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ABSTRACT

A matrix Q of order n is called k-quasi-g-circulant if it satisfies

PkQ _ kag

where P represents the permutation (12 ...1n), (n,g)=1 and the
exponents are mod n.

We prove that if (k,n)=h, a matrix Q is k-quasi-g-circulant if and
only if it is h-quasi-g-circulant; then Q is a block g-circulant ma-
trix of tvpe {(gq,h) and we give a characterization for these matrices.
Moreover we define a perfect k-quasi-g-circulant permutation and

we prove that the set of these permutations is an imprimitive group
of order C(k)qu, where ¢(k) is the Fuler function of k, that is the

number of positive integers not greater than and prime to k.

(¥) This research was supported by the Ministero della Pubblica
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INTRODUCTION

Recall that a matrix C of order n is g-circulant if it is PC = CP 5
where P represents the permutation 7 =(1 2 ... n).

We call a matrix Q of order n k-quasi-g-circulant if it satisfies
k k
PQ=qp® (1)

where k€,[1,n—1] and (g,n)=1.

In this paper we prove some properties of these matrices.

In particular we prove that, if (k,n)=h, a matrix Q is k-quasi-g-cir-

culant if and only if it is h-quasi-g-circulant; then Q is a block
g-circulant matrix of type (q,h) and we give a characterization for these
matrices,

Moreover we define a perfect k-quasi-circulant permutation and we prove

that the set of these permutations is an imprimitive group of order ¢(k)qu,
where ¢ (k) is the Euler function of k, that is the number of positive inte-

ger%%ot greater than and prime to k.

1. Let Q = [q_,] be a k-quasi-g-circulant matrix of order n;from (1) it
134, .

N d 1k 1kg ;

follows also P Q= qQpP , 151 <n.

If (k,n)=1, the integers ik, taken modulo n, are distinct. Then, there

exists an integer j e {1,n—1j such that jk= 1 ( mod n ) and PQ=QPg is

satisfied, i.e. Q is g-circulant.

If (k,n)=h>1 and n=hq, the integers ik are not distinct.

11

The minimum integer j such that jk 0 (mod n) is q. Then the elements
taken modulo n ik , 1< i Zq, are repeated h times.Moreover it is easv to
see that there exists a je¢ [1,q] such that jk = h (mod n) and Q satisfies
h hg
PQ=QpP °.
i . hg h & e oo
Now, if QP = B =[b_,] and P Q = C = [c_,] , from (1) it follows

1] 1]

b..=.- s €. . = G, . 8
1] q1 Jj-hg 13 q1+h ]
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since B = C, we have q. . = q, ., where the indices are mod n.
1 j-hg i+h ]
Then we obtain the sequence
= = ... = 2
% = Qren s+hg 9+ (n-1)h s+(n-1)hg (2)

r,s € [1Jﬂ .

Since the minimum positive integer j such that r+jh = 1 (mod n) 1is

i

j=q, from (2) we obtain that the elements belonging to the rows

r, r+h, ..., r+(g-1Dh

and to the columns
s, s+hg, ..., st(g-1)hg

ére coincident.

So the row r+th, 1 € r £ hand 1 £ t £ g-1, of Q is obtained from the row
r+(t=1)h by shifting cyclically every element of hg positions to the right.
Then the h-quasi-g-circulant matrix @ is obtained by taking arbitrarily the
h first rows and shifting them cyclically hg positions to the right in order
to obtain the next rows.

It is easy to sce that if the h first rows are partitioned into g matrices

A, A, ..., A, we have
1 2 q
- T
A A A
1 2 q
A
q-g+1 q-g+2 =g
A . A
g = q-2g+1  q-2g+2 q-2g
PA A A
g+l g+2 g

So Q is a block g-circulant matrix of type (q,h) and we obtain the fol-

lowing

. . .o k k

THEOREM 1.1 - A matrix Q of order n satisfies P Q = QP g’ where (n,k)=h3x1
; Do i o h h ; .

and n=hq, if and only if it satisfies P Q = QP g. Then Q is a block g-cir-

culant matrix of type (g,h).
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THEOREM 1.2 - A matrix Q of order n=hq is block g-circulant of type (q,h)

if and only if it satisfies
(P ® I)Q=Q((®)® @1). (3)
q h q h

Proof. The matrices P @ Ih and (P )g@ Ib are block g-circulant of
q q :

type (q,h) and are given by

: o
I 0 .. 0
Oh h h h
00 0 I ...0
. . h h "h h
q®h
I. 0 O ...0
h h h h
L 3
and
0 O I 0
h h h h
0 O .0 I 0
h h h "h h
8
P 1. =
(q) ® "
0. ... I ... 0
h hoh h
5 J

where g is the number of Oh before Ih on the first row.

Then these permutation matrices coincide respectively with Ph and Phg.
From Theorem 1.1 it follows that , if ¢ satisfies (3), then it is block
g-circulant of type (q,h).

