Regular polytopes and equivariant tessellations
from a combinatorial point of view

Research announcement

by Andreas W.M. Dress, Bielefeld, FRG

Let $\quad \Sigma=\Sigma(n)=\left\langle\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right| \sigma_{i}^{2}=\left(\sigma_{i} \sigma_{k}\right)^{2}=1 \quad$ for $\left.i, k=0, \ldots, n ;|i-k| \geq 2\right\rangle$ denote the Coxeter group associated to the diagram 0_{0}^{∞} To any equivariant tessellation (M^{n}, T, Γ) consisting of an n-dimensional manifold M^{n}, a tessellation T of M^{n} and a group Γ of homeomorphisms of M^{n} respecting the tessellation T we associate a Σ-set $D=\mathcal{D}\left(M^{n}, T, \Gamma\right)$ and n functions $r_{1}, \ldots, r_{n}: D \rightarrow \mathbb{N}$ which in case $\pi_{0}\left(M^{n}\right)=\pi_{1}\left(M^{n}\right)=1$ characterize (M^{n}, T, Γ) completely up to isomorphism.

Several consequences and examples are being discussed.

§ 1 Tessellations

Let T be a partially ordered set ${ }^{*}$). For any such T we define the derived semisimplicial complex (or the barycentric subdivision) $\stackrel{\circ}{T}=:\{B \subseteq T \mid B$ finite and linearly ordered\} and the topological realization

$$
|T|=:|\stackrel{\circ}{T}|=:\left\{\sum_{t \in T} x_{t} t \in \bigoplus_{t \in T} \mathbb{R} t \mid x_{t} \geq 0, \sum_{t \in T} x_{t}=1, \quad\left\{t \mid x_{t}>0\right\} \in \stackrel{0}{T}\right\} \subseteq \bigoplus_{t \in T} \mathbb{R} t
$$

with $\bigoplus_{t \in T} \mathbb{R} t$ denoting the real vectorspace, freely generated by T and topologized by the "direct limit topology" (i.e. in such a way that a subset $0 \subseteq \bigoplus_{t \in T} \mathbb{R} t$ is open if and only if the intersections with all finite dimensional subspaces, topologized as usual, are open).

Any homomorphism $\varphi: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$ between two partially ordered sets defines a pl-map $|\varphi|:\left|T_{1}\right| \rightarrow\left|T_{2}\right|$ which is injective if and only if φ is injective.

Let X be a pl-space or a "polyhedron" in the sense of [6]. We define a tessellation of X to consist of a partially ordered set T together with a pl -homeomorphism $\mathrm{X} \cong|T|$.

[^0]Examples: $T=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in\{0,1,2\}\right\}$ with $"\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right) "$ if and only if $\left(a_{i}-b_{i}\right)\left(b_{i}-1\right)=0$ for $a l l \quad i=1, \ldots, n$ gives the standard tessellation of the n-dimensional cube $I^{n} ; T=2^{n}$ with $"\left(a_{1}, \ldots, a_{n}\right) \leq\left(b_{1}, \ldots, b_{n}\right)^{\prime \prime}$ if and only if $\left|a_{i}-b_{i}\right| \leq 1$ and $\left(a_{i}-b_{i}\right)\left(b_{i}-1\right) \equiv 0(2)$ gives the cubic tessellation of $\mathbb{R}^{n} ; T=T_{o}$ ๒ $T_{1} \cup T_{2}$ with $T_{0}=\left\langle\alpha_{1}, \alpha_{2}\right\rangle \forall\left(A_{5} \times\{ \pm 1\}\right\}_{,} T_{1}=\left\langle\alpha_{0}, \alpha_{2}\right\rangle\left\langle\left(A_{5} \times\{ \pm 1\}\right)\right.$, $T_{2}=\left\langle\alpha_{0}, \alpha_{1}\right\rangle\left(A_{5} \times\{ \pm 1\}\right) ; \alpha_{0}=(13)(45) \times(-1), \alpha_{1}=(14)(32) \times(-1)$, $\alpha_{2}=(14)(35) \times(-1) \in A_{5} \times\{ \pm 1\}$ a standard choice of generating involutions, identifying $A_{5} \times\{ \pm 1\}$ with the Coxeter group 0_{0}^{5} and with $\left\langle\alpha_{j} \mid j \neq i\right\rangle \beta \leq\left\langle\alpha_{j} \mid j \neq k\right\rangle \gamma$ if and only if $i \leq k$ and $\left\langle\alpha_{j} \mid j \neq i\right\rangle \beta \cdot \cap\left\langle\alpha_{j} \mid j \neq k\right\rangle \gamma \neq \emptyset$ gives the dodecahedral decomposition of the 2-sphere.

Standard constructions: For T_{1} and T_{2} two partially ordered sets we have $\left|T_{1}\right| \times\left|T_{2}\right| \cong\left|T_{1} \times T_{2}\right|$ with $T_{1} \times T_{2}$ the partially ordered set consisting of the cartesian product of T_{1} and T_{2} with " $\left(t_{1}, t_{2}\right) \leq\left(s_{1}, s_{2}\right)$ " if and only if $t_{1} \leq s_{1}$ and $t_{2} \leq s_{2}\left(t_{i}, s_{i} \in T_{i} ; i=1,2\right)$. We have $\left|\mathrm{T}_{1}\right| *\left|\mathrm{~T}_{2}\right|=\left|\mathrm{T}_{1} * \mathrm{~T}_{2}\right|$ for the join of $\left|\mathrm{T}_{1}\right|$ and $\left|\mathrm{T}_{2}\right|$ with $\mathrm{T}_{1} * \mathrm{~T}_{2}$ denoting the partially ordered set $\mathrm{T}_{1} \cup \mathrm{~T}_{2}=\mathrm{T}_{1} \times\{1\} \cup \mathrm{T}_{2} \times\{2\}$ with $(t, i) \leq(s, j)$ if and only if $i=j$ and $t \leq s$ (in T_{i}) or $i=1$ and $j=2$. For T a partially ordered set we have $\hat{T}=\stackrel{\circ}{\mathrm{T}}$ and thus $|\hat{T}|=|T|$ with \widehat{T} the dual partially ordered set, consisting of the same elements as T but with $s \underline{\leq} t$ if and only if $t \leq s$. Thus for a tessellation $|T| \cong X$ of a polyhedron X we have the dual tessellation $|\hat{T}| \cong X$ and for tessellations $\left|T_{1}\right| \cong X_{1}$ and $\left|T_{2}\right| \cong X_{2}$ of two polyhedra X_{1} and X_{2} we have the tessellations $\left|T_{1} \times T_{2}\right| \cong X_{1} \times X_{2}$ and $\left|T_{1} * T_{2}\right| \cong X_{1} * X_{2}$ of the product $X_{1} \times X_{2}$ and the join $X_{1} * X_{2}$ of X_{1} and X_{2}.

