ON QUASI-g-CIRCULANT MATRICES

(★) N. Zagaglia Salvi Dipartimento di Matematica Politecnico di Milano P.za L. da Vinci 32 20133 Milano, Italy

ABSTRACT

A matrix Q of order n is called k-quasi-g-circulant if it satisfies

$$P^{k}Q = QP^{kg}$$

where P represents the permutation $(1 \ 2 \ \dots \ n)$, (n,g)=1 and the exponents are mod n.

We prove that if (k,n)=h, a matrix Q is k-quasi-g-circulant if and only if it is h-quasi-g-circulant; then Q is a block g-circulant matrix of type (q,h) and we give a characterization for these matrices. Moreover we define a perfect k-quasi-g-circulant permutation and we prove that the set of these permutations is an imprimitive group of order $\phi(k)kq^k$, where $\phi(k)$ is the Euler function of k, that is the number of positive integers not greater than and prime to k.

(*) This research was supported by the Ministero della Pubblica Istruzione.

INTRODUCTION

matrices.

Recall that a matrix C of order n is g-circulant if it is $PC = CP^g$, where P represents the permutation $\pi = (1 \ 2 \ \dots \ n)$.

We call a matrix Q of order n k-quasi-g-circulant if it satisfies

$$P^{k}Q = QP^{k}g$$
(1)

where $k \in [1, n-1]$ and (g, n)=1.

In this paper we prove some properties of these matrices. In particular we prove that, if (k,n)=h, a matrix Q is k-quasi-g-circulant if and only if it is h-quasi-g-circulant; then Q is a block g-circulant matrix of type (q,h) and we give a characterization for these

Moreover we define a perfect k-quasi-circulant permutation and we prove that the set of these permutations is an imprimitive group of order $\phi(k)kq^k$, where $\phi(k)$ is the Euler function of k, that is the number of positive integers not greater than and prime to k.

1. Let $Q = [q_{ij}]$ be a k-quasi-g-circulant matrix of order n; from (1) it follows also $P^{ik}Q = QP^{ikg}$, $1 \le i \le n$.

If (k,n)=1, the integers ik, taken modulo n, are distinct. Then, there exists an integer $j \in [1,n-1]$ such that $jk \equiv 1 \pmod{n}$ and $PQ=QP^g$ is satisfied, i.e. Q is g-circulant.

If (k,n)=h > 1 and n=hq, the integers ik are not distinct. The minimum integer j such that $jk \equiv 0 \pmod{n}$ is q. Then the elements taken modulo n ik , $1 \leq i \leq q$, are repeated h times. Moreover it is easy to see that there exists a $j \in [1,q]$ such that $jk \equiv h \pmod{n}$ and Q satisfies $P^{h}Q = QP^{hg}$.

Now, if $QP^{hg} = B = [b_{ij}]$ and $P^{h}Q = C = [c_{ij}]$, from (1) it follows $b_{ij} = q_{ij-hg}$, $c_{ij} = q_{i+hj}$; since B = C, we have $q_{i j-hg} = q_{i+h j}$, where the indices are mod n. Then we obtain the sequence

$$q_{r s} = q_{r+h s+hg} = \dots = q_{r+(n-1)h s+(n-1)hg}$$
 (2)
r,s ϵ [1,h].

Since the minimum positive integer j such that $r+jh \equiv r \pmod{n}$ is j=q, from (2) we obtain that the elements belonging to the rows

r, r+h, ..., r+(q-1)h

and to the columns

s, s+hg, ..., s+(q-1)hg

are coincident.

So the row r+th, $1 \leq r \leq h$ and $1 \leq t \leq q-1$, of Q is obtained from the row r+(t-1)h by shifting cyclically every element of hg positions to the right. Then the h-quasi-g-circulant matrix Q is obtained by taking arbitrarily the h first rows and shifting them cyclically hg positions to the right in order to obtain the next rows.

