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Resume. En utitisant la decomposition des permutalions en "arbres
binaires croissants", on etablit une formule de recurrence qui donne des
generalisations et plusieurs q-analogues des polynomes euleriens, des
nombres d'Euler, des nombres de Catalan, des polynomes de Stirling de
premiere et de deuxieme especes, des polynomes d'Hermite, des polynomes
de Bell, etc. Dans plusieurs cas, les series generatrices des q-analogues
obtenus peuvent etre expnmees sous forme de produits infinis.

Abstract. Using the "arbre binaire croissant" permutation decomposi-
tion, a relatively simple recurrence relationship is derived that provides
refinements, generalizations, and several q-analogs of the Eulenan
polynomials, the Euler numbers, the Catalan numbers, the Stirling
polynomials of both the first and second kinds, the Hermit? polynomials,
the Bell potynomials, and others. In several cases, the generating
functions for the q-analogs may be expressed in the form of infinite
products.

Avec 1'appui financier du programme FCAR (Quebec, EO 1608) et du CRSNG
(Canada, A5660).

I. Introduction. The similarity in form of the following recurrence
relationships, which respectively define (n+1)!, the Eulenan polynomtals,
the Catalan numbers, and the Stirling polynomials of the first and second
kinds,

n

d. ') (a) L^, =S(^)LkLn-i<, LO-I
k=0

n

(b) A^ | (t) - A^(t) +1 ̂ (^ ) \W An_^t), AQ(t) := I
k=l

(c) c,., = S c^c^, CQ :-i
k=0

(d) s^, (y)=y Z(", )(n-k)ts^(y), So(y) := 1
k=0

(e) 5^, (y)=y Z<nk)5k(y), 5o(y) := 1
k=0
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lies in the fact that essentially the same counting argument may be used
in deriving each one of them. The argument is elementary and is based on
the "arbre binaire croissant" permutation decomposition, henceforth
referred to as the ABC decomposition, which may be described as follows:

A permutation a of aset D of n integers will be written as a list
a ' a; CT^... 0^1 and the symbol L[D] will denote the set of such lists. For
simplicity, L[n] will signify the set of lists of {l,2,.., n}.

For (T   L[C] where C is a non-empty set of (n+ I) integers, let (k* I) be
the unique index such that ff^+^ is equal to the minimum element in C.
Further, let

(1. 2) (a) A:^^). ^,.... ^}

(b) B:-{(r^2. ak. 3- .. C7n^l}

Then, the ABC decomposition of ff e L[C] is defined to be the unique

factonzation of (T into the sublists indicated by

(1. 3) a =c< m p

where oc := CT) a^ ... ff^ e L[A], m :' minimum element of C, and
P'=CT^2(TI<*3 CTn. l eLlBl-

The reason for referring to (1.3) as the ABC decomposltion becomes
dear if one views ac a m p geometDcally as follows:

(1. 45

Iteration of 11. 4) will produce a unique rooted binary planar tree in which
each vertex has a different label from the set C, such that the labels

appear In Increasing order as one moves up and away from the root. This
uniQue tree Is the so-called "arbre binalre crolssant" associated to a as

descrtbed by Foata and SchOtzenberger [131. For example, the ABC
corresponding to

(1.5)

Is the following one:

(1. 6)

d =26147385 6 L[8]
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Note that, given any ABC, the corresponding permutation may be recovered
by projecting the labels of the vertices onto a horizontal axis in such a
way that the left (respectively right) subtree above a vertex h falls to the
left (resp. right) oT h.

The essential counting argument underlying the relationships listed in
(1. 1) is exemplified by the denvation of recurrence (1, 1 a) which goes as
follows: First, observe that (1. 3) may be viewed as a bijection from L[C]
to the set of 4-tuples

n

(1. 7) U {(A, B, oc, p)' |A| =k, A» B =C\{m}, a e L[A], p 6 L[B]}
k=0

where |A| denotes the cardinality of the set A and A * B signifies the
disjoint union of A and B. Also, note that |L[D]| depends only on the
cardinality of D. In fact, |L[D]| ° n! if |D| ° n. Then, if we let

(1. 8) -n |L[n]|,

the following calculation based on (1. 3) and (1. 7)

(i. 9) L,,, = S 1= Z . S Z Z^ 1
aeUC] k=0 |A|=k ec e L[A] P L[B]

° I^^n-^
k=0

establishes the fact that the recurrence for (n+DMs indeed (1. 1 a). As will
become apparent later, to obtain the remaining recurrences of (1. 1), one
merely places various restnctions and weights on a and then uses the
same decomposition.