Conversely, since the formal rules of block multiplication are the same as
for ordinary multiplication, if Q is block g-circulant, the argument fol-
lowed in IZ} to prove that a g-circulant matrix satisfies PQ=QPg, is valid

when interpretated blockwise.

: e h h .
THEOREM 1.3 - A matrix A of order n satisfies P A=AP g, where (n,g)=1, if

¢(n)-1
124

Co 5 o h 1 .
and only 1f it satisfies AP =P A, where i = (mod n).

0 o h h jh ih ;
Proof. If A satisfies P A=AP g’ then we have PJ A=APJ e 1 €3 <n.

b

If i is the minimum positive integer such that ig = 1 (mod n), then
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¢(n)

. h _hi
we obtain AP =P "A. By a Euler's theorem we have g

$(n)-1

then g g = 1 and, since for (n,g)=1 the solution to gx = 1 (mod n)

$(n)-1
g

i g h _hi . . .
Conversely, if it is AP =P A, where (n,i)=1, by the same considerations

hg i¢(n)—1

= 1 (mod n);

is unique mod n, i (mod n).

. h
we obtain P A=AP ~, where g = (mod n).

Many properties of the g-circulant matrices can be exspressed in terms of
block g-circulant matrices.

Among these, we consider the following

THEOREM 1.4- If A is a block g-circulant and B is a block h-circulant, then

AB is a block gh-circulant.
The proof follows as for g-circulant matrices.

COROLLARY 1.5 - The product of two block g-circulant matrices is also block

g-circulant only for g = 1 (mod n).

Proof. By Theorem 1.4 the product of two block g-circulant matrices 1s

z . 2
block g -circulant; then g = g (mod n) only for ¢ © i {(mod nY.

2. If we consider block g-circulant permutation matrices, from Ccrollary

1.5 it follows that only for g=1 the corresponding pcrmutations form a
group.

Recall that a t1-circulant is a circulant.

PROPOSITION 2.1- The number of h-quasi-g-circulant permutation matrices

. h
of order n=hq is hl!qg

Proof. By Theorem 1.1 only the first h rows of a h-quasi-g-circulant

matrix Q are arbitrary.
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For the position of the element 1 on the first row there are n possibilities.
Since other q-1 columns of Q have the element 1 fixed, for the position of the
elencnt 1 on the second row there are n-q possibilities.

In a similar way, for the element 1 on the i-th row, 1 £ i < h, there are

n-(i-1)q possibilities and the number of k-quasi-circulant permutations Q

h
of order n=hq and (k,n)=h 2 1, is n(n-q)...(n-(h-1)q)=h!q .

PROPOSITION 2.2 - The set of permutations corresponding to h-quasi-circulant
matrices of order n=hq forms an imprimitive permutation group I' of order h!q

and rank q+1.

Proof. The set I of permutations corresponding to h-quasi-circulant matri-
ces is the centralizer of Th on the symmetric group Sn. As P is{duasi—cir—
culant, then T is a transitive group.

Moreover the disjoint sets Hi = {i, i+h, ..., i+(g-1)h} , 1 £ i < h, are
nontrivial blocks for I and I is imprimitive.

In fact, let gel and g(i)=j where 1 < j < n; then we have g(i+rh)=j+rh,
C<r < g-1. Consequently gHi = {3, j+h, ... »j*+(g=1)h} is one of the sets
Hi and either gHi = Hi or gHi(\ Hi = Q.

The order of T followe .- Prep. 2.1

Finallv, let TY the stat:lizer of x, for x e[i,n] . If gé;TX , wWe have
g(x)=x; then it follows that g(x+rh)=x+rh, where 0 < r £ g-1 and the integers
are modulo n.

Since T, ig transitive on N - {x+rh 0 v <q-1}, we get that the orbits of
TY are gq+1, g of length 1 and 1 of length n-g=(h-1)q.

As in a h-guasi-circulant permutation matrix Q of order n=hq only the h

first rows are arbitrary, it follows that the permutation o corresponding to Q
is determined by the elements aié.[1,n1 such that a(i)=ai for 1 €1 <£nh

and a. % a, (mod h), i # j. Note that a(i+rh)=a,

1 3 1+rh
Remark that, if & is a circulant or g-circulant permutation, there exists an

=a, +rh, re f1,q—1] .
L

integer j prime to n such that X(i+1) - &X(i) = j (mod n).
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Now we give a generalization of these permutations.

DEFINITION 2.3 - We call a permutation o , corresponding to a h-quasi-circulant

matrix of order n=hq, j-perfect if there exists an integer je [1,h—11 such that
a, . -a, = j (mod h) (4)

for i €[1,h] .

