```
ON QUASI-g-CIRCULANT MATRICES
```

N. Zagaglia Salvi
Dipartimento di Matematica
Politecnico di Milano
P.za L. da Vinci 32
20133 Milano, Italy

ABSTRACT

A matrix Q of order n is called k-quasi-g-circulant if it satisfies

$$
P^{k} Q=Q P^{k g}
$$

where P represents the permutation $(12 \ldots n),(n, g)=1$ and the exponents are mod n.
We prove that if $(k, n)=h$, a matrix Q is k-quasi- ε-circulant if and only if it is h-quasi-g-circulant; then Q is a block g-circulant matrix of type (q, h) and we give a characterization for these matrices. Moreover we define a perfect k-quasi-g-circulant permutation and we prove that the set of these permutations is an imprimitive group of order $\phi(k) \mathrm{kq}^{k}$, where $\phi(k)$ is the Euler function of k, that is the number of positive integers not greater than and prime to k.
(*) This research was supported by the Ministero della Pubblica Istruzione.

INTRODUCTION

Recall that a matrix C of order n is g-circulant if it is $P C=C P^{g}$, where P represents the permutation $\pi=\left(\begin{array}{lll}1 & 2 \ldots n\end{array}\right)$.
We call a matrix Q of order n - quasi-g-circulant if it satisfies

$$
\begin{equation*}
\mathrm{P}^{\mathrm{k}} \mathrm{Q}=\mathrm{QP}^{\mathrm{kg}} \tag{1}
\end{equation*}
$$

where $k \in[1, n-1]$ arid $(g, n)=1$.
In this paper we prove some properties of these matrices.
In particular we prove that, if $(k, n)=h$, a matrix Q is k-quasi-g-circulant if and only if it is h-quasi-g-circulant; then Q is a block g-circulant matrix of type (q, h) and we give a characterization for these matrices.

Moreover we define a perfect k-quasi-circulant permutation and we prove that the set of these permutations is an imprimitive group of order $\phi(k) k q$, where $\phi(k)$ is the Euler function of k, that is the number of positive integerstnot greater than and prime to k.

1. Let $Q=\left[q_{i j}\right]$ be a k-quasi-g-circulant matrix of order n; from (1) it iollows also $P^{i k} Q=Q P^{i k g}, 1 \leqq i \leqq n$.
If $(k, n)=1$, the integers $i k$, taken modulo n, are distinct. Then, there exists an integer $j \in[1, n-1]$ such that $j k \equiv 1(\bmod n)$ and $P Q=Q P^{8}$ is satisfied, i.e. Q is g-circulant.

If $(k, n)=h>1$ and $n=h q$, the integers ik are not distinct.
The minimum integer j such that $j k \equiv 0(\bmod n)$ is q. Then the elements taken modulo $n i k, 1 \leqq i \leqq q$, are repeated h times. Moreover it is easy to see that there exists a $j \in[1, q]$ such that $j k \equiv h(m o d n)$ and Q satisfies $P^{h} Q=Q P^{h g}$.

Now, if $Q P^{h g}=B=\left[b_{i j}\right]$ and $P^{h} Q=C=\left[c_{i j}\right]$, from (1) it follows

$$
b_{i j}=q_{i j-h g}, c_{i j}=q_{i+h j} ;
$$

since $B=C$, we have $q_{i} j-h g=q_{i+h}$, where the indices are mod n. Then we obtain the sequence

$$
\begin{equation*}
q_{r s}=q_{r+h s+h g}=\ldots=q_{r+(n-1) h s+(n-1) h g} \tag{2}
\end{equation*}
$$

$r, s \in[1, h]$.
Since the minimum positive integer j such that $r+j h \equiv r(\bmod n)$ is $j=q$, from (2) we obtain that the elements belonging to the rows

$$
r, r+h, \ldots, r+(q-1) h
$$

and to the columns

$$
s, s+h g, \ldots, s+(q-1) h g
$$

are coincident.
So the row $r+t h, 1 \leqq r \leqq h$ and $1 \leqq t \leqq q-1$, of Q is obtained from the row $r+(t-1) h$ by shifting cyclically every element of hg positions to the right. Then the h-quasi-g-circulant matrix Q is obtained by taking arbitrarily the h first rows and shifting them cyclically hg positions to the right in order to obtain the next rows.
It is easy to see that if the h first rows are partitioned into q matrices $A_{1}, A_{2}, \ldots, A_{q}$, we have

$$
Q=\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{q} \\
A_{q-q+1} & A_{q-g+2} & \cdots & A_{q-g} \\
A_{q-2 q+1} & A_{q-2 g+2} & \cdots & A_{q-2 g} \\
\cdots & & & \\
A_{q+1} & A_{g+2} & \cdots & A_{g}
\end{array}\right] .
$$

 lowing

THEOREM 1.1 - A matrix Q of order n satisfies $P^{k} Q=Q P^{k g}$, where $(n, k)=h \geqslant 1$ and $n=h q$, if and only if it satisfies $P^{h} Q=Q P^{h g}$. Then Q is a block g-circulant matrix of type (q, h).