While it is interesting that the simple argument in (1. 9) may be
modified and exploited in several settings, the remarkable fact is that the
ABC decomposition may be used to derive a single recurrence which
contains a)) of the relationships listed in (1. 1). In fact, in addition to
containing aU of (1. 1), the "master" recurrence (3. 3) given in Theorem (3. 1)
of §3 provides refinements, generalizations, and several q-analogs of a
multitude of other recurrences pertaining to partitions of sets and to the

descent set, the inversion set, the pattern sets, and the cycle type of
permutations (see §2 for all definitions). Surpnsfngly, the proof of

Theorem (3. 1) 1s not stgniricantly more difficult than the one given for
(1. 1 a): One begins by observing that certain permutatlon statistics are
compatible with the ABC decomposltlon and tnen Just follows then through
(1. 9).

The agenda (or this paper is as follows: After providing the
necessary background In §2 and proving the master recurrence In §3, a
variety of corollaries to Theorem (3. 1) wil) be discussed in sections 4
through 9.

Section 4 is devoted to the presentation of some of the generalized
Catalan numbers considered by Carl Itz and Riordan [5] and by Furlinger and
Hofbauer(18].

In section 5, examples concerning the descent set of a permutatlon
are given. In particular, the (p, r)-Eulerian polynomiai S of Gessel [20] and

the p-Euler numbers found in [15, 20] are considered.
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In sections 6 through 8, we present a number of recurrences which
pertain to what at ihis point are best described as "left-to-nght" and
"nght-to-left" cycle type results on permutatfons. Among the many
recurrences of these sections, one will find Gould's [22] p-Stfrlfng
numbers of the first type, the p-analog of the number of derangements
given In (32), both of the q-Hermlte polynomlals of Cigler [8], a q-analog of
the double Stirling numbers considered by Cartitz and Scovllle [7], and
others. Interestingly, the "left-to-right" and "rfght-to-left" cycle types
lead to two classes of infinite products that are, 1n a sense that will
become clear, complementary.

In the final section, results concerning "left-to-rlght" and
"right-to-left. " partitions of a set C are considered. Recurrence
relationships are given for new analogs of the Stirling numbers of the
second kind and of the Bell polynomials.

A few remarks are in order at this point:

Remark I. In selecting and specializing the parameters in the master
recurrence to obtain the corollaries of sections 4 through 9, it should be
noted that one is at the same time choosing and placing weights on a class
of increasing rooted binary trees. Only in some cases will the particular
class of ABC's be described.

Remark 2. The approach used in this paper provides a common
combinatorial setting for many classic q-analogs that have previously
been studied in a variety of contexts.

Remark 3. The ABC decomposition is certainly one of the most basic in
combtnatorics and has been used by a number of mathematicians to
generate various refinements of the Eulenan numbers. Although it would
be difficult to give a complete set of references, the influence on the
present paper by the works of Foata and Schutzenberger [12, 13], Frani;on
[16, 17], Viennot (17,35], and, 1n particular, by the work [4] of Bergeron and
Reutenauer, should be acknowledged. In fact, the generation of several
refinements of the Eulenan numbers in [4] provided the direct stimulus for
this paper.

Remark 4. Rather than working with recurrences, the modem school of
combinatorics [23, 24, 26, 28, 29, 30] derives a functional or differential
equation for the generating series directly from the decomposition being
considered. For instance, using the language of UOAM [24, 29, 301, if L
denotes the species of lists on I (nearly ordered sets, then decomposition
(1.3) may be written in the compact form

(1. 10)

Furthermore, if

(1. 11)

L'=L4

L(x):- Z Ln xn/n!
' n>o

denotes the exponential generating series of the species L, then (I. )O)
implies immediately that

C. 12) L'(x)=L2(x)

which IseQutvalentto(l. l. a).

