Characterisations of Perfect Graphs

Martin Grötschel

If G = [V, E] is a graph then we denote by $\alpha(G)$ the stability number of G, by $\omega(G)$ the clique number, by $\chi(G)$ the chromatic number, and by $\rho(G)$ the clique covering number of G. If $W \subseteq V$ is a set of nodes, then G[W] denotes the subgraph of G induced by W.

It is obvious that $\alpha(G) \leq \rho(G)$ and $\omega(G) \leq \chi(G)$ holds for all graphs G. C. Berge (1961) defined the following concepts. If G is a graph then G is called α -perfect if

$$\alpha(G[W]) = \rho(G[W]) \text{ for all } W \subseteq V,$$

G is called χ -perfect if

$$\omega(G[W]) = \chi(G[W]) \text{ for all } W \subseteq V,$$

and G is called *perfect* if G is α -perfect and χ -perfect. Berge conjectured that a graph is α -perfect if and only if it is χ -perfect. This is equivalent to saying that a graph G is α -perfect if and only if its complementary graph \overline{G} is α -perfect.

This conjecture was settled in the affirmative by L. Lovász (1972a). His result is often called "the perfect graph theorem". Lovász (1972b) gave a further characterization by showing that a graph is perfect if and only if

$$\alpha(G[W]) \cdot \omega(G[W]) \ge |W| \text{ for all } W \subset V.$$

Perfect graphs also have a polyhedral characterization. Let P(G) be the convex hull of the incidence vectors of all stable sets in a graph G.

Then it is easy to see that the nonnegativity constraints $x_v \ge 0$, $v \in V$, and the clique constraints $x(C) := \sum_{v \in C} x_v \le 1$ for all cliques $C \subseteq V$ are valid inequalities for P(G). This means that the so-called fractional stable set polyhedron

$$P^*(G) := \{x \in \mathbb{R}^V \mid x_v \ge 0 \text{ for all } v \in V, \ \sum_{v \in C} x_v \le 1 \text{ for all cliques } C \subseteq V\}$$

contains the stable set polyhedron P(G). Denote by $\alpha_c(G)$ resp. $\alpha_c^*(G)$ the optimum values of the linear programs $\max c^T x, x \in P(G)$ resp. $\max c^T x, x \in P^*(G)$, where $c: V \to \mathbb{Z}$ is an objective function, then Fulkerson (cf. Trotter (1973)) and Chvátal (1975) showed that a graph G is perfect if and only if $P(G) = P^*(G)$ which is equivalent to $\alpha_c(G) = \alpha_c^*(G)$ for all $c: V \to \mathbb{Z}$.

If $e \in \mathbb{R}^V$ is the vector such that all its components are one, then $\alpha_e^*(G)$ is usually denoted by $\alpha^*(G)$ and called the *fractional stability number*. A sharpening of the Fulkerson-Chvátal result above states that G is perfect if and only if

$$\alpha(G[W]) = \alpha^*(G[W]) \text{ for all } W \subseteq V.$$

Books treating perfect graphs and containing some of the concepts introduced so far are Berge (1973), Golumbic (1980), and Berge & Chvátal (1984). In connection with studies on the Shannon capacity of a graph L. Lovász (1979) introduced a number, denoted by $\vartheta(G)$, which can be defined as follows:

Let G = [V, E] be a graph, $V = \{1, 2, ..., n\}$, then denote by $(\mathcal{A}(G)$ the set of symmetric (n, n)-matrices $\mathcal{A} = (a_{ij})$ which satisfy $a_{ij} = 1$ if i = j or if $ij \notin E$. If $\mathcal{A}(\mathcal{A})$ denotes the maximum eigenvalue of \mathcal{A} , then

$$\vartheta(G) := \min\{\Lambda(A) \mid A \in \Lambda(G)\}.$$

Suppose $\alpha(G) = k$ for a graph G, and assume that $\{1, ..., k\}$ is a stable set in G. Then by definition every matrix $A \in \mathcal{A}(G)$ contains the (k, k)-matrix A_k all whose entries are one as the principal submatrix consisting of the first k rows and columns of A. It is well-known that $\mathcal{A}(A_k) = k$ and that $\mathcal{A}(A_k) \leq \mathcal{A}(A)$ which implies $\alpha(G) \leq \vartheta(G)$. Similarly one can see that $\vartheta(G) \leq \alpha^*(G)$. In Grötschel, Lovász, Schrijver (1984) perfect graphs could be characterized by means of $\vartheta(G)$ in the following way. A graph G = [V, E] is perfect if and only if

$$\alpha(G[W]) = \vartheta(G[W]) \text{ for all } W \subset V$$

which is equivalent to

$$\alpha^*(G[W]) = \vartheta(G[W]) \text{ for all } W \subset V.$$

Furthermore, it was shown in Grötschel, Lovász, Schrijver (1984) that for critically imperfect graphs G, $\alpha(G) < \vartheta(G) < \alpha^*(G)$ holds and that $\vartheta(G) - \alpha(G)$ and $\alpha^*(G) - \vartheta(G)$ can be polynomially bounded away from zero. This makes it possible to recognize the imperfectness of a critically imperfect graph in polynomial time. Since every imperfect graph contains a critically imperfect graph, imperfectness of a graph can thus be checked in nondeterministic polynomial time.