Cellular and smooth tessellations: For any element or tile $t \in T$ of a partially ordered set T we define the boundary

$$
\partial_{*} t=:\{s \in T \mid s<t\}, \text { the co-boundary } \partial^{*} t=\{s \in T \mid t<s\}
$$

the closure $e_{*} t=\{s \in T \mid s \leq t\}$ and the co-closure $e^{*} t=\{s \in T \mid t \leq s\}$ of $t . T$ is defined to be cellular (co-cellular) if all $\left|\partial_{*} t\right| \quad\left(\left|\partial^{*} t\right|\right)$ are (p1-) spheres in which case the ropological realizations $\left|e_{*} t\right| \quad\left(\left|e^{*} t\right|\right)$ give rise to a cell decomposition of $|T|$ in the sense
of［6］，chapter 2．It follows from［6］．p．24，exercise 2．24，（5），that $|T|$ is a $p 1$－manifold if and only if T is cellular and co－cellular，in which case T will be called smooth．

Since there are obvious obstructions for deciding whether or not a partially ordered set is smooth（i．e．the unproved Poincaré conjecture in dimension．3，it seems reasonable to consider certain weaker， purely combinatorial conditions on T ．

Dimension and finiteness：For a partially ordered set we define $\operatorname{dim} T=\max \{\# B \mid B \in \stackrel{\leftrightarrow}{T}\}-1$ and we define $\operatorname{dim} t=\operatorname{dim} e_{*} t$ and $\operatorname{codim} t=\operatorname{dim} e^{*} t$ for any $t \in T . T$ is finite dimensional if dim $T<\infty$ and it is locally finite dimensional if dim $t<\infty$ for all $t \in T$ ．T is finite if $\neq T<\infty$ and T is locally finite if \quad 抽 $e_{*}(t)<\infty$ for all $t \in T$ 。

Flags：A maximal linearly ordered subset of T is called a flag F ， the set of all maximal linearly ordered subsets of T is called the flag－ space $F=F(T)$ of T ．If T is locally finite dimensional and $F \in F(T)$ we denote the i－th element in the 1 inearly ordered set F by $F(i)$ ，starting with $i=0$ ， i．e．if $F=\left\{t_{0}, t_{1}, \ldots, t_{i}, \ldots\right\}$ and $t_{0}<t_{1}<\cdots<t_{i}<\cdots$, then $F(i)=t_{i}$ ． We define two flags $F, F^{\prime} \in F(T)$ to be wall－neighbours and denote this by $F \vee F^{\prime}$ ，if they differ by one element only，i．e．if there exist $t, t^{\prime} \in T$ with $t \neq t^{\prime}$ and $F=\left(F \cap F^{\prime}\right) \dot{u} \quad\{t\}, F^{\prime}=\left(F \cap F^{\prime}\right) \dot{u} \quad\left\{t^{\prime}\right\}$ ， in which case we have necessarily
$\{s \in F \mid s<t\}=\left\{s^{\prime} \in F^{\prime} \mid s^{\prime}<t^{\prime}\right\}$ and
$\{s \in F \mid s>t\}=\left\{s^{\prime} \in F^{\prime} \mid s^{\prime}>t^{\prime}\right\}$ ．If T is locally finite dimensional， we define F and F^{\prime} to be k－wall－neighbours if $t=F(k)$ or－equivalent－ $1 y-t^{\nu}=F^{\prime}(k)$ and we denote this by $F V^{k} F^{\rho}$ 。

Pure and locally pure tessellations：We define a tessellation T to be pure if it is finite－dimensional and if all flags in $F(T)$ have the same cardinality．T is defined to be locally pure if $e_{*}(t)$ is pure for all $t \in T$ ．Note that T is pure if and only if T and \hat{T} are locally pure and $\operatorname{dim} t+\operatorname{codim} t=\operatorname{dim} T$ holds for all $t \in T$ ．Note also that for a locally pure tessellation T ， $\mathfrak{f l a g} F \in F(T)$ and an element $t \in F$ we have $\operatorname{dim} t=i$ if and only if $F(i)=t$ 。

Flag-connected and locally flag-connected tessellations:

A tessellation T is defined to be flag-connected if for any two flags $F, F^{\prime} \in F(T)$ there exists a string of flags $F=F_{0}, F_{1}, \ldots, F_{\ell}=F^{\prime}$ with $F_{0} \vee F_{1}, F_{1} \vee F_{2}, \ldots, F_{\ell-1} \vee F_{\ell}$. Note that a flag-connected tessellation is pure if and only if it is finite dimensional. T is defined to be locally flag-connected if $e_{*} t$ is flag-connected for all $t \in T$. Note that T is flag-connected if T and \widehat{T} are locally flag-connected and T is "connected", i。e. if for $t, t^{\prime} \in T$ there exists a string of elements $t=t_{0}, t_{1}, \ldots, t_{\ell}=t^{\prime} \in T$ with $t_{0} \leq t_{1}, t_{1} \geq t_{2}, \ldots, t_{\ell-1} \geq t_{\ell}$, but that flag-connectedness does not imply local flag-connectedness.
T is defined to be strongly locally flag-connected, if T and \widehat{T} are locally flag-connected and if moreover for any $t, t^{\prime} \in T$ with $t \leq t^{\prime}$ the partially ordered subset $e^{*}(t) \cap e_{*}\left(t^{\gamma}\right)=\left\{s \in T \mid t \leq s \leq t^{\gamma}\right\}$ is flag-connected. This is easily seen to be equivalent to the following condition: If B is a non-empty, linearly ordered subset of T and if. $F, F^{\prime} \in F(T)$ are two flags containing B, then ther exists a string of flags $F_{0}=F, F_{1}, \ldots, F_{\ell}=F^{\prime}$ with $F_{0} \vee F_{1}, F_{1} \vee F_{2}, \ldots, F_{\ell-1} \vee F_{\ell}$ and $B \subseteq \bigcap_{\lambda=0}^{\ell} F_{\lambda}$.

Pseudo-smooth tessellations: A tessellation T is defined to be pseudosmooth if it is pure and if for any $F \in F(T)$ and $k \in\{0,1, \ldots, \operatorname{dim} T\}$ there exists precisely one k-wall-neighbour $F^{\prime} \in \mathcal{F}(T)$ of F. We denote this F^{\prime} by $\sigma_{k}(F)$. It is easy to see that this way, an action of the Coxetergroup $\Sigma=\Sigma(\operatorname{dim} T)$ defined above on the flag-space $F(T)$ of a pseudosmooth tessellation T is being defined, i.e. that $\sigma_{k}^{2}(F)=F$ and $\sigma_{k} \sigma_{i}(F)=\sigma_{i} \sigma_{k}(F)$ for $|i-k| \geq 2 ; i, k=0,1, \ldots, n$ hold. We shall study the Σ-set $F(T)$ in the next section.

Another way to describe pseudo-smoothness is by interpreting the derived complex $\stackrel{\oplus}{T}$ as a partially ordered with respect to inclusion and to look at its dual $\stackrel{\stackrel{\rightharpoonup}{\mathrm{Q}}}{\mathrm{T}}$: it is easily seen that the 1 -skeleton $\stackrel{\text { 咅 }}{ }=\{B \in \stackrel{\circ}{\mathrm{~T}} \mid \# B \geq \mathrm{dim} T\}$ of $\hat{\dot{T}}$ is cellular if and only if T is pseudo-smooth. Moreover, one can prove that the 2 -skeleton $\hat{\mathrm{T}}^{2}=\{B \in \dot{T} \mid \# B \geq \operatorname{dim} T-1\}$ is cellular if T is pseudo-smooth, strongly locally connected and T and \hat{T} are locally finite. One can also show that a tessellation T of an n-dimensional manifold M^{n}.
is necessarily pseudo-smooth of dimension n, strongly locally connected and - together with T - locally finite. Moreover, M^{n} is compact if and only if T is finite.

