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Dyson conjectured [3] and Gun son [5] and Wilson F7] proved that
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where [1] denotes the constant tem. Good [4] has given a very simple proof

of this, observing that both the constant tem on the left and the multinomial

coefficient on the right satisfy the same boundary conditions and the same

recurrence. In fact, if we set
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Equation (3) is easily proved. By the Lagrange interpolation fomula

for the polynomial of degree n-1 taking on the value 1 at each of X,,..., X_ ,
we have
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Set X = 0 and we obtain
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Equations (3) results when each side of (5) is multiplied by f(X; a,,..., a_)
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The q-Dyson theorem, conjectured by Andrews Fl] and proved by

Zeilberger and Bressoud [ 8~\ , states that :
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where (X)_ = (1 - X)(l - Xq)... (l - Xq ). The proof given below comes from
3.

§ 5 of joint work with I.P. Goulden [2]. The q-multinomial coefficient

satisfies the recurrence
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To mimic Good's proof of the Dyson conjecture, we need to verify that the

constant term on the left side of (6) has the same boundary conditions (easily

verified) and satisfies the same recurrence relation. One hopes that, as in

Good's proof, the product of the left side of (6) as a function of X^,...,X

satisfies the recurrence given in (7). Unfortunately, this is not the case.

If we set
X. X.

(8)

then
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g(X ; a,,..., a_) = E q
k=l

+ E(X ; a^,..., a^)

g(X ; a^,..., a^-l,..., a )

and it remains to show that

(10) [1] E(X; a ,..., a^) = 0 .

We derive equation (9) and an explicit form for E(X ; a) as follows.
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where the summation is over all tournaments T (complete directed graphs) on

n vertices. For 1^ i<j<n , (i, j)   T means that i beats j or the edge

between i and j is directed towards j . x, (A) is 1 if A is true,

0 if false.
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We observe that
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Thus, multiplying by (- ̂ 1) has the effect of reversing the order of
i

i and j . Since we multiply by this factor if and only if i < j and

(j, i)   T , the subscripts are put into the order of winner first, loser

second for each pair i, j . That is to say,

x, x. a,x(i>j)
(13) g(X; a,,..., a^)-S H (^) (q ^) q 

rv
' 

" .

n T (i, j) T Aj' a^ Ai a -1
If we now group our tournaments, collecting all those where k loses

^

to everyone else, k=l, 2,..., n and letting Z- be the simmation over all

tournaments where everyone wins at least one match, then
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If the constant term of Z is zero, then the symmetry of the constant term

in g(X ; a) will give us the desired recurrence for the constant tem.

We observe that any tournament T counted in S" is non-transitive

(contains a cycle). The following theorem, proved in joint work with

Goulden [2] and based on ideas from joint work with Zeilberger [8], implies

that E(X ; a^, ». *, a ) has constant term zero and thus proves the q-Dyson

theorem.

THEOREM. Let T be non-transitive tournament on n vertices, then

= 0 .(15) [1] H (^) (q^)
(i, j)CT 'xj' a^~1 xi/ a^-l

The theorem given above is much stronger than the q-Dyson theorem,

and has a number of other corollaries given in the paper with Goulden [2].

Among the other corollaries are
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both of which had been conjuctured by Kadell [6] .
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