THEOREM 1.2 - A matrix Q of order $n=h q$ is block g-circulant of type (q, h) if and only if it satisfies

$$
\begin{equation*}
\left(\mathrm{P}_{\mathrm{q}} \otimes \mathrm{I}_{\mathrm{h}}\right) \mathrm{Q}=\mathrm{Q}\left(\left(\mathrm{P}_{\mathrm{q}}\right)^{\mathrm{g}} \otimes \mathrm{I}_{\mathrm{h}}\right) \tag{3}
\end{equation*}
$$

Proof. The matrices $\mathrm{P}_{\mathrm{q}} \otimes \mathrm{I}_{\mathrm{h}}$ and $\left(\mathrm{P}_{\mathrm{q}}\right)^{\mathrm{g}} \otimes \mathrm{I}_{\mathrm{h}}$ are block g-circulant of type (q,h) and are given by

$$
P_{q} \otimes I_{h}=\left[\begin{array}{lllll}
0_{h} & I_{h} & 0_{h} & \cdots & 0_{h} \\
0_{h} & 0_{h} & I_{h} & \cdots & 0_{h} \\
\cdots & & & & \\
I_{h} & 0_{h} & 0_{h} & \cdots & 0_{h}
\end{array}\right]
$$

and

$$
\left(\mathrm{P}_{\mathrm{q}}\right)^{\mathrm{g}} \otimes \mathrm{I}_{h}=\left[\begin{array}{lllllll}
0_{h} & 0_{h} & \cdots & I_{h} & & \cdots & 0_{h} \\
0_{h} & 0_{h} & \cdots & 0_{h} & I_{h} & \cdots & 0_{h} \\
\ldots & & & & & \\
0_{h} & \cdots & I_{h} & 0_{h} & \cdots & 0_{h}
\end{array}\right]
$$

where g is the number of O_{h} before I_{h} on the first row. Then these permutation matrices coincjde respectively with P^{h} and P^{hg}. From Theorem 1.1 it follows that, if (S satisfies (3), then it is block g-circulant of type (q, h).

Conversely, since the formal rules of block multiplication are the same as for ordinary multiplication, if Q is block g-circulant, the argument followed in [2] to prove that a g-circulant matrix satisfies $P Q=Q P^{g}$, is valid when interpretated blockuise.

THEOREM 1.3 - A matrix A of order n satisfies $P^{h} A=A P^{h g}$, where $(n, g)=1$, if and only if it satisfies $A P^{h}=P^{h i} A$, where $i \equiv g^{\phi(n)-1}(\bmod n)$.

Proof. If A satisfies $P^{h} A=A P{ }^{h g}$, then we have $P^{j h} A=A P^{j h g}, 1 \leqslant j \leqslant n$. If i is the minimum positive integer such that $i g \equiv 1(\bmod n)$, then
we obtain $A P^{h}=P^{h i} A$. By a Euler's theorem we have $g^{\phi(n)} \equiv 1(\bmod n)$; then $g g^{\phi(n)-1} \equiv 1$ and, since for $(n, g)=1$ the solution to $g x \equiv 1$ (mod n) is unique $\bmod n, i \equiv g^{\phi(n)-1}(\bmod n)$.
Conversely, if it is $A P^{h}=P^{h i} A$, where $(n, i)=1$, by the same considerations we obtain $P^{h} A=A P^{h g}$, where $g \equiv i^{\phi(n)-1}(\bmod n)$.

Many properties of the g-circulant matrices can be exspressed in terms of block g-circulant matrices.

Among these, we consider the following

THEOREM 1.4- If A is a block g-circulant and B is a block h-circulant, then $A B$ is a block gh-circulant.

The proof follows as for g-circulant matrices.

COROLLARY 1.5 - The product of two block ε-circulant matrices is also block g-circulant only for $g \equiv 1(\bmod n)$.

Proof. By Theorem 1.4 the product of two block $q^{-c i r c u l a n t ~ m a t r i c e s ~ i s ~}$ block g^{2}-circulant; then $g^{2} \equiv g(\bmod n)$ only for $\xi \equiv(\bmod n)$.
2. If we consider block g-circulant permutation matrices, from Corollary 1.5 it follows that only for $g=1$ the corresponding permutations form a group.

Recall that a 1 -circulant is a circulant.

PROPOSITION 2.1- The number of h-quasi-g-circulant permutation matrices of order $n=h q$ is $h!q^{h}$.

Proof. By Theorem 1.1 only the first h rows of a h-quasi-g-circulant matrix Q are arbitrary.