It is easy to see that if the h first rows are partitioned into q matrices A_1, A_2, \ldots, A_q , we have

$$Q = \begin{bmatrix} A_{1} & A_{2} & \cdots & A_{q} \\ A_{q-g+1} & A_{q-g+2} & \cdots & A_{q-g} \\ A_{q-2g+1} & A_{q-2g+2} & \cdots & A_{q-2g} \\ \vdots \\ \vdots \\ A_{g+1} & A_{g+2} & \cdots & A_{g} \end{bmatrix}$$

So Q is a block g-circulant matrix of type (q,h) and we obtain the following

THEOREM 1.1 - A matrix Q of order n satisfies $P^{k}Q = QP^{kg}$, where $(n,k)=h \ge 1$ and n=hq, if and only if it satisfies $P^{h}Q = QP^{hg}$. Then Q is a block g-circulant matrix of type (q,h). THEOREM 1.2 - A matrix Q of order n=hq is block g-circulant of type (q,h) if and only if it satisfies

$$\begin{pmatrix} P & \otimes I \\ q & h \end{pmatrix} Q = Q ((P)^{g} \otimes I_{h}).$$
(3)

Proof. The matrices $P_q \otimes I_h$ and $(P_q)^g \otimes I_h$ are block g-circulant of type (q,h) and are given by

$$P_{q} \bigotimes I_{h} = \begin{bmatrix} O_{h} & I_{h} & O_{h} & \cdots & O_{h} \\ O_{h} & O_{h} & I_{h} & \cdots & O_{h} \\ \cdots & & & & \\ I_{h} & O_{h} & O_{h} & \cdots & O_{h} \end{bmatrix}$$

and

$$(P_{q})^{g} \otimes I_{h} = \begin{bmatrix} 0_{h} & 0_{h} & \dots & I_{h} & \dots & 0_{h} \\ 0_{h} & 0_{h} & \dots & 0_{h} & I_{h} & \dots & 0_{h} \\ 0_{h} & 0_{h} & \dots & 0_{h} & 0_{h} & \dots & 0_{h} \\ 0_{h} & \dots & I_{h} & 0_{h} & \dots & 0_{h} \end{bmatrix}$$

where g is the number of 0_h before I_h on the first row. Then these permutation matrices coincide respectively with P^h and P^{hg} . From Theorem 1.1 it follows that , if Q satisfies (3), then it is block g-circulant of type (q,h).

Conversely, since the formal rules of block multiplication are the same as for ordinary multiplication, if Q is block g-circulant, the argument followed in [2] to prove that a g-circulant matrix satisfies PQ=QP^g, is valid when interpretated blockwise.

THEOREM 1.3 - A matrix A of order n satisfies $P^{h}A=AP^{hg}$, where (n,g)=1, if and only if it satisfies $AP^{h}=P^{hi}A$, where $i \equiv g^{\varphi(n)-1} \pmod{n}$.

Proof. If A satisfies $P^{h}A=AP^{hg}$, then we have $P^{jh}A=AP^{jhg}$, 1 $\leq j \leq n$. If i is the minimum positive integer such that ig $\equiv 1 \pmod{n}$, then

-138-

we obtain $AP^{h}=P^{hi}A$. By a Euler's theorem we have $g^{\phi(n)} \equiv 1 \pmod{n}$; then $g g^{\phi(n)-1} \equiv 1$ and, since for (n,g)=1 the solution to $gx \equiv 1 \pmod{n}$ is unique mod n, $i \equiv g^{\phi(n)-1} \pmod{n}$. Conversely, if it is $AP^{h}=P^{hi}A$, where (n,i)=1, by the same considerations we obtain $P^{h}A=AP^{hg}$, where $g \equiv i^{\phi(n)-1} \pmod{n}$.

Many properties of the g-circulant matrices can be exspressed in terms of block g-circulant matrices. Among these, we consider the following

THEOREM 1.4- If A is a block g-circulant and B is a block h-circulant, then AB is a block gh-circulant.

The proof follows as for g-circulant matrices.

COROLLARY 1.5 - The product of two block g-circulant matrices is also block g-circulant only for $g \equiv 1 \pmod{n}$.

Proof. By Theorem 1.4 the product of two block g-circulant matrices is block g^2 -circulant; then $g^2 \equiv g \pmod{n}$ only for $g \equiv 1 \pmod{n}$.

2. If we consider block g-circulant permutation matrices, from Corollary 1.5 it follows that only for g=1 the corresponding permutations form a group.

Recall that a 1-circulant is a circulant.

PROPOSITION 2.1- The number of h-quasi-g-circulant permutation matrices of order n=hq is h!q^h.

Proof. By Theorem 1.1 only the first h rows of a h-quasi-g-circulant matrix Q are arbitrary.

For the position of the element 1 on the first row there are n possibilities. Since other q-1 columns of Q have the element 1 fixed, for the position of the element 1 on the second row there are n-q possibilities.