For two tessellations T_{1} and T_{2} we have $\operatorname{dim}\left(T_{1} \times T_{2}\right)=\operatorname{dim} T_{1}+\operatorname{dim} T_{2}$ and $\operatorname{dim}\left(\mathrm{T}_{1} * \mathrm{~T}_{2}\right)=\operatorname{dim} \mathrm{T}_{1}+\operatorname{dim} \mathrm{T}_{2}+1$ 。 $T_{1} \times T_{2}$ is cellular, co-cellular or smooth if T_{1} and T_{2} are cellular, co-cellular or smooth, respectively, whereas - as a consequence of [6], chapter 2 , p. 24 , exercise $2.24,(5), T_{1} \$_{2}$ is cellular, co-cellular or smooth if and only if $\left|T_{1}\right|$ is a sphere and T_{2} is cellular, T_{1} is co-cellular and $\left|\mathrm{T}_{2}\right|$ is a sphere or $\left|\mathrm{T}_{1}\right|$ and $\left|\mathrm{T}_{2}\right|$ are spheres, respectively.

We have $\mathrm{T}_{1} * \mathrm{~T}_{2}=\hat{\mathrm{T}}_{2} * \hat{\mathrm{~T}}_{1}, F\left(\mathrm{~T}_{1} * \mathrm{~T}_{2}\right)=F\left(\mathrm{~T}_{1}\right) \times F\left(\mathrm{~T}_{2}\right)$ and $\left(\mathrm{T}_{1} * \mathrm{~T}_{2}\right)=\stackrel{\oplus}{\mathrm{T}}_{1} \times \stackrel{\circ}{\mathrm{T}}_{2} \quad \mathrm{~T}_{1} * \mathrm{~T}_{2}$ is pure if and only if T_{1} and T_{2} are pure. $\mathrm{T}_{1} * \mathrm{~T}_{2}$ is flag-connected if and only if. T_{1} and T_{2} are flag-connected and it is locally flag-connected if and only if T_{1} and T_{2} are locally flag-connected and T_{1} is flag-connected. $T_{1} * T_{2}$ is strongly locally flag-connected if T_{1} and T_{2} are strongly locally flag-connected and connected. $\mathrm{T}_{1} * \mathrm{~T}_{2}$ is pseudo-smooth if and only if T_{1} and T_{2} are pseudosmooth in which case we have for $F=\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right) \in \mathrm{F}\left(\mathrm{T}_{1} * \mathrm{~T}_{2}\right)=F\left(\mathrm{~T}_{1}\right) \times F\left(\mathrm{~T}_{2}\right)$:

$$
\sigma_{k}\left(F_{1}, F_{2}\right)= \begin{cases}\left(\sigma_{k} F_{1}, F_{2}\right) & \text { for } k \leq \operatorname{dim} T_{1} \\ \left(F_{1}, \sigma_{k-\operatorname{dim} T_{1}-1} F_{2}\right) & \text { for } k>\operatorname{dim} T_{1}\end{cases}
$$

This shows in particular that pseudo-smoothness is a much weaker notion than smoothness, since - as we have stated above $-\mathrm{T}_{1} * \mathrm{~T}_{2}$ is smooth if and only if $\left|T_{1}\right|$ and $\left|T_{2}\right|$ are spheres. $T_{1} \times T_{2}$ is (locally) pure if and only if T_{1} and T_{2} are (locally) pure. In the pure case we have

$$
F\left(\mathrm{~T}_{1} \times \mathrm{T}_{2}\right)=F\left(\mathrm{~T}_{1}\right) \times F\left(\mathrm{~T}_{2}\right) \times \bar{\Phi}\left(\mathrm{n}_{1}+\mathrm{n}_{2} ; \mathrm{n}_{1}, \mathrm{n}_{2}\right) \text { with } \mathrm{n}_{\mathrm{i}}=\operatorname{dim} \mathrm{T}_{\mathrm{i}}
$$

and $\Phi\left(n_{1}+n_{2} ; n_{1}, n_{2}\right)$ denoting the set of pairs $\left(\varphi_{1}, \varphi_{2}\right)$ of monotonic maps $\varphi_{1}:\left\{0,1, \ldots, n_{1}+n_{2}\right\} \rightarrow\left\{0, \ldots, n_{1}\right\} \quad$ and $\quad \varphi_{2}:\left\{0, \ldots, n_{1}+n_{2}\right\} \rightarrow\left\{0, \ldots, n_{2}\right\}$ with $\varphi_{1}(k)+\varphi_{2}(k)=k$ for all $\left.k=0,1, \ldots, n_{1}+n_{2}^{*}\right)$ - once we identify an element
$\left(\mathrm{F}_{1}, \mathrm{~F}_{2} ;\left(\varphi_{1}, \varphi_{2}\right)\right) \in F\left(\mathrm{~T}_{1}\right) \times F\left(\mathrm{~T}_{2}\right) \times \Phi\left(\mathrm{n}_{1}+\mathrm{n}_{2} ; \mathrm{n}_{1}, \mathrm{n}_{2}\right)$ with the flag $F \in F\left(T_{1} \times T_{2}\right)$ defined by
*) This set is easily seen to correspond to the set of subsets N_{1} of cardinality n, of $\left\{1,2, \ldots, n_{1}+n_{2}\right\} \quad$ via $N_{1} \rightarrow\left(\varphi_{N_{1}},^{(\rho} \bar{N}_{1}\right)$ with $\varphi_{M}(k)=: \#(M \cap\{0, \ldots, k\})$.

$$
F(k)=\left(F_{1}\left(\varphi_{1}(k)\right), \quad F_{2}\left(\varphi_{2}(k)\right)\right)
$$

If T_{1} and T_{2} are pure, $\mathrm{T}_{1} \times \mathrm{T}_{2}$ is ((strongly) loca11y) flagconnected if and only if T_{1} and T_{2} are ((strongly) locally) flagconnected。
$T_{1} \times T_{2}$ is pseudo-smooth if and only if T_{1} and T_{2} are pseudo-smooth, in which case we have - extending φ_{1} and φ_{2} artificially by $\varphi_{i}(-1)=-1$ and $\varphi_{i}\left(n_{i}+1\right)=n_{i}+1-$
$\sigma_{k}\left(F_{1}, F_{2} ;\left(\varphi_{1}, \varphi_{2}\right)\right)=\left\{\begin{array}{l}\left(\sigma_{\varphi_{1}}(k) F_{1}, F_{2} ;\left(\varphi_{1}, \varphi_{2}\right)\right) \text { if } \varphi_{1}(k+1)=\varphi_{1}(k-1)+2 \\ \left(F_{1}, \sigma_{\varphi_{2}}(k) F_{2} ;\left(\varphi_{1}, \varphi_{2}\right)\right) \text { if } \varphi_{2}(k+1)=\varphi_{2}(k-1)+2 \\ \left(F_{1}, F_{2} ;\left(\bar{\varphi}_{1}, \bar{\varphi}_{2}\right)\right) \text { otherwise with } \\ \bar{\varphi}_{i}(j)= \begin{cases}\varphi_{i}(j) \quad \text { for } j \neq k \\ \varphi_{i}(k-1)+\varphi_{i}(k+1)-\varphi_{i}(k) & \text { for } j=k\end{cases} \end{array}\right.$

One has always $\widehat{\mathrm{T}}_{1} \times \mathrm{T}_{2}=\hat{\mathrm{T}}_{1} \times \hat{\mathrm{T}}_{2}$ 。

Let us finally consider the derived complex $\stackrel{\circ}{\mathrm{T}}$ of a tessellation T. $\stackrel{\ominus}{\mathrm{T}}$ is a partially ordered set with respect to inclusion. Being a semi-simplicial complex, it is always cellular and thus locally finite, locally pure and locally flag-connected. We have $\operatorname{dim} T=\operatorname{dim} \stackrel{\bullet}{T}$. T is pure if and only
 flag-connected and T is strongly locally flag-connected if and only if is locally flag-connected in which case $\stackrel{\stackrel{\circ}{T}}{ }$ is strongly locally flag-connected. T is pseudo-smooth if and only if $\stackrel{\&}{T}$ is pseudo-smooth. For T being pure of dimension n the flag-space $F(\stackrel{\rightharpoonup}{T})$ can be identified with the cartesian product $F(T) \times S_{\{0,1, \ldots, n\}}$ of $F(T)$ and the full symmetric group $S_{\{0, \ldots, n\}}$, consisting of all permutations of the set $\{0,1, \ldots, n\}$, by identifying an element $(F, \pi) \in F(T) \times S_{\{0, \ldots, n\}}$ with the flag

$$
(\{F(\pi(0))\},\{F(\pi(0)), F(\pi(1))\}, \ldots,\{F(\pi(0)), \ldots, F(\pi(n))\}) \in F(\dot{T}) .
$$

If T is pseudo-smooth, this identification is a Σ-isomorphism once we define

$$
\sigma_{k}(F, \pi)= \begin{cases}(F, \pi \cdot(k, k+1)) & \text { for } k<n \\ \left(\sigma_{\pi(n)} F, \pi\right) & \text { for } k=n\end{cases}
$$

§ 2 Pseudo-smooth tessellations and Σ-sets.

