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Let ck(n) be the number of k-regular simple labelled graphs on n
vertices. If {ck(n) ln > 0} satisfies a linear recurrence equation with
a fixed number of terms then we say that {ck(n) jn = 0}, for fixed Kk,
is P-recursive [R.P. Stanley, Europ. J. Combinatorics, 1 (1980) 175-188].
Loosely speaking, P-recursive problems are problems for which there is a
simple computational scheme. The P-recursiveness of ck(n) for k = 2
has been shown by Anand Dumir and Gupta [Duke Math. J. 33 (1966) 757-7701,
for k = 3 by Read [J. London Math. Soc. 35 (1960) 344-351] for k =4
by Read and Wormald [J. Graph Theory 4 (1980) 203-212], and for k =5
by Goulden and Jackson [unpublished work - differential equation available
upon request].

The purpose of this talk is to give a result about symmetric functions,
which has application to the calculation of ck(n), and to raise the
question of establishing the P-recursiveness of ck(n) for larger values
of k [see also Goulden, Jackson and Reilly, SIAM J. Alg. Disc. Math.

4 (1983) 179-193].
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Let sj =t + t% + ..., 8= (sl,sz,...) where Eistgsee- are
commutative indeterminates. Tet [t Q[[§KE)]] ~ Qllyll:
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T'(f) the Hammond series of f. This I'(f) encodes the coordinate sequence
of f with respect to the monomial symmetric function basis of Q[[s(t)]].

Let G(§ﬁ£)) = TI (1+titj)' Then it is easy to show that
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I'(G) (0,...,0,yk).

We show that TI(G) can be obtained indirectly as the solution of a system

of formal partial differential series by the fellowing theorem.
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Theorem: Let ¢(X) = (F(f))(x) be the Hammond series for f. Then
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where m = il + i2 + ... and the summation is over i-= (il,iz,...) such
that il + 212 + ses = Ne
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We can use this theorem to show, for example, that ca(n) = [H$]V(O,O,O,y4)

where V satisfies
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The general system for ck(n) can be written down in the same way.

Open Problem: Show that there is a scheme for eliminating indeterminate

YyseeosYy_1s to obtain an ordinary differential equation for V(O,...,O,yk).

This will establish the P-recursiveness of {ck(n) In > 0} for arbitrary k.
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