Certainly, tttis derlvatlon or (1, 12) Is much clearer and more direct
than the one given In (1.9) or (1. 1 a). However, It Is not clear to what
extent the generality of Theorem (3. 1) can be lifted to the level or
generating series, and, for this reason, the focus of this paper will be on
recurrences. A starting point for such a lifting perhaps lies In the theory
of non-commutative generating functions as developed by Longtfn (311 In
the study of descent set problems.
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2. Preliminary definitions and facts. Throughout this section, D
wi1) be an n element set of integers. The notions of descent set, "cycle"
type, and three letter patterns are defined as follows: The set of descents
and the number of descents of a permutation a e L[D] are respectively
defined to be

Des((7):'{i;(7j>ff)+), 0< 1 <n}

and

des(a) = |Des((T)|.

As an example, for a in (1. 5), note that Des(o) = {2, 5, 7} and des((i) = 3. For
later use, observe that for ff   L[C] as factonzed in (1. 3) we have

(2. 1) (a) Des(a)={i+1 :i Des(p)} <fk=0

(b) Des(a)={k}UDes(a)U{i+l<+l;i Des(p)} if0<kin.

Because of a certain incompatibility with the ABC decomposltion, the
notion of a cycle in a pemutation will be replaced by the enumeratively
equivalent notion of a left-to-nght (or nght-to-left) minimum component
[321, which is compatible with (1. 3): An integer ffj in the list o-   L[D] is
said to be a left-to-rlght (respectively nght-to-left) mlntmum If o'j > Oj
for 1 ii <j (resp. o-j <(T) for j < tin). In the terminology of [7], a
left-to-rlght minimum would be referred to as a left lower record. In
terms of the associated ABC, the left-to-nght (resp. right-to-teft)
minfmums of o- correspond to the labels of the vertices on the extreme
left(resp. right) branch. For instance, in (1. 6) the left-to-nght minimums
of cr are {1, 2} and the rfght-to-teft minlmums are {1 ,3, 5}.

. The unique factonzation of a e L[D] as

(2, 2) ff a W| WIW2 . w

where each sublist w,, 1 I 1 ij, begins with and contains only one
left-to-right minimum is referred to as the left-to-nght minimum
component factonzation of ff. For a in (1. 5), we have o- = w, w^ where

w, = 26andW2 = 147385.

On the other hand, the factorization

(2, 3) a-v, V2... Vr

where each sublist Y] ends with and contains only one nght-to-left
minimum will De referred to as the nght-to-left minimum component
factonzatlon of a. For a In (1. 5), observe that ff =v, v^ v^ where
v, - 261, v^ ' 473. andv3 ° 85-

Note that, in the corresponding ABC, each left-to-nght (resp.
right-to-left) minimum component corresponds to a vertex h on the
extreme left (resp. right) branch together with the upper right (resp. left)
subtree attached to h.

In order to keep track of the minimum component type of o- e LID], the
statistics

and

-en(ff) := |{w : w is a sublist tn (2. 2) of length i}|

r^Kff) := |{v : v Is a sublist In (2. 3) of length i }|
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will be used. In (1.5), -Cr2(o') = I and r^3(ff) = 2. Again for later use, note
that for ff = ocmp as in (1. 3) we have

(2. 4) (a) mp Isa left-to-rfghtmln. component of length n-k+1

(b) oem fs a right-to-left min. component of length k+ 1.

As in 133], an ordered triple d, j, h) where l^f <j <hin is said to tie
a 2i3patteminff6L(D]ifo-j<o', «7^andff)iO'pforfir^h. The tDple
(4, 5, 7) is just such a pattern for cr in (1. 5). Similarly, d, j, h) is said to
be a 312 pattern of a ffo-, <a^ < T) and CT( ̂ o-r for i iri h. The
statistics defined by

and
2)3(0-) ;= |{T : T Isa 213 pattern in a})

312(0-) := |(T: T Isa 3i2 pattern In o-}|

will be utilized to record the number of 213 and 312 patterns in (T.

For A and B two disjoint sets of integers, the number of inverslons
from A to B is defined to be

lnv(A, B):= |{(l, j):ieA, j B, i>j}|.

It is not difficult to verify that the numbers of patterns in 7 e L[C1 are
related to those of a   L[A] and p   UBl in (1.3) according to the
relationships

(2.5) (a) 213((7)°213(a)^213(p)»k(n-k)-lnv(A, B)

(b) 312(ff) = 312(a) + 312(p) + lnv(A, B).

