_{1}} \ldots \ldots, \alpha_{n} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$. If $A_{r}{ }_{r} \ldots, r \geqslant 0$ for all $r$ then $A_{\alpha_{1}} \ldots \alpha_{n} \geqslant 0$ for all $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in N^{n}$.

The proof is rather long and we omit it here. Note that

$$
A_{r, \ldots, r}^{(n)}=\sum_{j=0}^{r}\left(-1 y^{j(r m-(n-1) j)!(n!)^{j}} \frac{(r-j)!^{n} j!}{}\right.
$$

and it would therefore suffice to show that this binomial sum is positive. This has been verified by computer for $n=4$ and $l \leq r \leq 220$. In this range $a_{r \ldots}^{(4)}$ increases monotonically and appears to have faster than exponential growth. This would appear to support our conjecture.

Acknowledgement : Many thanks are due to Gilad Bandel for his competent programming.

## References

1. R. Askey, "Orthogonal Polynomials and Special Functions", CBMS, vol. 21, SIAM, Philadelphia, 1975.
2. R. Askey and G. Gasper, Convolution structures of Laguerre polynomials, J. Analyse Math. 31 (1977), pp. 48-68.
3. J. Gillis and J. Kleeman, A combinatorial proof of a positivity result, Math. Proc. Camb. Phil. Soc. 86 (1979), pp. 13-19.
4. M.E.H. Ismail and M.V. Tamhankar, A combinatorial approach to some positivity problems, SIAM J. Math. nal., 10 (1979), pp. 478-485.
5. T. Koorwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition theorem, J. London Math. Soc. (2), 18 (1978), pp. 101-114.
6. G. Szegö, Über gewisse Potenzreihen mit lauter positiven Koeffizienten, Math. Z., 37 (1933), pp. 674-688.
7. D. Zeilberger, Enumeration of words by their number of mistakes, Discrete Mathematics, 34 (1981), pp. 89-91.
