THE NUMBER OF MATRICES OVER A FINITE FIELD WITH PRESCRIBED EIGENSPACES

by Arne Dür

Let F be a finite field with q elements. By a "partial partition" of F^{m} , I understand a set π of subspaces of F^{m} whose sum is direct. The type of π $\alpha = (1^{\alpha(1)}2^{\alpha(2)}..)$

is defined by $\alpha(i) = \text{number of blocks of } \pi \text{ of } F\text{-dimension } i$. Let $A = \{\alpha = (1^{\alpha(1)} 2^{\alpha(2)} \dots); a \text{lmost all } \alpha(i) = 0\}$ denote the set of types. Then $gew(\alpha) := \Sigma_{i=1}^{\infty} i\alpha(i) = \dim_{F}(\Sigma_{\pi} \vee) \leq m$, and $|\alpha| := \Sigma_{i=1}^{\infty} \alpha(i)$ is the number of blocks of π .

In this article, we are concerned with the following counting problem:

Let π be an arbitrary partial partition of F^m . What is the number of m×m-matrices g with entries in F such that π is just the set of eigenspaces of g ?

Since this number depends only on m and on the type α of π , we denote it by $f_q(\alpha,m)$. Obviously $f_q(\alpha,m)=0$ if $|\alpha|>q$, because a matrix over F has at most q eigenspaces in F^m . The other values of f_{α} are given by their generating function.

Theorem: For any $\alpha = (1^{\alpha} (1) 2^{\alpha} (2) ...) \in A$ with $|\alpha| \leq q$ and $1 := gew(\alpha)$,

$$\Sigma_{n=0}^{\infty} f_{q}(\alpha, 1+n) \frac{w^{n}}{b_{q}(n)} = \frac{q!}{(q-|\alpha|)!} (\pi_{j=0}^{1}(1-q^{j}w)^{\gamma(j)}) e_{q}(-\frac{w}{q-1})^{q-1}$$

Here $b_q(n) = (q^n - 1) (q^n - q) \dots (q^n - q^{n-1})$ is the order of the general linear group of F^m , $\gamma(j) = q - 1 - \Sigma_{i=0}^j \alpha(1-i)$ for $j=0,1,\dots,l-1$ but $\gamma(1) = -1$, and $e_q(z) = \Sigma_{k=0}^{\infty} \frac{z^k}{\lfloor k \rfloor \rfloor}$ is the q-exponential function (see [1],p.29) $(\lfloor k \rfloor ! = \lfloor k \rfloor \lfloor k-1 \rfloor \dots \lfloor 1 \rfloor, \lfloor k \rfloor = (q^k - 1) / (q - 1))$.

- 76 -

The main steps in the proof are

- (i) to derive an explicit formula for the $f_q(\alpha,m)$ (which is improper to calculations) by Möbius inversion on the lattice of partial partitions of F^m
- (ii) to calculate the generating function of the $f_q(\alpha,m)$ using the power series representation of the affine monoid of multiplicative functions

(compare [2], p. 160, 161).

In the sequel, I examine two special cases.

(1) π is empty, i.e. $\alpha = (1^{O}2^{O}..) = 0$: In this case, $f_q(\alpha, m)$ is the number of $m \times m$ -matrices over F having no eigenvalues in F. For brevity, set $z_q(m) := f_q(0,m)$. Applying the theorem yields

$$\Sigma_{n=0}^{\infty} z_{q}(n) \frac{w^{n}}{b_{q}(n)} = e_{q}(-\frac{w}{q-1})^{q-1}/(1-w)$$
 (*)

A similar, but more complicated formula was obtained by J.P.S. Kung in [5],p.147, where a vector space analogue of the Pólya cycle index is introduced. From the relation (*) we get a recursion formula for the $z_{\alpha}(m)$:

 $z_{\alpha}(0) = 1$ and

 $z_{q}(m+1) = q^{m+1}(q^{m}-1)z_{q}(m) - q^{m} \sum_{j=1}^{m} (-1)^{j} \begin{pmatrix} q \\ j+1 \end{pmatrix} \frac{b_{q}(m)}{b_{q}(m-j)} z_{q}(m-j)$ For instance,

$$z_{q}(1) = 0$$

$$z_{q}(2) = \frac{1}{2}(q-1)^{2}q^{2}$$

$$z_{q}(3) = \frac{1}{3}(q-1)^{3}q^{4}(q+1)^{2}$$

$$z_{q}(4) = \frac{1}{8}(q-1)^{4}q^{7}(q^{2}+q+1)(3q^{3}+4q^{2}+5q+2)$$

By the recursion formula, we have the following result.

