THE NUMBER OF MATRICES OVER A FINITE FIELD WITH PRESCRIBED EIGENSPACES

by Arne Dür

Let F be a finite field with q elements.
By a "partial partition" of F " I understand a set π of subspaces of F^{m} whose sum is direct. The type of π

$$
\alpha=\left(1^{\alpha(1)} 2^{\alpha(2)} \ldots\right)
$$

is defined by $\alpha(i)=$ number of blocks of π of F-dimension i. Let $A=\left\{\alpha=\left(1^{\alpha(1)} 2^{\alpha(2)} \ldots\right)\right.$; almost all $\left.\alpha(i)=0\right\}$ denote the set of types. Then gew $(\alpha):=\Sigma_{i=1}^{\infty} i \alpha(i)=\operatorname{dim}_{F}\left(\Sigma_{\pi} V\right) \leq m$, and $|\alpha|:=\sum_{i=1}^{\infty} \alpha(i)$ is the number of blocks of π.

In this article, we are concerned with the following counting problem:
Let π be an arbitrary partial partition of F^{m}. What is the number of $m \times m$-matrices g with entries in F such that π is just the set of eigenspaces of g ?
Since this number depends only on m and on the type α of π, we denote it by $f_{q}(\alpha, m)$. Obviously $f_{q}(\alpha, m)=0$ if $|\alpha|>q$, because a matrix over F has at most q eigenspaces in F^{m}. The other values of f_{q} are given by their generating function.

Theorem: For any $\alpha=\left(1^{\alpha(1)} 2^{\alpha(2)} \ldots\right) \in A$ with $|\alpha| \leq q$ and $1:=$ gew (α). $\sum_{n=0}^{\infty} f_{q}(\alpha, l+n) \frac{w^{n}}{b_{q}(n)}=\frac{q!}{(q-|\alpha|)!}\left(\Pi_{j=0}^{1}\left(1-q^{j}\right)^{\gamma(j)}\right) e_{q}\left(-\frac{w}{q-1}\right)^{q-1}$. Here $b_{q}(n)=\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{n-1}\right)$ is the order of the general linear group of F^{m}, $\gamma(j)=q-1-\sum_{i=0}^{j} \alpha(1-i)$ for $j=0,1, \ldots, 1-1$ but $\gamma(1)=-1$, and $e_{q}(z)=\Sigma_{k=0}^{\infty} \frac{z^{k}}{[k]!}$ is the q-exponential function (see [1], p. 29) $\left([k]!=[k][k-1] \ldots[1],[k]=\left(q^{k}-1\right) /(q-1)\right) . \quad$ o

The main steps in the proof are
(i) to derive an explicit formula for the $f_{q}(\alpha, m)$ (which is improper to calculations) by Möbius inversion on the lattice of partial partitions of F^{m}
(ii) to calculate the generating function of the $f_{q}(\alpha, m)$ using the power series representation of the affine monoid of multiplicative functions
(compare [2],p.160,161).

In the sequel, I examine two special cases.
(1) π is empty, i.e. $\alpha=\left(1 \mathrm{O}_{2} \mathrm{O} ..\right)=0$:

In this case, $f_{q}(\alpha, m)$ is the number of $m \times m$-matrices over F having no eigenvalues in F. For brevity, set $z_{q}(m):=f_{q}(0, m)$. Applying the theorem yields

$$
\begin{equation*}
\sum_{n=0}^{\infty} z_{q}(n) \frac{w^{n}}{b_{q}^{(n)}}=e_{q}\left(-\frac{w}{q-1}\right)^{q-1} /(1-w) \tag{*}
\end{equation*}
$$

A similar, but more complicated formula was obtained by
J.P.S. Kung in [5].p.147, where a vector space analogue of the Polya cycle index is introduced. From the relation (*) we get a recursion formula for the $z_{q}(m)$:

$$
z_{q}(0)=1 \text { and }
$$

$$
z_{q}(m+1)=q^{m+1}\left(q^{m}-1\right) z_{q}(m)-q^{m} \sum_{j=1}^{m}(-1)^{j}\binom{q}{j+1} \frac{b_{q}(m)}{b_{q}(m-j)} z_{q}(m-j)
$$

For instance.

$$
\begin{aligned}
& z_{q}(1)=0 \\
& z_{q}(2)=\frac{1}{2}(q-1)^{2} q^{2} \\
& z_{q}(3)=\frac{1}{3}(q-1)^{3} q^{4}(q+1)^{2} \\
& z_{q}(4)=\frac{1}{8}(q-1)^{4} q^{7}\left(q^{2}+q+1\right)\left(3 q^{3}+4 q^{2}+5 q+2\right)
\end{aligned}
$$