For the position of the element 1 on the first row there are n possibilities. Since other $q-1$ columns of Q have the element 1 fixed, for the position of the element 1 on the second row there are $n-q$ possibilities.

In a similar way, for the element 1 on the $i-t h$ row, $1 \leqq i \leqq h$, there are $n-(i-1) q$ possibilities and the number of k-quasi-circulant permutations Q of order $n=h q$ and $(k, n)=h \geqq 1$, is $n(n-q) \ldots(n-(h-1) q)=h!q^{h}$.

PROPOSITION 2.2 - The set of permutations corresponding to h-quasi-circulant matrices of order $n=h q$ forms an imprimitive permutation group Γ of order $h!q^{h}$ and rank $q+1$.

Proof. The set I of permutations corresponding to h-quasi-circulant matrices is the centralizer of π^{h} on the symmetric group S_{n}. As P is iquasi-circulant, then I is a transitive group.
Moreover the disjoint sets $H_{i}=\{i, i+h, \ldots, i+(q-1) h\}, 1 \leqq i \leqq h$, are nontrivial blocks for Γ and Γ is imprimitive.
In fact, let $g \in \Gamma$ and $g(i)=j$ where $1 \leqq j \leqq n$; then we have $g(i+r h)=j+r h$, $0 \leqq r \leqq q-1$. Consequently $\mathrm{gH}_{i}=\{j, j+h, \ldots, j+(q-1) h\}$ is one of the sets H_{i} and either $\varepsilon_{i}=H_{i}$ or $g H_{i} \cap H_{i}=\varnothing$. The order of follows :on. Prop. 2.1. Finally, let Γ_{x} the stablizer of x, for $x \in[1, n]$. If $g \in \Gamma_{x}$, we have $g(x)=x$; then it follows that $g(x+r h)=x+r h$, where $0 \leqq r \leqq q-1$ and the integers are modulo n.

Since I_{x} is transitive on $N-\{x+r h \mid 0 \leqq r \leqq q-1\}$, we get that the orbits of I_{x} are $q+1, q$ of length 1 and 1 of length $n-q=(h-1) q$.

As in a h-quasi-circulant permutation matrix Q of order $n=h q$ only the h first rows are arbitrary, it follows that the permutation α corresponding to Q is determined by the elements $a_{i} \in[1, n]$ such that $\alpha(i)=a_{i}$ for $1 \leqq i \leqq h$ and $a_{i} \neq a_{j}(\bmod h), i \neq j$. Note that $\alpha(i+r h)=a_{i+r h}=a_{i}+r h, r \in[1, q-1]$. Remark that, if α is a circulant or g-circulant permutation, there exists an integer j prime to n such that $\alpha(i+1)-\alpha(i) \equiv j(\bmod n)$.

Now we give a generalization of these permutations.

DEFINITION 2.3-We call a permutation α, corresponding to a h-quasi-circulant matrix of order $n=h q$, j-perfect if there exists an integer $j \in[1, h-1]$ such that

$$
\begin{equation*}
a_{i+1}-a_{i} \equiv j(\bmod h) \tag{4}
\end{equation*}
$$

for $i \in[1, h]$.

Since $\alpha(i+r h)=a_{i}+r h$, we can extend (4) to $i \in[1, n]$.
Moreover from (4) we obtain $a_{i+k}-a_{i} \equiv k j(\bmod h), 1 \leqq k \leqq h-1$. Then it is $a_{i} \equiv a_{1}+(i-1) j(\bmod h)$ for $2 \leqq i \leqq h$; so a perfect h-quasi-circulant permutation α depends on only two integers a_{1} and j, apart from the congruence of $\alpha(i)$ modulo h.

PROPOSITION 2.4 - If a h-quasi-circulant permutation is j-perfect, then $(j, h)=1$.

Proof. In fact, if it is $(j, h)=s>1$ and $h=s h^{\prime}$, then $a_{h^{\prime}+1} \equiv a_{1}+h^{\prime} j \equiv a_{1}$ (mod h), where $h^{\prime}+1 \leqq h$. So the integers $a_{1}, a_{2}, \ldots, a_{h}$ are not distinct $\bmod h$.

Denote by $\equiv\left[E_{j}\right]$ the set of $[j]$-perfect h-quasi-circulant permutations of degree $n=h q$.

PROPOSITION 2.5 - The order of Ξ_{j} is hq ${ }^{h}$.

Proof. Notice that, if α is a j-perfect h-quasi-circulant permutation dependent on a_{1} and j, a_{1} can be any element of the set $[1, n]$.
If a_{1} is determined, then we can obtain the integers $a_{i}, 2 \leqq i \leqq h$, by the relation $a_{i} \equiv a_{1}+(i-1) j(\bmod h)$.
As there are q elements that satisfy this relation, we have that, if a_{1} is is determined, there are q^{h-1} possibilities; then we obtain hq perfect permutations.