Another characterization of perfect graphs has recently been discovered by László Lovász, Alexander Schrijver and the author (unpublished).

Let G = [V, E] be a graph and let $w \in \mathbb{R}^*$ be a nonnegative integral vector. Denote by G_w the graph obtained from G by replacing each node $v \in V$ by w_v nonadjacent copies, i. e. each node $v \in V$ is replaced by a stable set S_v of size w_v , and two nodes of G_w , say $s \in S_v$ and $t \in S_w$, are adjacent if and only if their "originals" u and v are different adjacent nodes of G. For every $w \in \mathbb{Z}_+^V$ we define a w-weighted version of $\vartheta(G)$ as follows:

$$\vartheta_{\boldsymbol{w}}(G) := \vartheta(G_{\boldsymbol{w}}).$$

$$\mathsf{THETA}(G) := \{ x \in \mathbb{R}^V \mid 0 \le x_v \le 1 \text{ for all } v \in W \\ \sum_{v \in V} w_v x_v \le \vartheta_w(G) \text{ for all } w \in \mathbb{Z}_+^v \}.$$

THETA(G) is the intersection of (infinitely many) halfspaces and thus a convex set. It is clear from the definition that

$$P(G) \subseteq \text{THETA}(G) \subseteq P^*(G)$$

and hence, if G is perfect equality holds in the two inclusions above. In particular, if G is a perfect graph then THETA(G) is a polytope, since P(G) and $P^*(G)$ are polytopes. The (quite surprising) new characterization of perfect graphs states:

G is perfect if and only if THETA(G) is a polytope.

Summing up the discussion above we obtain the following

Theorem. Let G = [V, E] be a graph. Then the following statements are equivalent.

(a) G is perfect.

(b) \overline{G} is perfect.

(c) $\alpha(G[W]) = \rho(G[W])$ for all $W \subseteq V$.

(d) $\omega(G[W]) = \chi(G[W])$ for all $W \subseteq V$.

(e) $\alpha(G[W]) \cdot \omega(G[W]) \ge |W|$ for all $W \subseteq V$.

(f) $P(G) = P^*(G)$.

(g) $\alpha_c(G) = \alpha_c^*(G)$ for all $c: V \to \mathbb{Z}$.

(h) $\alpha_c(G) = \alpha_c^*(G)$ for all $c: V \to \{0, 1\}$.

(i) $\alpha(G[W]) = \alpha^*(G[W])$ for all $W \subseteq V$.

(i) $\alpha(G[W]) = \vartheta(G[W])$ for all $W \subseteq V$.

(k) $\alpha^*(G[W]) = \vartheta(G[W])$ for all $W \subseteq V$.

(1) THETA(G) is a polytope.

Thus there is a large number of quite different characterizations of perfect graphs available.

A long standing open problem – the so-called strong perfect graph conjecture due to C. Berge – is the following. A graph G is perfect if and only if neither G nor \overline{G} contain an odd hole (a cycle of odd length at least five without chord).

References

- C. Berge [1973]: Graphs and Hypergraphs North Holland, Amsterdam, 1973.
- C. Berge [1961]: Färbungen von Graphen, deren sämtliche ungeraden Kreise starr sind Wissenschaftliche Zeitung, Martin Luther Universität Halle Wittenberg (1961) 114.
- C. Berge, V. Chvátal [1984]: Topics in Perfect Graphs North-Holland, Amsterdam (Annals of Discrete Mathematics 21), 1984.
- V. Chvátal [1975]: On Certain Polytopes Associated with Graphs Journal of Combinatorial Theory (B) 18 (1975) 138-154.
- M. C. Golumbic [1980]: Algorithmic Graph Theory and Perfect Graphs Academic Press, New York, 1980.
- M. Grötschel, L. Lovász, A. Schrijver [1984]: Polynomial Algorithms for Perfect Graphs Annals of Discrete Mathematics 21 (1984) 341-372.

- L. Lovász [1972a]: Normal Hypergraphs and the Perfect Graph Conjecture Discrete Mathematics 2 (1972) 253-267.
- L. Lovász [1972b]: A Characterisation of Perfect Graphs Journal of Combinatorial Theory (B) 13 (1972) 95-98.
- L. Lovász [1979]: On the Shannon Capacity of a Graph IEEE Trans. Inform. Theory IT-25 (1979) 1-7.
- L. E. Trotter [1973]: Solution Characteristics and Algorithms for the vertex packing prolem Ph. D. Thesis, Tech. Report No. 168, School of OR/IE, Cornell University, Ithaca, 1973.

Martin Grötschel Institut für Mathematik Universität Augsburg Memminger Str. 6 D-8900 Augsburg