Counting Stable Sets In Trees
 by

Daniel I.A. Cohen

Abstract

Cook [1] has shown that the problem of generating all the stable sets of a given graph is NP complete while several authors have shown that it is possible to generate all the maximal stable sets of G in polynomial-time. In [3] this is done in $0(n=$ number of vertices, $m=$ number of edges, $\mu=$ number of maximal stable sets). In this paper we shall 1) prove that the problem of counting all stable sets in a tree is no harder than listing all maximal stable sets in a tree 2) calculate the upper bound on the number of maximal stable sets in a tree of n vertices.

§ 1. Introduction:

Theorem 1: If P is a path of n vertices then the number of stable sets (always including \emptyset) is the $(n+2)$ nd Fibonacci number $F(n+2)$ where $F(1)=F(2)=1$.

Proof: By induction. If the first vertex is in the stable set the rest is chosen from P_{n-2} and there are $F(n)$ of them.

If the first vertex is not in the set the rest are chosen from $\left(P_{n-1}\right)$ in $F(n+1)$ ways. In total $F(n)+F(n+1)=F(n+2)$ sets.

Although it has no baring on our topic we mention that the same argument proves.

Theorem 2: The number of stable sets in an n-cycle is $F(n-1)+F(n+1)$.
A tree with only one vertex of degree >2 is called a star, e.g.

Definition: In a tree a maximal path of vertices of degree 2 ending in a leaf (a vertex of degree 1) is called a leg.

Example: The star above has legs of length $1,2,4,3,2$ and 3 reading clockwise from the top.

The following is trivial:

Theorem 3: A star with legs of length n_{1}, n_{2}, \ldots has exactly

$$
\underset{i}{\pi F}\left(n_{i}+1\right)+\pi F\left(n_{i}+2\right)
$$

stable sets.

§ II. Side trip:

A tree in which the root has degree 2, all other vertices have degree 1 or 3 and each leaf is height $(n-1)$ from the root is called the Binary Tree of rank n, B_{n}. B_{4} is shown below:

Let b_{n} be the number of stable sets in $B n$. . Clearly

$$
\begin{gather*}
b_{n}=b_{n-1}^{2}+b_{n-2}^{4} \\
b_{0}=1, b_{1}=2, b_{2}=5, b_{3}=41, b_{4}=2306
\end{gather*}
$$

This sequence is not in Sloane [2].
§ III. The Principle of deletion to count stable sets in trees:
Let us study the particular tree drawn below:
$T=$

If A is in the stable set the rest of the vertices come from the circled subrees below

If A is not the rest come from these circles subtrees

Continuing this process we finally write $\mathrm{T}=$

A tree with x circled vertices counts for 2^{x} stable subsets therefore the total number of stable sets in the original tree is exactly

$$
4+32+16+128+64+32+128+128+64+256+16+8+32=908
$$

Each of these 13 trees with circles corresponds to a maximal stable set of T where the leafs used are the ones circled and the other vertices are internal. For example

1

corresponds to the maximal stable set.

This gives us the following algorithm.
§ IV. The algorithm:
We begin with a definition.

Definition: If a vertex of degree $(n+1)$ is connected to n leaves it is called an n-fan.
e.g is a 4-fan.

Step 1: For every $n=f a n$, replace all the leaves with one leaf labeled 2^{n}.
Label all other leaves 2. Label all internal vertices with letters.

Step 2: List all maximal Stable sets of this simplified tree
a2d2e
a2d24
a282e
a2824
b8c42
b8242
b82e2
2 dc 42
2d2e2
2d242
28c42
$282 e 2$
28242

Step 3: Set all letters $=1$, take the product of the labels of every maximal stable set, add these numbers and obtain the total number of stable sets of the original tree.

Theorem 4: The complexity of counting all stable sets in a tree is no greater than the complexity of listing all maximal stable sets of a simpler tree.

§ V. Which tree has the most stable sets?

Wilf [4] has found the trees of n vertices with the most maximal stable sets. They are

n-even

It is not a priori true that these trees must have the most stable sets. The maximal sets might have many common subsets, as we shall see.

Lemma 1: For every tree there are only two stable sets such that both it and its complement are both stable.

Proof: Every such stable set would give a 2-coloring of the tree. But a tree has essentially one 2 -coloring. Therefore the special sets are the red set and (its complement) the blue set. \square

Lemma 2: A tree of n vertices can have at most $2^{n-1}+1$ stable sets.
Proof: Except for the red set and the blue set the complement of a stable set is nonstable. Therefore of the $2^{n}-2$ nonspecial subsets of vertices at most half are stable.

Theorem 5: The tree with only one non-leaf has the most stable sets.

References:

[1] COOK, S.A.: The complexity of theorem proving procedures, Proc. 3rd Annual ACM Symposium of Theory of Computing (1971) pp. 151-8
[2] SLOANE, N.A.: Handbook of integer sequences
[3] TSUKIYAMA, S./IDE, M./ARIYOSHI, M./SHIRAKAWA, l.: A new algorithm for generating all maximal independent sets, SIAM J. Comput. vol.6, no. 3 (1977) pp. 505-517
[4] WILF, H.S.: The number of maximal independent sets in a tree, to appear