If $\phi(h)$ is the Euler function of h, that is the number of positive integers not greater than and prime to h, we have the following

THEOREM 2.6 - The set Ξ is an imprimitive subgroup of Γ of order $\phi(h) h q$. Proof. Prove that the product of two permutations $\alpha, \beta \in \Phi$ is also a member of Ξ. If a_{1}, j and b_{1}, k are the integers corresponding to α and β, with j and k prime to h, we have $\beta(\alpha(i)) \equiv \beta\left(a_{1}+(i-1) j\right) \equiv b_{1}+\left(a_{1}+(i-1) j-1\right) k(\bmod h)$. So the difference between the elements corresponding to $i+1$ and i is $j k$ (mod h). As such a difference does not depend on i and it is prime to h, we have that αE is perfect.
Moreover, if $\alpha \in E$, then also $\alpha^{-1} \in \Xi$.
If $\alpha(s)=a_{i}$ and $\alpha(p)=a_{i}+1$, where $s, p \in[1, n], a_{i} \equiv a_{1}+(s-1) j(\bmod h)$ and $a_{i}+1 \equiv a_{1}+(p-1) j(\bmod h)$, we have $\alpha^{-1}\left(a_{i}\right)=s$ and $\alpha^{-1}\left(a_{i}+1\right)=p$.
By calculating $\left(a_{i}+1\right)-a_{i}$, he get that $p-s$ satisfies the relation $\left(p^{-s}\right) j \equiv 1$ (mod h) ; then $p-s$ does not depend on a_{i} and it is prime to h. So α^{-1} is perfect.
Being π 1-perfect, Ξ is a transitive group and has the same nontrivial blocks as Γ.
From prop. 2.4 and Prop. $\therefore 5$ we obtain that the order of Ξ is p(h)h, .

COROLLARY 2.7-If a subgroup of Γ contains a j-perfect permutation, then it contains t-perfect permutations, for t coincident with $j, j^{2}, \ldots, j^{q-1}$, where q is the minimum integer such that $j^{q} \equiv j(\bmod h)$. Then $q-1 \mid \phi(h)$ and $q=h$ if and only if h is prime.

Proof. In fact, if α is a j-perfect permutation, then, by Theorem $2.6, \alpha^{r}$ is j^{r}-perfect, where $1 \leqq r \leqq q-1$ and q is the minimum integer such that $j^{q} \equiv j(\bmod h)$. Since by Prop. $2.4(j, h)=1$, from the Theorems of Euler and Femat we obtain that $q-1 \mid \phi(h)$ and $q=h$ if and only iflis prime.

COROLLARY 2.8 - The set of j-perfect h-quasi-circulant permutations is a subgroup of E if and only if $j \equiv 1(\bmod h)$.

Proof. By Theorem 2.6, the product of two j-perfect permutations is j-perfect iff $j^{2} \equiv j(\bmod h)$; then we have $j \equiv 1(\bmod h)$.
 So, if α is 1 -perfect, also α^{-1} is 1 -perfect.

If Ψ is the group of 1 -perfect h-quasi-circulant permutations of degree $\mathrm{n}=\mathrm{hq}$, then C_{n} is a subgroup of Ψ.

We can see a retrocirculant matrix of order 2 m can be partitioned into matrices A and B of order m in the following way $\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]$; hence it is a m-quasi-circulant matrix.

REMARK 2.9 - The dihedral group $D_{4 m}$ is a subgroup of the lm-cuasi-circulant permutation group Ξ of degree 2 m .

Proof. In fact, the generators of $D_{4 m}$ are the circuiant permutation $\pi=\left(\begin{array}{ll}1 & 2 \ldots 2 m\end{array}\right)$ and the retrocirculant permutation $\sigma=(12 m)(22 m-1) \ldots(m m+1)$; hence every element of $D_{4 m}$ is m-quasi-circulant. Moreover, since π is a 1-perfect permutation and σ is a (m-1)-perfect permutation, every element of $D_{4 m}$ is t-perfect for t coincident with $1, m-1,(m-1)$ (mod m). So $D_{4 m}$ is a subgroup of Ξ.

The group D_{8} acting on the corners of a square is the 2-quasi-circulant permutation group of degree 4.

REFERENCES

[1] N.L. Biggs and A.T. White, Permutation Groups and Combinatorial Structures , Cambridge University Press, 1979.
[2] P.J. Davis, Circulant matrices, A Wiley-Interscience Publication, 1979.
[3] I.M. Vinogradov, An introduction to the theory of numbers, Pergamon Press, London, 1955.
[4] K. Wang, On the generalizations of circulants, Linear Algebra and Appi. 25 (1979), 197-218.
[5] K. Wang, On the generalization of a retrocirculant, Linear Algebra and App2. 37(1981), 35-43.