In this section we want to study the relations between pseudo-smooth tessellations of dimension n and Σ-sets, Σ being defined as above.

For any $I \subseteq\{0,1, \ldots, n\}$ let $\Sigma^{I}=\left\{\sigma_{k} \in \Sigma \mid k \neq I\right\}$ and $\Sigma_{I}=\left\{\sigma_{i} \in \Sigma \mid i \in I\right\}$. For $I=\{i\}$ write Σ^{i} instead of $\Sigma^{\{i\}}$.

If T is pseudo-smooth, then $F(T)$ satisfies
(T0) $\quad \sigma_{k} F \neq F \quad$ for $a l l \quad k=0,1, \ldots, n$ and all $F \in F(T)$,
(T1) $\bigcap_{i=0}^{n} \Sigma^{i} F=\{F\} \quad$ for all $F \in F(T)$,
(T2) $\quad \cap_{i \neq k} \Sigma^{i} F=\left\{F, \sigma_{k} F\right\}$ for all $k=0, \ldots, n$ and all $F \in F(T)$. $i \neq k$
T is $f l a g$-connected if and only if Σ acts transitively on $F(T)$. T and \hat{T} are locally flag-connected if and only if for any $t \in T$ the subgroup $\sum^{\text {dimt }}$ acts transitively on the set $F_{t}(T)=:\{F \in F(T) \mid t \in F\}$.

T is strongly locally flag-connected if and only if for any linearly ordered subset $B \subseteq T$ the subgroup $\Sigma^{\{d i m t \mid t \in B\}}$ acts transitively on $F_{B}(T)=\{F \in F(T) \mid B \subseteq T\}=\cap_{t \in T} F_{t}(B)$. Thus, if T and \hat{T} are locally flag-connected, T is strongly locally flag-connected if and only if
(T3) $\quad \cap \quad \Sigma^{i} F=\Sigma^{I} F \quad$ for all $F \in F(T)$ and all $I \subseteq\{0,1, \ldots, n\}$ $i \in I$
holds.
T is finite if and only if $F(T)$ is finite and, if T and \hat{T} are locally flag-connected, T is locally finite if and only if $\Sigma^{i} F$ is finite for all $F \in F(T)$ and all $i=0,1, \ldots, n$ or - equivalently - for all $F \in F(T)$ and $i=0, n$.

Vice-versa - we can associate to any Σ-set F a pure, partially ordered set of dimension n defined by

$$
T(F)=\left\{\left(i, \Sigma^{i} F\right) \mid i=0,1, \ldots, n ; F \in F\right\}
$$

with " $\left(\mathrm{i}, \Sigma^{i} \mathrm{~F}\right) \leq\left(\mathrm{k}, \Sigma^{k} F^{\prime}\right)$ " if and only if $\mathrm{i} \leq \mathrm{k}$ and $\Sigma^{i} F \cap \Sigma^{k} F^{\prime} \neq \emptyset$ 。
If $F=F(T)$ for T a pseudo-smooth tessellation we have a natural, well-defined and surjective homomorphism of partially ordered sets $T(F(T)) \rightarrow T:\left(i, \Sigma^{i} F\right) \mapsto F(i)$, which is an isomorphism if and only if T and \hat{T} are locally flag-connected. Again, vice-versa, for any Σ-set F we have a natural, surijective map
$F \rightarrow F(T(F)): F \mapsto\left(\left(0, \Sigma^{0} F\right),\left(1, \Sigma^{1} F\right), \ldots,\left(n, \Sigma^{n} F\right)\right)$, which is injective if and only if F satisfies (T1). In this case, $T(F)$ is pseudo-smooth if and only if F satisfies in addition (TO) and (T2), in which case $F \longrightarrow F(T(F))$ is an isomorphism of Σ-sets. Thus we have

Theorem 1: There is a 1-1 correspondance between pseudo-smooth tessellations T of dimension n, for which T and \hat{T} are locally flag-connected, - such tessellations will be called Σ-tessellations - and Σ-sets F which satisfy (TO), (T1) and (T2).

As a consequence, one can derive

Theorem 2 (see [3]): For any Σ-tessellation T we have a canonical isomorphism

$$
\operatorname{Aut}(T) \cong \operatorname{Aut}_{\Sigma}(F(T))
$$

In particular, if T is flag-connected, this gives for any $F \in F(T)$ the isomorphisms Aut $(T) \cong A u t_{\Sigma}\left(F(T) \cong A u t_{\Sigma}\left(\Sigma / \Sigma_{F}\right) \cong N_{\Sigma}\left(\Sigma_{F}\right) / \Sigma_{F}\right.$ with $\Sigma_{F}=\{\tau \in \Sigma \mid \tau F=F\}$ the stabilizer group of F and $N_{\Sigma}\left(\Sigma_{F}\right)=\left\{\tau \in \Sigma \mid \quad \tau \Sigma_{F}=\Sigma_{F} \tau\right\}$ the normalizer of Σ_{F} in $\quad \Sigma$. Another application of the relation between tessellations and Σ-sets is

Theorem 3: Let T be a smooth tessellation of dimension n, let $F \in F(T)$ be a flag and define $x_{F}=\sum_{t \in F} \frac{1}{n+1} t \in|T|$. Then

$$
\pi_{1}\left(|T|, x_{F}\right) \cong \Sigma_{F} /\left\langle\tau^{-1}\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle{ }_{\tau F} \tau \mid k=1,2, \ldots, n ; \tau \in \Sigma\right\rangle
$$

（with $\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle_{\tau F}=\left\langle\sigma \in\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle \mid \sigma \tau F=\tau F\right\rangle$ the stabilizer group of τF in $\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle$ ）。
 follows easily from

Theorem 3^{\prime} ：Let T be pseudo－smooth of dimension n and strongly locally connected and let $F \in F(T)$ be a flag and thus a vertex in $\stackrel{\hat{\circ}}{\mathrm{A}}$ ． Let 亚2 denote the 2 －skeleton of 会，i．e．
if and only if $B^{\prime} \subseteq B$ ．Then

$$
\pi_{1}(|\stackrel{\stackrel{\rightharpoonup}{\mathrm{~T}} 2}{\mathrm{~T}}|, F) \cong \Sigma_{F} /\left\langle\tau^{-1}\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle_{\tau F}{ }^{\tau} \mid k=1,2, \ldots, n ; \tau \in \Sigma\right\rangle
$$