In a similar way, for the element 1 on the i-th row, $1 \leq i \leq h$, there are n-(i-1)q possibilities and the number of k-quasi-circulant permutations Q of order n=hq and $(k,n)=h \geq 1$, is $n(n-q)...(n-(h-1)q)=h!q^h$.

PROPOSITION 2.2 - The set of permutations corresponding to h-quasi-circulant matrices of order n=hq forms an imprimitive permutation group Γ of order h!q and rank q+1.

Proof. The set Γ of permutations corresponding to h-quasi-circulant matrices is the centralizer of π^h on the symmetric group S_n . As P is quasi-circulant, then Γ is a transitive group. Moreover the disjoint sets $H_i = \{i, i+h, \ldots, i+(q-1)h\}$, $1 \leq i \leq h$, are nontrivial blocks for Γ and Γ is imprimitive. In fact, let $g \in \Gamma$ and g(i)=j where $1 \leq j \leq n$; then we have g(i+rh)=j+rh, $0 \leq r \leq q-1$. Consequently $gH_i = \{j, j+h, \ldots, j+(q-1)h\}$ is one of the sets H_i and either $gH_i = H_i$ or $gH_i \cap H_i = \emptyset$. The order of Γ follows from Prop. 2.1. Finally, let Γ_x the stabilizer of x, for $x \in [1,n]$. If $g \in \Gamma_x$, we have g(x)=x; then it follows that g(x+rh)=x+rh, where $0 \leq r \leq q-1$ and the integers are modulo n.

Since Γ is transitive on N - {x+rh $|0 \le r \le q-1$ }, we get that the orbits of Γ are q+1, q of length 1 and 1 of length n-q=(h-1)q.

As in a h-quasi-circulant permutation matrix Q of order n=hq only the h first rows are arbitrary, it follows that the permutation α corresponding to Q is determined by the elements $a_i \in [1,n]$ such that $\alpha(i)=a_i$ for $1 \leq i \leq h$ and $a_i \not\equiv a_j \pmod{h}$, $i \neq j$. Note that $\alpha(i+rh)=a_{i+rh}=a_i+rh$, $r \in [1,q-1]$. Remark that, if α is a circulant or g-circulant permutation, there exists an integer j prime to n such that $\alpha(i+1) - \alpha(i) \equiv j \pmod{n}$. Now we give a generalization of these permutations.

DEFINITION 2.3 - We call a permutation α , corresponding to a h-quasi-circulant matrix of order n=hq, j-perfect if there exists an integer je [1,h-1] such that

$$a_{i+1} - a_i \equiv j \pmod{h}$$
(4)

for $i \in [1,h]$.

Since $\alpha(i+rh) = a_i + rh$, we can extend (4) to $i \in [1,n]$. Moreover from (4) we obtain $a_{i+k} - a_i \equiv kj \pmod{h}$, $1 \leq k \leq h-1$. Then it is $a_i \equiv a_1 + (i-1)j \pmod{h}$ for $2 \leq i \leq h$; so a perfect h-quasi-circulant permutation α depends on only two integers a_1 and j, apart from the congruence of $\alpha(i)$ modulo h.

PROPOSITION 2.4 - If a h-quasi-circulant permutation is j-perfect, then (j,h)=1.

Proof. In fact, if it is (j,h)=s > 1 and h = sh', then $a_{h'+1} \equiv a_{1}+h'j \equiv a_{1}$ (mod h), where $h'+1 \leq h$. So the integers $a_{1}, a_{2}, \ldots, a_{h}$ are not distinct mod h.

Denote by $\Xi \begin{bmatrix} \Xi_j \end{bmatrix}$ the set of $\begin{bmatrix} j \end{bmatrix}$ -perfect h-quasi-circulant permutations of degree n=hq.

PROPOSITION 2.5 - The order of Ξ is hq^h.

Proof. Notice that, if α is a j-perfect h-quasi-circulant permutation dependent on a_1 and j, a_1 can be any element of the set [1,n]. If a_1 is determined, then we can obtain the integers $a_1, 2 \leq i \leq h$, by the relation $a_1 \equiv a_1 + (i-1)j \pmod{h}$. As there are q elements that satisfy this relation, we have that, if a_1 is b-1

is determined, there are q^{h-1} possibilities; then we obtain h q^{h} perfect permutations. If $\phi(h)$ is the Euler function of h, that is the number of positive integers not greater than and prime to h, we have the following

THEOREM 2.6 - The set Ξ is an imprimitive subgroup of Γ of order $\phi(h)$ hg.