The various q-analogs which appear in later sections arise not only in
connection with the previously described patterns but also in connection
with the well known statistics defined on (7   L[D] by

maj(cr):- ^ '
I e Des(o)

and

inv(a):' |((i, j): I li <jin, o', > o'j}),

which are respectively known as the major index and inversion number In
the setting of (1 .3) we have

(2.6) (a) inv(<r) = k + inv(a) + inv(p) + lnv(A, B)

(b) maj(ff) = k + maj(a) + maj(p) * (k+1) des(p).

Some rudiments of the q-calculus [2, 27] will be needed. The q-analog,
q-factonal, and q-binomia1 coefficient of a non-negative integer n are
respectively defined to be

(n)q := I * q+q2+... * qn-1

(n)ql:=(l)q(2)q... (n)q

C;), :'(n)q'/(l<)q!(n-k)q!
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where, by convention, (0)q :. 0 and (0)q!:° 1. The usual two exponential
functions in this setting are

(2. 7) (a) Exq(x):= S qn(n-')/2 xn / (n)q!
n^.0

(b) exq(x) := S xn / (n)ql
n>.0

whlcn have the infinite product expansions

(2. 8) (a) EXQ(X)= TTD+(1-q)xqk]
k>.0

(b) exq(x)= H [I -d-q)xqk]-'
k>.0

forO < q < 1 (see [3, p. 191). The q-exponential generating function F(x) of a
q-sequence fpCq) is defined as

(2. 9) F(x):' S fn(Q) xn / (n)q!
n^.0

and the q-derivative of F(x) is given by

(2. 10)

It )s not dirricutt to show that

(2. 11)

[d/dx]F(x):= F<X)-F(X<1) ,
(l-q)x

ld/dx]F(x):= 2:. f^, (q)xn/(n)ql.
n^.0

In §6, the left-to-right and right-to-left minimum component
factorizattons give rise respectively to the q-separable differential
equations

(2. 12) (a) [d/dx] F(x) = W(x) F(xq)

(b) [d/dx] G(x) = W(xq) G(x).

The solutions of these equations are given by

(2. 13) (a) F(x) = F(0) TT [1 ̂  0-q) xqk W(xqk)]
k^i

(b) G(x) = G(0) ft (1 - (I -q) xqk W(xqk+')]~ '
k>.0

provided that 0 < q< 1. The proof of (2. 13a) is straightforward and goes as
follows: By (2. 10), equation (2. 12a) may be rewritten in the equivalent
form

F(x)=F(xq)[1 ^O-q)xW(x)],

which, when (terated, yields (2. 13a). The proof of (2. 13b) is similar

For a fixed set D of n fntegers, the fact (see [23, p. 98]) that

(2. 14) Sqlnv(A-B)= (", ),.

where the sum Is over all ordered pairs (A, B) such that JA| = k and
A+ B = D, will be crucial 1n the proof of Theorem (3. 1).
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3. The master recurrence. The parameters Tj := (t^j, t^+j, 134. j,... ),
^ := (Yp Y2- Y3- .. ) and z := (z|- Z2' Z3- - ) are respectively associated
with the descent set, the left-to-right minimum components, and the
right-to-left mmimum components of a permutation o e L[D] according to
(3. D below:

(3.n (a)

(c)

.

Des(o-) "
'j n

6 Des(o)
t>-j

(b) Y^(ff):° FT yi^l(ff)
Ill

7^(0) .
.-nz,

(>-'

r-EKff)

By convention, an empty product wi1) be equal to I. For convenience, an
expression of the form Z :° I will mean that Z):= 1 for )i 1.

For 0 an n element set of integers, the expression L^(u, v, p; T,, Y, 2)
wll! De used to aenote the generating polynomlal

(3. 2) ^ y213(o) y3)2(a)p1nv(o-)yDes(o-)Y-tr(cr) 2^(0")
oeL[D)

for permutations by patterns, inversions, descent set, and minimum

components. Note that Ln(u, v,p; Tj, Y, 2) is indeed well defined since (3. 2)
depends only on the cardinal ity of D.