To rephrase this result observe that

$$
\begin{aligned}
& \tau^{-1}\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle{ }_{\tau F}{ }^{\tau}=\tau^{-1}\left(\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle \cap \sum_{\tau F}\right) \tau \\
= & \tau^{-1}\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle \tau \cap \Sigma_{F} .
\end{aligned}
$$

So，for any subgroup $\Delta \leq \Sigma$ we define $\tilde{\Delta}=\left\langle\tau^{-1}\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle \tau \cap \Delta \mid k=1, \ldots, n ; \tau \in \Sigma\right\rangle$
and observe that $\widetilde{\Delta} \leq \Delta, \widetilde{\widetilde{\Delta}}=\widetilde{\Delta}$ and $\pi_{1}\left(\left|\stackrel{\rightharpoonup}{T}^{2}\right|, F\right) \cong \Sigma_{F} / \widetilde{\Sigma}_{F}$ if $T \quad$ is pseudo－smooth and strongly locally connected．We define $\Delta \leq \Sigma$ to be di－ hedrally generated if $\Delta=\widetilde{\Delta}$ and thus we have as a corollary：if T is pseudo－smooth，flag－connected and strongly locally connected，then Σ_{F} is dihedrally generated for all $F \in F(T)$ if and only if $\left|\hat{\mathrm{P}}^{2}\right|$ is simply connected，which in case T is smooth，is equivalent to $|T|$ being simply connected．

Furthermore we have for any pseudo－smooth tessellation T and any $F \in F(T)$ the relation $\left\langle\sigma_{i}, \sigma_{k}\right\rangle_{F} \underset{F}{F}\left\langle\left(\sigma_{i} \sigma_{k}\right)\right\rangle$ for all $i, k=0, \ldots, n$, i．e．we have $\left\langle\sigma_{i}, \sigma_{k}\right\rangle_{F}=1$ for $|i-k| \geq 2$ and $\left\langle\sigma_{k-1}, \sigma_{k}\right\rangle_{F}=\left\langle\left(\sigma_{k-1} \sigma_{k}\right)^{r_{k}(F)}\right\rangle$ for $r_{k}(F)=\left(\left\langle\left(\sigma_{k-1} \sigma_{k}\right)\right\rangle:\left(\sigma_{k-1}, \sigma_{k}\right\rangle_{F}\right) \in\{2,3, \ldots$ ； （with the convention $\sigma^{\infty}=1$ ）．In other words，if we define a subgroup $\Delta \leq \Sigma$
 then Σ_{F} is polygonal for any flag F of a pseudo－smooth tessellation T ． It seems reasonable to conjecture that for any dihedrally generated and
polygonal subgroup $\Delta \leq \Sigma$ the Σ-set Σ / Δ satisfies (TO) and (T3) (and thus (T1) and (T2) !) so that $T=T(\Sigma / \Delta)$ is a pseudo-smooth, strongly locally connected and flag-connected tessellation with a simply connected $\left\lvert\, \begin{aligned} & \text { 合 } 2 \mid \text { 。 }\end{aligned}\right.$

For any polygonal subgroup $\Delta \leq \Sigma$ we define
$r_{k}=r_{k}^{\Delta}: \Sigma \rightarrow \mathbb{N} \cup\{\infty\}: \tau \mapsto r_{k}(\tau)=\left(\left\langle\sigma_{k-1} \sigma_{k}\right\rangle:\left\langle\sigma_{k-1} \sigma_{k}\right\rangle \cap \tau \Delta \tau^{-1}\right)$
for $k=1,2, \ldots, n$. We have obviously
(PO) $\quad r_{k}(\tau) \geq 2$ for all $\tau \in \Sigma ; k=1,2, \ldots, n$.
(P1) $\quad r_{k}\left(\sigma_{i} \tau\right)=r_{k}(\tau) \quad$ for all $\tau \in \Sigma ; k, i \in\{1, \ldots, n\}$

$$
\text { and } \quad i \neq k-2, k+1
$$

and we have
(P2) (i) $\quad r_{k}\left(\sigma_{k-2} \tau\right)=r_{k}(\tau) \quad$ if $\quad r_{k-1}(\sigma \tau)=2$ for a11 $\sigma \in\left\langle\sigma_{k-1} \sigma_{k}\right\rangle$
(ii) $r_{k}\left(\sigma_{k+1} \tau\right)=r_{k}(\tau)$ if $r_{k+1}(\sigma \tau)=2$ for all $\sigma \in\left\langle\sigma_{k-1} \sigma_{k}\right\rangle$ for a11 $\tau \in \Sigma$ and $a 11 \quad k=1,2, \ldots, n$.
(P3)

$$
r_{k}\left(\tau \cdot \rho^{-1}\left(\sigma_{i-1} \sigma_{i}\right)^{r_{i}(\rho)} \rho\right)=r_{k}(\tau) \text { for al1 } \tau, \rho \in \sum ; i, k \in\{1, \ldots, n\}
$$

Another reasonable conjecture is that for any set of functions
$\mathbf{r}_{k}: \Sigma \rightarrow \mathbb{N} \cup\{\infty\}$ satisfying the compatibility conditions (PO), (P1), (P2) and (P3), the subgroup

$$
\Delta=\Delta\left(r_{1}, r_{2}, \ldots, r_{n}\right)=:\left\langle\tau^{-1}\left(\sigma_{k-1} \sigma_{k}\right)^{r_{k}(\tau)} \tau \mid k=1, \ldots, n ; \tau \in \Sigma\right\rangle
$$

is polygonal (it is obviously dihedrally generated) and satisfies $r_{k}(\tau)=r_{k}^{\Delta}(\tau)$ for all $\tau \in \Sigma ; k=1,2, \ldots, n$.

If both conjectures were true - and they can probably be proved generalizing the methods of Bourbaki/Tits, [1] - we would have a nice 1-1 correspondance between
(a) pseudo-smooth, strongly locally connected and fiag-connected tessellations T with a simply connected $\left|\stackrel{\rightharpoonup}{\mathrm{T}}^{2}\right|$,
(b) transitive Σ-sets F, satisfying (TO) and (T3), with $\sum_{F}=\widetilde{\Sigma}_{F}$ dihedrally generated for all $F \in F$,
(c) conjugacy classes of dihedrally generated, polygonal
subgroups $\Delta \leq \Sigma$ 。
(d) equivalence classes of families of functions $r_{1}, r_{2}, \ldots, r_{n}: \Sigma \rightarrow \mathbb{N} \cup\{\infty\}$, satisfying (PO), (P1), (P2) and (P3), with the equivalence defined by " $\left(r_{1}, r_{2}, \ldots, r_{n}\right) \sim\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots r_{n}^{\prime}\right)$ " if and only if there exists some $\tau \in \Sigma$ with $r_{k}(\sigma)=r^{\prime}(\sigma \tau)$ for all $\sigma \in \Sigma ; k=1,2, \ldots, n$.
So far we have a $1-1$ correspondance between (a) and (b) and we have to any object in (b) a unique object in (c) and to any object in (c) a unique object in (d).

It seems worthwhile to observe finally in this context that for a dihedrally generated, polygonal subgroup $\Delta \leq \Sigma$ we have

$$
N_{\Sigma}(\Delta)=\left\{\sigma \in \Sigma \mid r_{k}^{\Delta}(\tau \sigma)=r_{k}^{\Delta}(\tau) \text { for all } \tau \in \Sigma \text { and a11 } k=1,2, \ldots, n\right\}
$$

§ 3 Equivariant tessellations

An equivariant tessellation (T, Γ) consists of a tessellation T and a group Γ of automorphisms of T, acting on T from the right.

