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Basically, this talk reports the main result from [5].

A well-known result of Kuratowski says that for every Baire mapping

A : X-> ^ between separable metric spaces there exists a meager set

M such that the restriction A-|X--M 1s continuous.

Here we investigate the metric space [u>] of infinite subsets of <» ,

endowed with the usual Tychonoff product topology, cf., [2].

From Louveau and Simpson [3] it follows that for every Bore1 measurable

mapping A : [uj]") -* X, where X is a metric space, there exists an A e [u>]1

such that the restriction ^][1\] I's continuous.

But this is not yet the end of the story. We show that for every continuous

mapping A : [u)]") -» X there exists an A C [uj]u) and there exists a continuous

mapping r : [A]u) -^ [A]<u) with r(B) c B such that for all B, C £ [A]113 it

follows that A(B) = A(C) iff r(B) = r(C) . So, the image A(B) is deter-

mined by a subset of B , viz., r(B) .

In a sense, this generalizes the Erdos/Rado canomzation theorem [1]. Also,

this extends a result of Pudlak and Rbdl [4], which is the particular case

dealing with continuous mappings A : [ui] -> ^ .
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Additionally, we show that r is determined by a mapping Y : [A]

in such a way that r(B) = {k F|Y(Bnk) = 1} for all B   [A]u> .
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