For expedience, the parameters u,v, and p will sometimes be

suppressed. For Instance the symbol Ln(T|, Y, Z) will occasionally be used
to denote the polynomlal defined In (3. 2). Trie main theorem of this paper
may now tie stated and easily provea

Theorem 3. 1, The polynomlal defined In (3. 2) sattsftes the following
'master" recurrence:

n

(3. 3) L^, (TQ. Y. Z) = St;), F(k) L^TO. Y, 1) L^(T^ ,. 1, Z)
k=o

where Q := pvu~' , F(k) := ut<(n'k) pk t^ yp_^ , 2^1, to := 1, and LQ := 1.

Proof. With respect to the ABC decomposition of a e LtC] given in 0.3), it
is clear from (2. 1 ), (2. 4), (2. 5), and (2. 6) that

(3. 4) (a) ToDes((7). ToDes(a)^T^, Des(p)

(b) Y^(T^yn. ^, YJ>['(a)

(0 Z^((7)=z^, ZrJ!(P)

(d) u213(a) , y213(oc) ij2)3(p) yk(n-k) y-lnv(A, B)
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(g) y312((7) , y312(a) y31 2(p) ylnv(A, B)

^0 pinv(o-) ^ pk pjnv(o() pJnv(p)plnv(A, B)

Placing the expressions u213((T), v312<ff), p1nv(a), TQDes((T), Y-el"(ff), and
^r-e(a) , ^to denvation (1. 9), making use of the identities in (3. 4),
regrouping terms appropriately, and, finally, utilizing (2. 14) with
q: = pvu-l yields (3. 3).

4. Generalized Catalan numbers It is known [25, 33, 34] that, for a

fixed T 6 (213, 312}, the number of permutations a   L[n] that have no r
patterns is equal to the Catalan number C^. Thus, to obtain recurrences
for generalized Catalan numbers one only needs to set u :=0orv := 0 in
(3. 3). Three such recurrences, which respectively define the first and
second p-Catalan numbers of Riordan and Carlitz [5] and a (t, r)-Catalan
number of Furlinger and Hofbauer [18], are presented in Coro1 lanes (41),
(4. 2), and (43). It should be remarked that the combinatonal setting used
here differs from the models in [5, 18].

Noting that (1) if q:= 0 then the q-binomflal coeffident of n equals 1,
and that (2) there is no problem 1n setting u := 0 in (3.3) since the
q-binomial coefficient of n 1s a monic polynomial of degree k(n-k); the
following consequences of (3. 3) become immediate:

Carol) lan/41. Let C^p) := Lp( 1, 0, p, 1, 1, 1). Then

n

Cn., (P)=SPkCk(p)C^(p)
k'O

where C (p):- 1.
0

Corollary 4, 2.. Set Cp(p) := L^O. I.p; 1, 1. 1). Then

Cn., (p)'Z P(k+i)(n-k)Ck(p)c^(p)
k=0

where CpCp) := 1

Corol lary 43. Define K^t) := LpC 1, 0, 1; TQ, ), I) in the case when t, := tr' for
1). ]. Thus,

Kn(t) a Z tdes(T) rmaJ<CT)

where the summation is over a e L[n] that have no 312 patterns. From
Theorem (3. 1) it follows that

n

K^, (t)=Kn(tr)^t S rJKj(t)Kn_j(trJ*1)

with the initial condition KQ := 1.

The set of arbres binaires croissants associated to Corollanes (41).
(42), and (43) are easily described. For instance, setting v :° 0 selects
the subset of ABC's that satisfy the following condition : If h is any
vertex in such a tree and A^, (resp. B^) is the set of vertflces. in the upper
left (resp. right) subtree attached to h, then inv ̂ ,B^ = 0. Such a tree Is
sketched in (4;).
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(41)

Note that each ABC satisfyin'] the condition lnv(A^, B^) = 0 for all h is
uniquely labelled by what is commonly known as prefix order. Thus, the
act of removing the labels is a bijection from the set of ABC's with no
3i2 patterns to the set of unlabelled binary rooted planar trees. The
latter set is a well known combinatona) mode) of the Catalan numbers. Of

course, the ABC's corresponding to setting u :° 0 are just the planar
reflections of the type sketched in (41).

For further details concerning generalized Catalan numbers, the
interested reader is referred to [5, 18].

5. Descent set results. By specializing the parameter T), it is
possible to obtain from Theorem (3. 1) a recurrence relationship for any
enumerative descent set problem on permutations. As examples, the
Eulenan polynomlals and the Euler numbers are considered in this section.