If T is pseudo-smooth of dimension n and T and \hat{T} are locally connected, - i.e. if T is a Σ-tessellation - this corresponds - by Theorem 2 - to a Σ-set F, satisfying (TO), (T1) and (T2), together with a group Γ of Σ-automorphisms of F, acting from the right on F - i.e. to an "equivariant Σ-set" (F, Γ). Thus we can form the Σ-set $D=D(T, \Gamma)=F / \Gamma$ of Γ-orbits of flags of T, which we call the Delaney symbol of (T, Г). From \mathcal{D} we get a canonical tessellation of the orbit space $|T| / T$ via

Theorem 4: For any Σ-set F define the "derived Σ-set" $\stackrel{F}{F}$ by

$$
\begin{aligned}
& \stackrel{\circ}{F}=F \times S_{\{0, \ldots, n\}} \\
& \text { with } \\
& \sigma_{k}(F, \pi)= \begin{cases}(F, \pi \cdot(k, k+1)) & \text { for } k<n \\
\left(\sigma_{\pi(n)} F, \pi\right) & \text { for } k=n .\end{cases}
\end{aligned}
$$

Then for any equivariant tessellation (T, Γ) we have a canonical homeomorphism

$$
|\mathrm{T}| / \Gamma \simeq|\mathrm{T}(\dot{\mathcal{D}}(\mathrm{~T}, \Gamma))|
$$

In particular, $D(T, \Gamma)$ is finite if and only if $|T| / \Gamma$ is compact.
Now we observe that for any equivariant Σ-set (F, Γ) we have func-tions $r_{k}: F / \Gamma \rightarrow \mathbb{N} \cup\{\infty\}$ defined by $r_{k}(F \Gamma)=\left(\left\langle\sigma_{k-1} \sigma_{k}\right\rangle:\left(\sigma_{k-1} \sigma_{k}\right\rangle_{F}\right)$. since the r.h.s. of this equation does not depend on the chosen representative F of the Γ-orbit $F \Gamma$. These functions have properties similar to those listed as (PO), (P1) and (P2).

The following theorem follows immediately from the foregoing results:

Theorem 5: To any equivariant tessellation ($\mathrm{M}^{\mathrm{n}}, \mathrm{T}, \mathrm{r}$) of a manifold M^{n} or - more generally - to any equivariant Σ-tessellation (T, Γ) we can associate the Delaney-symbol $D=\mathcal{D}(\mathrm{T}, \Gamma)$ and a family of functions $r_{1}, \ldots, r_{n}: D \rightarrow \mathbb{N}(U\{\infty\})$ - the ramification parameters of the equivariant tessellation (T, Г) - having the properties
($P O^{\prime}$) $\quad r_{k}(f) \geq 2$ for all $f \in D$ and $k \in\{1, \ldots, n\}$
($\left.\mathrm{P} 1^{\mathrm{r}}\right) \quad \mathrm{r}_{\mathrm{k}}\left(\sigma_{\mathrm{i}} \mathrm{f}\right)=\mathrm{r}_{\mathrm{k}}(\mathrm{f}) \quad$ for all $\mathrm{f} \in \mathcal{D}$ and $\mathrm{i}, \mathrm{k} \in\{1, \ldots, \mathrm{n}\}$
with $i \neq k-2, k+1$ 。
(P2 ${ }^{\prime}$) (i) $r_{k}\left(\sigma_{k+1} f\right)=r_{k}(f)$ if $r_{k+1}(\sigma f)=2$ for all $\sigma \in\left\langle\sigma_{k-1} \sigma_{k}\right\rangle$
(ii) $r_{k}\left(\sigma_{k-2} f\right)=r_{k}(f)$ if $r_{k-1}(\sigma f)=2$ for all $\sigma \in\left\{\sigma_{k-1} \sigma_{k}\right\rangle$.

If M^{n} is connected and simply connected or - more general1y -
if T is connected and stronly local-
ly flag-connected and $\left|\hat{\mathrm{T}}^{2}\right|$ is simply connected, then ($\mathrm{M}^{\mathrm{n}}, \mathrm{T}, \mathrm{\Gamma}$)
(or just (T, Γ)) is uniquely determined by its Delaney-symbol and its ramification parameters, -i.e. if ($M^{\prime n}, T^{\prime}, \Gamma^{\prime}$) (or just ($T^{\prime}, \Gamma^{\prime}$)) is another equivariant tessellation and $M^{\prime n}$ is also connected and simply connected (or T^{\prime} is also a flag-connected Σ-tessellation with a simply connected $\left.\left|\frac{\hat{T}}{T}, 2\right|\right)$, then we have an isomorphism $\left(M^{n}, T, \Gamma\right) \cong\left(M^{\prime n}, T^{\prime}, \Gamma^{\prime}\right)$ (or $\left.(T, \Gamma) \cong\left(T^{\prime}, \Gamma^{\prime}\right)\right)$ if and only if we have a Σ-isomorphism $D(T, \Gamma) \xrightarrow{\alpha} \mathcal{D}\left(T^{\prime}, \Gamma^{\prime}\right)$, such that $r_{k}(f)=r_{k}^{\prime}(\alpha f)$ for all $f \in \mathcal{D}\left(T, \Gamma^{\prime}\right)$ r_{k}^{\prime} denoting the ramification parameters of $\left(T^{\prime}, \Gamma^{\prime}\right)$ 。

The following results are of interest in this context:
(1) Γ acts transitively on the i-dimensional tiles if and only if Σ^{i} acts transitively on $\mathcal{D}(T, \Gamma)$, - more precisely, we have a

$$
\begin{aligned}
& \text { natural bijection between } \Sigma^{i} \backslash \mathcal{D}(T, \Gamma) \text { and } T_{i} / \Gamma \text { with } \\
& T_{i}=\{t \in T \mid \text { dim } t=i\}: \Sigma^{i} \backslash \mathcal{D}(T, \Gamma)=\Sigma^{i} \backslash F(T) / \Gamma=T_{i} / \Gamma
\end{aligned}
$$

(2) Γ acts fixed point free on the i-dimensional tiles T_{i} if and only if $\Sigma_{F}^{i}=\Sigma^{i} r F$ for all $F \in F(T)$.

Finally we state

Theorem 6: Let (M^{n}, T, Γ) be an equivariant tessellation of the connected and simply connected manifold M^{n}. Assume Γ to act sharply transitive (i.e. transitive and fixed point free) on the vertices or zero-dimensional tiles of T. Then Γ can be presented as follows:

Choose some $F \in F(T)$. For any flag $A=\alpha F \in \Sigma^{o} F\left(\alpha \in \Sigma^{o}\right)$ in the Σ^{0}-orbit of F there exist a unique flag $\bar{A}=\bar{\alpha} F \in \Sigma^{o} F \quad\left(\bar{\alpha} \in \Sigma^{0}\right)$ and a unique element $\gamma_{A} \in \Gamma$ with $\sigma_{0} A=\bar{A} \gamma_{A}$.