<u>Proposition</u>: $z_q(m)$ has the form $P_m(q)/m!$, where P_m is a polynomial in one variable X with integer coefficients. If $m \ge 2$, then P_m has the degree m^2 , the divisor $(X-1)^m X^m$ and the leading coefficient

m!
$$\Sigma_{i=0}^{m} \frac{(-1)^{i}}{i!} = r(m)$$

- 77 -

which is the m-th derangement number. In particular,

$$\lim_{q \to \infty} z_q(m)/q^{m^2} = r(m)/m! = \lim_{q \to \infty} \frac{z_q(m)}{q-1} / \frac{b_q(m)}{q-1}$$

Observe that $z_q(m)/q^{m^2}$, r(m)/m! and $\frac{z_q(m)}{q-1}/\frac{b_q(m)}{q-1}$ can be interpreted as the probabilities that a m×m-matrix over F has no eigenvalues in F, that a permutation of m elements leaves no element fixed resp. that a projektive transformation in the projective space of F^m has no fixed point.

If q=2, then $z_2(m)/b_2(m) = \sum_{j=0}^m \frac{(-1)^j}{[j]!}$. The numbers $D_n(q) = [n]! \sum_{j=0}^n \frac{(-1)^j}{[j]!}$

have been studied by A.M. Garsia and J. Remmel in [3] as a q-analogue of the derangement numbers r(n). For arbitrary q how-ever, $z_q(m)/b_q(m) \neq D_m(q)/[m]!$ in general, e.g. when q=3 and m=2.

Finally, it can be shown that, as q + 1, $z_q(m)/b_q(m)$ tends to the coefficient of w^m in the power series $\exp(-\Sigma_{k=1}^{\infty}w^k/k^2)/(1-w)$. Since $\Sigma_{m=1}^{\infty} \frac{r(m)}{m!}w^m = \exp(-w)/(1-w)$, we conclude that in general $z_q(m)/b_q(m)$ doesn't converge to r(m)/m! when q+1.

(2) π has only one block V which is of dimension $l \ge 1$, i.e. $\alpha = (1^{\circ} . . 1 - 1^{\circ} 1^{\circ} 1 + 1^{\circ} . .) = \varepsilon (1)$:

In this case, $f_q(\alpha,m)$ is the number of linear transformations g in F^m whose only eigenspace is V. If g has the unique eigenvalue $\lambda \in F$, then $g-\lambda id$ has the unique eigenvalue $O \in F$ and vice versa. Hence $n_q(1,m) := f_q(\epsilon(1),m)/q$ counts the linear transformations in F^m with kernel V having no non-zero eigenvalue in F. Using $(1-w)(1-qw)..(1-q^{1-1}w)e_q(-\frac{w}{q-1}) = e_q(-\frac{q^1w}{q-1})$, we infer from the theorem that

- 78 -

$$\Sigma_{n=0}^{\infty} n_{q}(1, 1+n) \frac{w^{n}}{b_{q}(n)} = \frac{e_{q}(-\frac{q^{1}w}{q-1})^{q-1}}{(1-w)(1-qw)..(1-q^{1}w)}$$

References:

- [1] Cigler J., Elementare q-Identitäten, Publ. IRMA, Strasbourg(1982), 23-57.
- [2] Dür A., Kombinatorische Strukturen, Unipotente Gruppen und Potenzreihen-Darstellungen, Publ. IRMA, Strasbourg (1984), 133-161.
- [3] Garsia A.M.-J.Remmel, A Combinatorial Interpretation of q-Derangement and q-Laguerre Numbers, Europ.J.Combinatorics (1980) 1,47-59.
- [4] Goldman J.-G.C.Rota, Finite Vector Spaces and Eulerian Generating Functions, Studies in Appl.Math.49(1970), 239-258.
- [5] Kung J.P.S., The Cycle Structure of a Linear Transformation over a Finite Field, Lin. Alg. and Its Appl. 36:141-155(1981).

Arne Dür Department of Mathematics University of Innsbruck 6020 Innsbruck, Innrain 52, Austria