TheEulenanpolynomia1[12]iscombinatorial1ydennedtobe

(5. i) ^ tdes(o) .
a e L[n]

Corollary (5. 1) below defines Gessel's [20] (p, r)-ana1og of the Eulerian
polynomials fn terms of the major index and inversion number. Of course,
when p :' \ and r :- I the recurrence relationship given in Corollary (5. 1)
reduces to (1. )b).

Corollary 5, 1. Let A^t):-Ln(l, 1,p; TQ, I, I) in the case when t, :° tr( for
ill. Thus.

tdes(ff) pinv(a) pmajta) .
(T e L[n]

In this setting, Theorem (3. 1) reduces to

n

A^, (t)=A, (tD. t S Pkrl< (^pVt)A^(trkt1)
k=l

where AQ:= 1.

The Euler number E^ of Andre [1] Is combinatorlally defined to be the
cardlnallty of the set of "down-up" permutatlons In L[n], that Is,
permutations o e L[n] with

(5. 2) Des(ff)={l,3,5...., m}

where m Is the greatest odd integer less than n. To obtain a recurrence for
the Euler numbers, one needs to extract the appropriate terms from (3. 3).
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This may be done by setting t^, :- Ofor il t, t2)+] :" t for i 10, and then
inductively extracting the coefficient of maximum degree in t from
recurrence (3. 3). Note that when this done, only odd indices remain in the
summation in (3. 3) since t^, := 0 for ill and IQ := 1. A recurrence for the
p-Euler numDers or [15,20] is given in the following corollary:

Corollary 5. 2. Set t^, :=0 for 12. 1 and ̂ , :=t for li 0. In this case, let
Ep(p) denote the coeffident 1n Lp( 1, 1 ,p; TQ, I, 1) of maximum degree in t. It
then follows from Theorem (3. 1)that

, (p) : z
k odd

pk(;), Ek(p)E^(p)

where EQ:= 1 andE) := 1.

The trees associated with Corollary (5.2) are well known and may be
described as follows: Since k is odd in the summatlon, and therefore In
the ABC decomposition, it inductively follows that the left upper subtree
attached to a non-leaf is non-empty. Furthennore, as t^j:= 0 for i ^ 1, the
right upper subtree attached to a non-teaf (except perhaps the non-leaf on
the extreme right branch) ts also non-empty. Thus, In this case, the ABC's
are complete (or nearly complete).

From the derlvatlon of Corollary (5. 2), It Is clear that one can obtain a

recurrence relationship for the number A(n; d|,d^,..., d^p) of permutations
a e L[n] having a fixed descent set {d| < d^ < ... < d^} by simply extracting
the appropriate terms from Identity (3. 3). This is left as an exercise. For
an explicit formula forA(n; dpd^,... , d^) see [21].

6. Minimum component results. Analogs of results concerning
permutations by cycle type may be obtained from Theorem (3. 1) by
specializl. iig either the parameter Y or the parameter Z respectively
associated with left-to-rlght and rfght-to-Ieft mfnimum components.
After the denvatfon of two p-exponential functions for permutations by
minimum component "type", the classic enumeration problems concerning
the Stirling numbers of the first kind, derangements, and Involutlons are
considered in Corollaries (6. 1 ), (6. 2) and (6. 3). It should be noted that part

(d) of Corollary (6. 1 ) defines Gould's (22] p-5tirl1ng numbers of the first
kind and that Corollaries (6. 2b) and (6. 3b) respectively give the
recurrences for the p-derangements and the p-involutlons that appear in
[32].

Let LRC^CY):° Lp( 1, 1 , p; 1 ,Y, 1) and RLCp(Z):- LpC t, 1, p; I, I ,Z). From the
fact (see [3, p. -41] that

S plnv(a) = (n)pl
7   L[n]

and from (3. 3) it follows that

(6. 1) (a) LRCn, , (Y) « ^ pk y^_^, (^ )p (n-k)p! LRC^(Y)
k-0

(b) RLCn,, (Z)=I: pkz^, (^), (k)plRLC^(Z)
k=0
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where LRCQ := RLCQ := 1. If LRC(x; Y) and RLC(x; Z) denote the respective
p-exponentia) functions (see 2. 9) of the p-sequences defined in (6. 1), then
it is not difficult to show that