Proof. Prove that the product of two permutations $\alpha, \beta \in \Xi$ is also a member of Ξ . If a_1 , j and b_1 , k are the integers corresponding to α and β , with j and k prime to h, we have $\beta(\alpha(i)) \equiv \beta(a_1 + (i-1)j) \equiv b_1 + (a_1 + (i-1)j - 1)k \pmod{h}$. So the difference between the elements corresponding to i+1 and i is jk (mod h). As such a difference does not depend on i and it is prime to h, we have that $\alpha \beta$ is perfect.

Moreover, if $\alpha \epsilon \Xi$, then also $\alpha^{-1} \epsilon \Xi$.

If $\alpha(s) = a_i$ and $\alpha(p) = a_i + 1$, where $s, p \in [1, n]$, $a_i \equiv a_1 + (s-1)j \pmod{h}$ and $a_i + 1 \equiv a_1 + (p-1)j \pmod{h}$, we have $\alpha^{-1}(a_i) = s$ and $\alpha^{-1}(a_i + 1) = p$. By calculating $(a_i + 1) - a_i$, we get that p-s satisfies the relation $(p-s)j \equiv 1 \pmod{h}$; then p-s does not depend on a_i and it is prime to h. So α^{-1} is perfect.

Being π 1-perfect, Ξ is a transitive group and has the same nontrivial blocks as Γ .

From Prop. 2.4 and Prop. 2.5 we obtain that the order of Ξ is $\phi(h)hq^h$.

COROLLARY 2.7 - If a subgroup of Γ contains a j-perfect permutation, then it contains t-perfect permutations, for t coincident with j, j^2 , ..., j^{q-1} , where q is the minimum integer such that $j^q \equiv j \pmod{h}$. Then $q-1|\phi(h)$ and q=h if and only if h is prime.

Proof. In fact, if α is a j-perfect permutation, then, by Theorem 2.6, α^{r} is j^{r} -perfect, where $1 \leq r \leq q-1$ and q is the minimum integer such that $j^{q} \equiv j \pmod{h}$. Since by Prop. 2.4 (j,h)=1, from the Theorems of Euler and Fermat we obtain that $q-1|\phi(h)$ and q=h if and only if is prime.

COROLLARY 2.8 - The set of j-perfect h-quasi-circulant permutations is a subgroup of Ξ if and only if $j \equiv 1 \pmod{h}$.

Proof. By Theorem 2.6, the product of two j-perfect permutations is j-perfect iff $j^2 \equiv j \pmod{h}$; then we have $j \equiv 1 \pmod{h}$. Moreover, if α is j-perfect, then α^{-1} is p-perfect, where $\rho \neq 1 \pmod{h}$. So, if α is 1-perfect, also α^{-1} is 1-perfect.

If Ψ is the group of 1-perfect h-quasi-circulant permutations of degree n=hq, then C is a subgroup of Ψ .

We can see a retrocirculant matrix of order 2m can be partitioned into matrices A and B of order m in the following way $\begin{bmatrix} A & B \\ B & A \end{bmatrix}$; hence it is a m-quasi-circulant matrix.

REMARK 2.9 - The dihedral group D_{4m} is a subgroup of the m-guasi-circulant permutation group Ξ of degree 2m.

Proof. In fact, the generators of D_{4m} are the circulant permutation $\pi = (1 \ 2 \ \dots \ 2m)$ and the retrocirculant permutation $\sigma = (1 \ 2m)(2 \ 2m-1)\dots(m \ m+1)$; hence every element of D_{4m} is m-quasi-circulant. Moreover, since π is a 1-perfect permutation and σ is a (m-1)-perfect permutation, every element of D_{4m} is t-perfect for t coincident with 1, m-1, (m-1)⁻¹ (mod m). So D_{4m} is a subgroup of Ξ .

The group D_8 acting on the corners of a square is the 2-quasi-circulant permutation group of degree 4.

-143-

REFERENCES

- N.L. Biggs and A.T. White, Permutation Groups and Combinatorial Structures, Cambridge University Press, 1979.
- [2] P.J. Davis, Circulant matrices, A Wiley-Interscience Publication, 1979.
- [3] I.M. Vinogradov, An introduction to the theory of numbers, Pergamon Press, London, 1955.
- [4] K. Wang, On the generalizations of circulants, *Linear Algebra and Appl.* 25 (1979), 197-218.
- [5] K. Wang, On the generalization of a retrocirculant, Linear Algebra and Appl. 37(1981), 35-43.