We have $\overline{\bar{A}}=\mathrm{A}, \quad \gamma_{\overline{\mathrm{A}}}=\gamma_{\mathrm{A}}^{-1}$ and $\overline{\sigma \mathrm{A}}=\sigma \overline{\mathrm{A}}$ as well as $\gamma_{\sigma \mathrm{A}}=\gamma_{\mathrm{A}}$ for $\sigma \in \Sigma^{0,1}=: \Sigma^{\{0,1\}}=\left\langle\sigma_{k} \mid k \geq 2\right\rangle$, so γ_{A} depends on1y on the $\Sigma^{o, 1}{ }_{\text {-orbit }}$ $a=\Sigma^{0,1} A$ of A - so we write γ_{a} instead of γ_{A} for $a=\Sigma^{0,1} A-$ and the involution $A \mapsto \bar{A}$ of $\Sigma^{o} F$ defines an involution

$$
\mathbf{a}=\Sigma^{0,1} \mathrm{~A} \mapsto \overline{\mathrm{a}}=\Sigma^{0,1} \bar{\Lambda}=\overline{\Sigma^{0,1}} \mathrm{~A}
$$

on the orbit space $\Sigma^{0,1} \backslash \Sigma^{0} F$.
For any $A \in \Sigma^{o} F$ define $A_{1}=A, \quad A_{k+1}=\sigma_{1} \bar{A}_{k}$ and $a_{k}(A)=\Sigma^{0,1} A_{k}$.
Then the homomorphism of the free group $\mathbb{F}=\mathbb{F}\left(\Sigma^{o, l} \backslash \Sigma^{o} F\right)$, generated by the $\Sigma^{0,1}$-orbits $a=\Sigma^{0,1} A$ of flags A in $\Sigma^{o} F$, into Γ, defined by $a \nvdash \gamma_{a}$ is surjective and its kernel is generated as a normal subgroup $K=K_{F}$ of \mathbb{F} by the elements
(1)
a \bar{a}
$\left(a \in \Sigma^{o, 1} \backslash \Sigma^{o} F\right)$,
and

$$
\begin{equation*}
a_{r_{1}(A)}(A) \circ a_{r_{1}}(A)-1(A) \circ \ldots a_{2}(A) \circ a_{1}(A) \quad\left(A \in \sum^{\circ} E\right) \tag{2}
\end{equation*}
$$

If we do not assume M^{n} to be simply connected, we have instead an
exact sequence

$$
1 \rightarrow \pi_{1}\left(M^{n}\right) \rightarrow \mathbb{F} / K \rightarrow \Gamma \rightarrow 1
$$

As a corollary we get: For any equivariant tessellation ($\mathrm{M}^{\mathrm{n}}, \mathrm{T}, \Gamma$) of a connected manifold M^{n} for which Γ acts sharply transitive on the vertices of T, and for any $F \in F(T)$ we have an exact diagram

Theorem 6 can be proved more or less purely topologically or by using topology only to prove that for any equivariant tessellation (M^{n}, T, Γ), for which Γ acts sharply transitively on the vertices of T, and for any flag $F \in(T)$ the subgroup Σ_{F}, defined above, is generated as a normal subgroup of $\Sigma_{F \Gamma}$ by $\Sigma^{o} \cap \Sigma_{F \Gamma}=\Sigma^{o} \cap \Sigma_{F}$ and the elements $\tau^{-1}\left(\sigma_{1} \sigma_{0}\right)^{r_{1}(\tau F)} \tau\left(\tau \in \Sigma^{o}\right)$ and then applying the following, basically probably well-known lemma, which states the group theoretical background of Theorem 6 :

Lemma: Let G be a group, let U, V, W be subgroups of G and assume $U V=V U=G$ and $U \cap V \subseteq W \subseteq V$ 。
(a) The map $V / W \rightarrow U / G / W: v W \rightarrow U v W$ is a bijection.
(b) If $W \unlhd V, \Gamma=V / W$ and $G=\left\langle U, g_{i} \mid i \in I\right\rangle$
then we can define a system of generators
$\left\{\gamma_{i, u W} \mid i \in I, u W \in U W / W=\{x W \mid x \in U\}\right\}$ of Γ by observing, that for any $i \in I$ and any $u W \in U W / W$ there exists a unique coset $h_{i}(u W) \in U W / W$ and a unique element $\gamma=\gamma_{i}, u W$ with $g_{i} u W=h_{i}(u W) \gamma$.
(Here we use that $\Gamma=V / W$ acts naturally on G / W from the right. It also acts naturally and sharply transitively on $U \backslash G / W$.
(c) If W is generated as a normal subgroup of V by $U \cap V$ and certain elements $y_{j} \in W \quad(j \in J)$, we can define a complete system of relations for these generators in the following way:
(1) For each sequence $K=\left(\left(g_{i_{k}}, u_{k}\right),\left(g_{i_{k-1}}, u_{k-1}\right), \ldots\left(g_{i_{1}}, u_{1}\right)\right)$ define $h^{1}(K)=u_{1} W \in U W / W, \quad h^{K+1}(K)=u_{K+1} \cdot h_{i_{K}}\left(h^{K}(K)\right) \quad$ and $\gamma_{K}(K)=\gamma_{i_{K}}, h^{K}(K) \in\left\{\gamma_{i, u W} \mid i \in I, u W \in U W / W\right\}$.
(2) Express each y_{j} as a product

thereby associating to each y_{j} a certain (of course not uniquely determined) sequence K_{j} of the form considered (1).
(3) Then the relations
$\gamma_{k}\left(K_{j}\right) \cdot \gamma_{k_{j}-1}\left(K_{j}\right) \cdot \cdots \cdot \gamma_{1}\left(K_{j}\right)=1 \quad(j \in J)$
are a complete system of relations for Γ with respect to the generators $\left\{\gamma_{i, u W} \mid i \in I, u W \in U / W\right\}$.

§ 4 Some applications

(a) In the two-dimensional case one verifies easily that a pseudo-smooth tessellation T is smooth if and only if T and \hat{T} are locally connected and locally finite.

If $\left(S^{2}, T, \Gamma\right)$ is an equivariant tessellation of the 2-sphere with Γ acting by isometries with respect to the elliptic metric on S^{2}, one has a finite Delaney-symbol $\quad D=D\left(S^{2}, T, \Gamma\right)=F(T) / \Gamma$ and - using $\times\left(S^{2}\right)=2-$ one can prove that $K=K\left(D ; r_{1}, r_{2}\right)=: \sum_{f=F \Gamma \in D}\left(\frac{1}{r_{1}(f)}+\frac{1}{r_{2}(f)}-\frac{1}{2}\right)$ is positive and that $|\Gamma|=4 \cdot K^{-1}$ 。

If $\left(\mathbb{E}^{2}, T, \Gamma\right)$ is an equivariant tessellation of the euclidean plane with Γ acting by euclidean isometries, one has - as always - $|\mathcal{D}|<\infty$ if
and only if \mathbb{E}^{2} / Γ is compact (i.e. Γ is crystallographic), in which case $K\left(\mathcal{D}\left(\mathbb{E}^{2}, T, \Gamma\right) ; r_{1}, r_{2}\right)=0$ holds.

If $\left(\mathbb{H}^{2}, T, \Gamma\right)$ is an equivariant tessellation of the hyperbolic plane with Γ acting by hyperbolic isometries and with \mathbb{H}^{2} / Γ compact one has $K\left(D ; r_{1}, r_{2}\right)<0$. This result can probably be extended to groups r with $\operatorname{vol}\left(\mathbb{H}^{2} / \Gamma\right)<\infty$ using an appropriate definition of $K\left(D ; r_{1}, r_{2}\right)$ 。

These results can be used to classify metrically equivariant tessellations ($\mathrm{S}^{2}, \mathrm{~T}, \Gamma$) and $\left(\mathbb{E}^{2}, \mathrm{~T}, \Gamma\right)$ for which there are not too many Γ-orbits of vertices (or edges or faces) in T.