(6. 2) (a) [d/dx] LRC(x; Y) = J(x; Y)LRCtxp; Y)

(D) [d/dxl RLC(x; Z)= J(xp; Z) RLC(x; Z)

where q := p in (2. 10) and

J(x;Y):= S yp,, xn .
n^O

By (2. 13), the solutions of the equations In (6. 2) are

(6. 3) (a) LRC(x;Y)= n [I+()-p)xpkJ(xpl<. ;Y)]
k>.o

(b) RLC(x;Z)= TI [)-(t-p)xpl<;J(xpl<+';Z)r1
k?:0

which provide p-exponential generating functions for permutations by
minimum component types. As one might expect, the functions in (6. 3)
may in a sense be viewed as respective compositions of the two basic
p-exponential functions in (2. 8) with the function J. As corollaries of
(6. 1) and (6. 3), we have:

Corollary 6. 1 (Stinina numbers of the first kind). Let ̂ rs^y) :' LRC^Y)
when y, := y and let r^(z) := RLC^Z) when z, := z. Then

(a) £rs^ ,(y) = y S pk (n^ )p (n-k)pl ̂ (y)
k=0

n

(b) -Ers^, (y)= TT lyPk+(k)p]
k=0

(0 ^s^i(z)=z S Pk < ̂ )p (K)p'^Sn-k(2)
k=0

(d) r^, (z)= H [z<p(k)p1
k=0

where ̂ (y) := ̂ SQ(Z) := 1. Furthermore, if ̂ s(x) and r-Cs(x) are the
respective p-exponentlal generating functions 1n x for the p-seouences or
(a) and (c), then

(e) £rsM= H (I+(!-p)xpky(l-xpk)~1]
10.0

(f) r-es(x)= n (1-(l-p)xpl<z(l-xpk+l)~']~1 .
KiO

ProoF Parts (a), (c), (e), and (f) are obvious in view of (6. 1) and (6. 3). The
following calculation shows that (a) implies (b):
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^Sn., (y)=y Z ok (", )p (n-k)p!-ers^y)
k=0

n-1
"-^ nk^-l-t. ypn ̂ s^(y). y (n)p S ( \-1 )p PK (n-1 -k)p! JTs^(y)

k=0

' ypn -Ers^y) + (n)p -Ers^y)

= irsn(y) [ypn ̂ (n)pi = H [ypk + (kip] .
k=0

In a similar manner, (d) follows from (c).

Corollary 6. 2 (Derangements). Let LRD^ := LRC^Y) when Y] := 0 and y, :=1
for i > I. Further, let RLDp, :' RLCp(Z) when z, :' 0 and z, :' 1 fori > 1
Then, for n 1 1,

n-1

(a) LRDn,, ' Z pk (^)p (n-k)p! LRD^ = (n)p [LRDn ̂ pn-' LRDn_, ]
k=0

n

(b) RLD^, = S pk (;), (k)p! RLDn^ = P<n)p tRLD^ - RLD^.,]
k=l

(c) LRD(x)= ft [I *(l-p)x2p2k(1-xpk)-1]
k>.0

(d) RLD(x) = FT [1 - (I -P)x2 P2k+1 (1-xpk+ ')"' ]~'
k>0

where LRDQ := RLDQ :=1, LRD| := RLD, := 0. and LRD(x) and RLD(x) are the
respective p-exponential generating functions.

Corollary 6. 3 (Involutions). Let LRIp :. LRC^(Y) when Y] :- y^ :- I and
y, := 0 for i l 3. Also, let RLI^ := RLC^tZ) when z, := z^:' ! and z, ;= 0 for
i 2. 3. Then, fom 11,

(a) LRI^i=pnLRIn^pn-'(n)pLRIn.,

(b) RLIn,, =RLI^p(n)pRLIn_i

(c) LRI(x)= ft [1 +(l-p)xpk(l^pk)]
ki0

(d) RLI(x)= H [1 -(l-p)xpk(1 ^xpk+1)r1
k>0

where LRIQ := LRI| ::= RLIQ := RLI] := 1, and, LRKx) and RLI(x) are the
corresponding p-exponential generating functions.
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The ABC's will only be described here for Corollary (6. 2a). Setting
Y( := 0 selects the ABC's satisfying the following property: If h is a
vertex on the extreme left branch of such a tree, then the upper ngnt
suDtree attached to h must be non-empty. Such a tree Is sketched in (6. 4)
below:

(64)

An example of a tree that does not satisfy this condition is sketched in
(41 ). The right upper subtree attached to the vertex labeled 3 in (4 I) is
empty.

