D.M. Jackson (Water1oo, Canada)

Let $c_{k}(n)$ be the number of $k$-regular simple labelled graphs on $n$ vertices. If $\left\{c_{k}(n) \mid n \geq 0\right\}$ satisfies a linear recurrence equation with a fixed number of terms then we say that $\left\{c_{k}(n) \mid n \geq 0\right\}$, for fixed $k$, is P-recursive [R.P. Stanley, Europ. J. Combinatorics, 1 (1980) 175-188]. Loosely speaking, P-recursive problems are problems for which there is a simple computational scheme. The $P$-recursiveness of $c_{k}(n)$ for $k=2$ has been shown by Anand Dumir and Gupta [Duke Math. J. 33 (1966) 757-770], for $k=3$ by Read [J. London Math. Soc. 35 (1960) 344-351] for $k=4$ by Read and Wormald [J. Graph Theory 4 (1980) 203-212], and for $k=5$ by Goulden and Jackson [unpublished work - differential equation available upon request].

The purpose of this talk is to give a result about symmetric functions, which has application to the calculation of $c_{k}(n)$, and to raise the question of establishing the $P$-recursiveness of $c_{k}(n)$ for larger values of $k$ [see also Goulden, Jackson and Reilly, SIAM J. Alg. Disc. Math. 4 (1983) 179-193].

$$
\text { Let } s_{j}=t_{1}^{i}+t_{2}^{j}+\ldots, \underset{\sim}{s}=\left(s_{1}, s_{2}, \ldots\right) \text { where } t_{1}, t_{2}, \ldots \text { are }
$$

commutative indeterminates. J.et $\Gamma: ~ ©[[\underset{\sim}{s}(\underset{\sim}{t})]] \rightarrow \pi[[y]]:$
 $\Gamma(f)$ the Hammond series of f. This $\Gamma$ (f) encodes the coordinate sequence of $f$ with respect to the monomial symmetric function basis of $Q[[\underset{\sim}{s}(t)]]$. Let $G(\underset{\sim}{s}(t))=\prod_{1<i<j}\left(1+t_{i} t_{j}\right)$. Then it is easy to show that

$$
c_{k}(n)=\left[t_{1}^{k} \ldots t_{n}^{k}\right] G(s(t))=\left\lfloor\left.\frac{y_{k}^{n}}{n!} \right\rvert\, \Gamma(G)\left(0, \ldots, 0, y_{k}\right) .\right.
$$

We show that $\Gamma(G)$ can be obtained indirectly as the solution of a system of formal partial differential series by the following theorem.

Theorem: Let $\phi(y)=(\Gamma(f))(y)$ be the Hammond series for $f$. Then

$$
\left(\Gamma\left(\frac{\partial f}{\partial s_{n}}\right)\right)(y)=\sum_{\underset{\sim}{i \geq 0}}(-1)^{m-1} \frac{1}{i!}(m-1): \frac{\partial^{i}}{\partial y_{\sim}^{i}} \phi(y)
$$

where $m=i_{1}+i_{2}+\ldots$ and the summation is over $\underset{\sim}{i}=\left(i_{1}, i_{2}, \ldots\right)$ such that $\mathbf{i}_{1}+2 \mathbf{i}_{2}+\ldots=n$.

$$
\left(\Gamma\left(s_{n} f\right)\right)(y)=\left\{y_{n}+\sum_{i \geq 1} y_{n+i} \frac{\partial}{\partial y_{i}}\right\} \phi(\underset{\sim}{y}) .
$$

We can use this theorem to show, for example, that $c_{4}(n)=\left[\frac{y_{4}^{n}}{n!}\right] V\left(0,0,0, y_{4}\right)$ where $V$ satisfies

$$
\begin{aligned}
& \frac{\partial V}{\partial y_{1}}=y_{1} V+y_{2} \frac{\partial V}{\partial y_{1}}+y_{3} \frac{\partial V}{\partial y_{2}}+y_{4} \frac{\partial V}{\partial y_{3}} \\
& 2 \frac{\partial V}{\partial y_{2}}-\frac{\partial^{2} V}{\partial y_{1} 2}=-\left(1+y_{2}\right) V-y_{3} \frac{\partial V}{\partial y_{1}}-y_{4} \frac{\partial V}{\partial y_{2}} \\
& 3 \frac{\partial V}{\partial y_{3}}-3 \frac{\partial^{2} V}{\partial y_{1} \partial y_{2}}+\frac{\partial^{3} V}{\partial y_{1} 3}=y_{3} V+y_{4} \frac{\partial V}{\partial y_{1}} \\
& 4 \frac{\partial V}{\partial y_{4}}-4 \frac{\partial^{2} V}{\partial y_{1} \partial y_{3}}-2 \frac{\partial^{2} V}{\partial y_{1} 3}+4 \frac{\partial^{3} V}{\partial y_{1}^{2} \partial y_{2}}-\frac{\partial^{4} V}{\partial y_{1}^{4}}=\left(1-y_{4}\right) V
\end{aligned}
$$



The general system for $c_{k}(n)$ can be written down in the same way.

Open Problem: Show that there is a scheme for eliminating indeterminate $y_{1}, \ldots, y_{k-1}$, to obtain an ordinary differential equation for $V\left(0, \ldots, 0, y_{k}\right)$.

This will establish the $P$-recursiveness of $\left\{c_{k}(n) \mid n \geq 0\right\}$ for arbitrary $k$.