They give also rise to the conjecture, which has been proved in very many special cases already, that any equivariant tessellation $\left(\mathrm{M}^{2}, \mathrm{~T}, \Gamma\right)$ with M^{2} / Γ compact (so that $K=K\left(D\left(M^{2}, T, \Gamma\right) ; r_{1}, r_{2}\right)$ is defined) is isomorphic to a metrically equivariant tessellation $\left(\mathrm{M}^{\prime 2}, \mathrm{~T}^{\prime}, \Gamma^{\prime}\right)$ with

$$
M^{0^{2}} \cong\left\{\begin{aligned}
S^{2} & \text { if } \quad K>0 \\
\mathbb{E}^{2} & \text { if } \quad K=0 \\
\mathbb{H}^{2} & \text { if } \quad K<0
\end{aligned}\right.
$$

They can also be used to reduce the classification problem of regular polyhedra in the sense of Branko Grünbaum (cf. [4]) to the (wider) problem of classifying all discrete subgroups of the full isometry group of the euclidean 3 -space \mathbb{E}^{3}, which are generated by 3 involutions.
(b) In the platonic case, which is defined by the requirement that Γ acts transitively on the flag-space, so that the Delaney-symbol \mathcal{O} becomes the trivial one-point-set, one can use the well-known classification of Coxeter-groups (see [1] or [2]) to give a complete description of all possible platonic pseudo-smooth tessellations T for which T and \hat{T} are locally flag-connected and $\left|\hat{\mathrm{T}}^{2}\right|$ is simply connected.

Since \# $D=1$, they are completely characterized by the sequence of numbers $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ which of course is just the "Schläfli-symbol" of the platonic tessellation ($\mathrm{T}, \mathrm{\Gamma}$).
(c) If $\left({ }^{(b i j}\right)_{i, j \in\{0,1, \ldots, n\}}$ is the Coxeter matrix of a Coxeter group

forispic

(so $b_{i j}=b_{j i} \geq 2 b_{i j} \in \mathbb{N}, b_{i i}=1$) we can associate to ($b_{i j}$) the $\Sigma=\Sigma(n)-$ set $S_{\{0,1, \ldots, n\}}$ on which Σ acts via the homomorphism

$$
\beta: \Sigma \rightarrow S_{\{0,1, \ldots, n\}}: \sigma_{i} \mapsto\left\{\begin{array}{cl}
(i, i+1) & i<n \\
\operatorname{Id} & i=n
\end{array}\right.
$$

the ramification parameters

$$
r_{k}: S_{\{0,1, \ldots, n\}} \rightarrow \mathbb{N}: f \mapsto\left\{\begin{array}{l}
3 \text { if } k<n \\
2 b_{i j} \text { if } n=k \text { and } f=\left(\begin{array}{ccc}
\ldots-1 & n \\
\ldots \ldots & i & j
\end{array}\right)
\end{array}\right.
$$

and the subgroup

$$
\Delta=\left\langle\tau^{-1}\left(\sigma_{k-1} \sigma_{k}\right)^{r_{k}(\beta \tau)} \tau \mid \tau \in \Sigma ; k=1,2, \ldots, n\right\rangle
$$

It can be shown that the tessellation $T=T(\Sigma / \Delta)$ corresponds to the
simplicial complex associated to any Coxeter group by Tits (see [1]) and that the group $\Gamma=\operatorname{Ke}(\beta) / \Delta \quad$ is isomorphic to the Coxeter group associated to (b_{ij}), the generating involutions being the coset

$$
\sigma_{i} \sigma_{i+1} \cdots \sigma_{n-1} \sigma_{n} \sigma_{n-1} \cdots \sigma_{i+1} \sigma_{i} \Delta .
$$

It follows that for any two Coxeter matrices $\left(b_{i j}{ }^{\prime}{ }_{i, j} \in\{0, \ldots, n\}\right.$ and $\left(c_{i j}\right)_{i, j \in\{0, \ldots, n\}}$ of spherical type (i.e. for any two positive definite Coxeter matrices (b_{ij}) and ($\left.\mathrm{c}_{\mathrm{ij}}\right)$) we get a smooth tessellation $\mathrm{T}^{\text {' }}$ of dimension $n+1$ if we define $S_{\{0, \ldots, n\}}$ to be a $\Sigma=\Sigma(n+1)$-set via the homomorphism

$$
\beta^{0}=\Sigma \rightarrow S_{\{0, \ldots, n\}}: \sigma_{i} \mapsto\left\{\begin{array}{cl}
(i-1, i) & 0<i<n+1 \\
\text { Id } & \text { i. }=0 \text { or } i=n+1,
\end{array}\right.
$$

the ramification parameters

$$
\begin{aligned}
& \Delta^{\prime}=\left\langle\tau^{-1}\left(\sigma_{k-1} \sigma_{k}\right)^{r_{k}\left(\beta^{\prime}\right)} \tau \mid \tau \in \Sigma ; k=1, \ldots, n+1\right\rangle
\end{aligned}
$$

and put

$$
\mathrm{T}^{\mathrm{y}}=\mathrm{T}\left(\Sigma / \Delta^{\prime}\right)
$$

It would be nice to know whether or not the associated topological space $\left|T^{\top}\right|$ can always be identified with the ($n+1$)-dimensional euc1idean space \mathbb{E}^{n+1} in such a way that the group of automorphisms $\Gamma^{\prime}=\operatorname{Ke}\left(\beta^{\gamma}\right) / \Delta^{\prime}$ acts isometrically and to determine the explicit structure of Γ^{\prime} 。

More generally it seems tempting to ask the following question: Let G be a Lie-group and let $U \leq G$ be a closed subgroup with $\pi_{1}(G / U)=1$. Give necessary and perhaps even sufficient conditions for a $\Sigma=\Sigma(\operatorname{dim} G / U)-$ set D and ramification parameters $r_{k}: D \rightarrow \mathbb{N}$ in order to ensure that the associated equivariant tessellation ($|\mathrm{T}|, \mathrm{T}, \mathrm{\Gamma}$) with $\mathrm{T}=\mathrm{T}(\Sigma / \Delta), \quad \Gamma=\Sigma_{\mathrm{f}} / \Delta, \quad \mathrm{f}$ some element in \mathcal{D} and

$$
\Delta=\left\langle\tau^{-1}\left(\sigma_{k-1} \sigma_{k}\right)^{r_{k}(\tau f)} \tau \mid \tau \in \Sigma, k=1,2, \ldots, \operatorname{dim} G / U\right\rangle
$$

is isomorphic ($G / U, T, \Gamma^{\text { }}$) with $\Gamma^{\text { }}$ a discrete subgroup of G acting in the natural way on G / U.
Applications of this theory towards planar patterns have appeared meanwhile in [7].

References
[1] N. Bourbaki: Groupes et Algebres de Lie,
Chap. 4, 5, 6
[2] H.S.M. Coxeter: Regular Polytopes,
Dover Pub1. Inco, New York, $3^{\text {rd }}$ ed., 1973
[3] MoS. Delaney: Quasi symmetries of space group orbits,
Proceedings of the ZiF-Conference of Crystal-
lographic groups, match, vol. 9, p. 73 - 80 (1980)
[4] A.W.M. Dress: Regular patterns,
Proceedings of the ZiF-Conference of Crystal-
lographic groups, match, vo1. 9, p. 81 - 100 (1980)
[5] B. Grünbaum: Regular polyhedra - old and new:
Aequationes Mathematicae 16 (1977), 1 -- 20
[6] C.P. Rourke; B.J. Sanderson:
Introduction to piecewise linear topology,
Ergebnisse der Mathematik und ihrer Grenzgebiete,
Band 69, Berlin-Heidelberg-New York 1972
[7] A.W.M. Dress u. R。Scharlau:
Zur Klassifikation äquivarianter Pflasterungen. Mitteilungen aus dem Mathem. Seminar Giessen, Heft 164, Coxeter-Festschrift. Giessen 1984.

[^0]: *) In the definition of a partially ordered set we include the axiom $" s \leq t$ and $t \leq s \Rightarrow s=t "$.