By the recursion formula, we have the following result.
Proposition: $z_{q}(m)$ has the form $P_{m}(q) / m!$, where P_{m} is a polynomial in one variable X with integer coefficients. If $m \geq 2$, then P_{m} has the degree m^{2}, the divisor $(\mathrm{X}-1)^{\mathrm{m}} \mathrm{X}^{\mathrm{m}}$ and the leading coefficient

$$
m!\sum_{i=0}^{m} \frac{(-1)^{i}}{i!}=r(m)
$$

which is the m-th derangement number. In particular,

$$
\lim _{q \rightarrow \infty} z_{q}(m) / q^{m^{2}}=r(m) / m!=\lim _{q \rightarrow \infty} \frac{z_{q}(m)}{q-1} / \frac{b_{q}(m)}{q-1}
$$

Observe that $z_{q}(m) / q^{m^{2}}, r(m) / m!$ and $\frac{z_{q}(m)}{q^{-1}} / \frac{b_{q}(m)}{q-1}$ can be interpreted as the probabilities that a m×m-matrix over F has no eigenvalues in F, that a permutation of m elements leaves no element fixed resp. that a projektive transformation in the projective space of F^{m} has no fixed point.

If $q=2$, then $z_{2}(m) / b_{2}(m)=\sum_{j=0}^{m} \frac{(-1)^{j}}{[j]!}$. The numbers

$$
D_{n}(q)=[n]!\sum_{j=0}^{n} \frac{(-1)^{j}}{[j]!}
$$

have been studied by A.M. Garsia and J. Remmel in [3] as a q-analogue of the derangement numbers $r(n)$. For arbitrary q however, $z_{q}(m) / b_{q}(m) \neq D_{m}(q) /[m]$! in general, e.g. when $q=3$ and $m=2$. Finally, it can be shown that, as $q+1, z_{q}(m) / b_{q}(m)$ tends to the coefficient of w^{m} in the power series $\exp \left(-\Sigma_{k=1}^{\infty} w^{k} / k^{2}\right) /(1-w)$. Since $\Sigma_{m=1}^{\infty} \frac{r(m)}{m!} w^{m}=\exp (-w) /(1-w)$, we conclude that in general $z_{q}(m) / b_{q}(m)$ doesn't converge to $r(m) / m!$ when $q \rightarrow 1$.
(2) π has only one block V which is of dimension $1 \geq 1$,

$$
\text { i.e. } \alpha=\left(1^{0} \ldots 1-1^{O_{1}} 1^{1} 1+1^{0} \ldots\right)=\varepsilon(1) \text { : }
$$

In this case, $f_{q}(\alpha, m)$ is the number of linear transformations g in F^{m} whose only eigenspace is V. If g has the unique eigenvalue $\lambda \epsilon_{F}$, then $g-\lambda i d$ has the unique eigenvalue $O \in F$ and vice versa. Hence $n_{q}(1, m):=f_{q}(\varepsilon(1), m) / q$ counts the linear transformations in F^{m} with kernel V having no non-zero eigenvalue in F. Using $(1-w)(1-q w) \ldots\left(1-q^{1-1} w\right) e_{q}\left(-\frac{w}{q-1}\right)=e_{q}\left(-\frac{q^{1} w}{q-1}\right)$, we infer from the theorem that

$$
\sum_{n=0}^{\infty} n_{q}(1,1+n) \frac{w^{n}}{b_{q}(n)}=\frac{e_{q}\left(-\frac{q^{1} w}{q-1}\right)^{q-1}}{(1-w)(1-q w) \cdots\left(1-q^{1} w\right)}
$$

References:

[1] Cigler J.,Elementare q-Identitäten,Publ.IRMA,Strasbourg (1982), 23-57.
[2] Dür A.,Kombinatorische Strukturen, Unipotente Gruppen und Potenzreihen-Darstellungen,Publ.IRMA, Strasbourg (1984).,133-161.
[3] Garsia A.M.-J.Remmel,A Combinatorial Interpretation of q-Derangement and q-Laguerre Numbers, Europ.J.Combinatorics (1980) 1,47-59.
[4] Goldman J.-G.C.Rota,Finite Vector Spaces and Eulerian Generating Functions,Studies in Appl.Math. 49(1970).239-258.
[5] Kung J.P.S., The Cycle Structure of a Linear Transformation over a Finite Field,Lin.Alg. and Its Appl.36:141-155(1981).

Arne Dür
Department of Mathematics
University of Innsbruck
6020 Innsbruck. Innrain 52, Austria