Since a(i+rh)= a, +rh, we can extend (4) to 1€ [1,n] .
Moreover from (4) we obtain ai+k - a.= kj (mod h), 1 £k £ h-1. Then it is
1
i

a, = a1+(i—1)j (mod h) for 2 £

< h; so a perfect h-quasi-circulant per-
mutation & depends on only two integers a, and j, apart from the congruence

of (i) modulo h.

PROPOSITION 2.4 - If a h-quasi-circulant permutation is j-perfect, then

(j,h)=1.

Proof. In fact, if it is (j,h)=s > 1 and h = sh', then a1, = a1+h'j = a,

(mod h), where h'+1 £ h. So the¢ integers 3 @y .53, are not distinct

mod h.

Denote by = { E,] the set of Ej] -perfect h-quasi-circulant permutations of
J

degree n=hq.

. h
PROPOSITION 2.5 - The order of =, 1s hg
J

Proof. Notice that, if o is a j-perfect h-quasi-circulant permutation depen-

dent on a1 and j, a1 can be anv element of the set [1,ﬂ] o

1f a, is determined, then we can obtain the integers a., 2 £1i £ h, by the

relation a, = a1+(i—1)j (mod h).

As there are q elements that satisfy this relation, we have that, if a is
h-1

0o 7 d : h
is determined, there are q possibilities; then we obtain hq perfect per-

mutations.
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If ¢(h) is the Euler function of h, that is the number of positive integers

not greater than and pfime to h, we have the following

THEOREM 2.6 - The set Z is an imprimitive subgroup of T of order ¢(h)hqh

Proof. Prove that the product of two permutations aé}eE:is also a member of F .
If 2, j and b1, k are the integers corresponding to @ and B , with j and

k prime to h, we have B( a(i)) = B( a1+(i—1)j)5 b1+( a, +(i=1)3 -1)k (mod h).
So the difference between the elements corresponding to i+1 and i is jk (mod h).
As such a difference does not depend on i and it is prime to h, we have
that & £ is perfect.

Moreover, if Q€Z, then also a—1e =,

1f a(s)=a, and a(p)=ai+1, where s,p e[ﬂ,nl, a. = a1+(s—1)j (mod h) and
i i

_ . ~1 -1
; = a1+(p—1)3 (mod h), we have o (a.)=s and « (ai+1) =p.
i

M)
+

-
|

By calculating (a,+1)-a,, we get that p-s satisfies the relation
i i

(p-s)j = 1 (mod h); then p-s does not depend on a, and it is prime to h.
i

So & is perfect.

Being 7 I-perfect,Z is a transitive group and has the same nontrivial

blocks as T

. . .. .. h
Frow Prop. 2.4 and Prop. .5 we obtain that the order of =u is o(h)hq .
COROLLARY 2.7 - If a subgroup of I' contains a j-perfect permutation, then
, ; . s . . .q~1
1t contalns t-perfect permtations, for t coincident with j, i, ..., Jq 3
vhere g is the minimum intcger such that jq Z j (mod h). Then gq-1|¢ (h)

end g=h if end only if h is prime.

. . . . r
Proof. In fact, if @ is a j-perfect permutation, then, by Theorem 2.6, «
.Y i . .. .
1s 3 -perfect, where 1 = r £ g-1 and q is the minimum integer such that
jq = j (mod h). Since by Prop. 2.4 (j,h)=1, from the Theorems of Euler and

h
Fermat we obtain that q—1]¢(h) and q=h if and only if)is prime.

COROLLARY 2.8 - The set of j-perfect h-quasi-circulant permutations is a

subgrecup of = if and only if j = 1 (mod h).

[
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Proof. By Theorem 2.6, the product of two j-perfect permutations is

. . . .
j-perfect iff j° = j (mod h); then we have j = 1 (mod h).

Moreover, if o is j-perfect, then o is ,-perfect, where p j 1 (mod h).

. i . =
So, if o is 1-perfect, also a 1is 1-perfect.

1f ¥ is the group of l-perfect h-quasi-circulant permutations of degree

n=hqg, then Cn is a subgroup of VY .

We can see a retrocirculant matrix of order 2m can be partitioned into

B P
] ;s hence 1t 1s

~ matrices A and B of order m in the following way [g A

a m-quasi-circulant matrix.

h:r}ect

REMARK 2.9 - The dihedral group D, 1is a subgroup of the)m-quasi—circulant

4m
permutation group Z of degree 2m.

Proof. In fact, the generators of D, are the circulant permutation
4m
m=(1 2 ... 2m) and the retrocirculant permutation ¢ = (1 2m) (2 2m-1)...(m m+1);

hence every element of D is m—quasi-circulant. Morcover, since T 1is a

4m

1-perfect permutation and 0 1is a (m-1)-perfect permutation, every ele-

ment of D4 is t-perfect for t coincident with 1, w1, (m=1)" * (mod m).
m

So D is a subgroup of =.
4m

The group D8 acting on the corners of a square is the 2-quasi-ci:culant

permutation group of degree 4.
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