7. Beneralized Hermjte polynomials. It is a well known fact
(8, 11, 14] that the Hermite polynomials have a combinatorial interpretation
in terms of weighted involutions. To be specific, a 1-cycle (resp. 2-cycle)
is given the weight y (resp. -1), Thus, by assigning the appropriate
weights to minimum components, recurrences for the Hermite polynomials
may be easily obtained from (3. 3).

Moreover, in leaving the parameters u, v, and p in the recurrence,
several q-ana1ogs of the Hermite polynomials arise, including both types
considered by Cigler [8]. In fact, the combmatonal setting used here
provides several new interpretations of Cigler's q-Hermite polynomials.
The following corollary 1s an immediate consequence of Theorem (3. 1):

Corollar/ 7. 1 (Hermite polvnomials). Let LRHn(u,v, p; y) := L^(u,v,p; 1,Y, 1)
when Y| := y, y^ := -1, and Y) := 0 for i i 3. Also, set
RLH^u.v.p; z) := Ln<u,v, p; 1, 1,Z) when Z] :=2, z^ := -1, and z, ;= 0 for ) 2. 3.
Then, for n i 1,

(a) LW^, (y) ' p"y LRH^y) - pn~' un~' (n)q LRHn_, (y)

(b) RLH^^, (z) ' z RLHp(z) - pu"'' (n)q RLH^., (z)

where the parameters u, v, and p have been suppressed In the expressions

LRH, (u, v,p; y) and RLHj(u,v,p; z), and, where LRHy := RLHQ :' I, LRH] := y,
RLH| := z, andq:=pvu ).

The recurrence relationships for LRHp(I, v, l; y) and RLH^(u, u,u; z),
which may be obtained from Corollary (7. 1), respectively derine Clgler's
first and second q-Hemnlte polynomfats. It Is Interesting to note that
Cigter's q-Hermtte polynomlals or the first kind arise in 3 other ways In
this setting: The seouences LRH^v, I, I; y), RLHp(l,v, );y), and
RLHptv, 1, 1; y) have the same recurrence as LRHp, ( I ,v, I; y).

The exponential generating functions for the q-sequences of Corollary
(7. l) may be derived In some cases. For instance, using calculations
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similartotheproofor(2. 13), one obtains

(7. 1) (a) LRH(x) = H [1 »(1 -p)xpk (y-xpk)l
kl0

(b) RLH(x)= n [l-(l-pv)xpkvk(z-xvkpk+t)]-l
k>0

(0 RH(x)=n [t-d-u)x2u2k+l ] [1-d-u)xzukr'
k>0

where LRH(x), RLH(x), and RH(x) are the respective q-exponential
generating functions in x for LRHp( I, I ,p; y) with q := p, RLHp( 1 , v, p; z) with
q := pv, and RLHp(u, u, u; z) with q := u.

The trees corresponding to Corollary (7. la) are the so-called "combs"
[35] as sketched below:

(7.2)

That Is, each upper right subtree attached to a vertex on the extreme left
branch has at most I vertex. Of course, the ABC's associated with
Corollary (7. 1b) are just the planar reflections of those of the form
sketched in (7, 2).

8. Double minimum component results. In [7], Carlitz and Scovllle

studied a sequence of numbers that may be thought of as "double" Stirling
numbers of the first kind. By simultaneously working with Y and Z in (3. 3),
the result of Carlitz and ScoviDe may be extended in a number of
directions. Corollaiy (8. 1) provides a q-ana1og for the previously
mentioned sequence of [7]. As Corollaries (8. 1), (8.2), and (8.3) are
immediate in light of Theorem (3. 1), they are stated without further
comment

Corollary 8. 1 (Double Stirling numbers of the first kind). Let
DSn(y,z):° Ln< I, I ,p; 1 , Y, Z) when y, :3 y and Z| :-z for fl 1. Then

n

DSn,, (y. z) = yz S Pk (; \ ^(y) ̂ -^z)
k=0

where DSQ := 1, and, ^s, (y) and r^Sj(z) are the polynomtals defined In
Corollary (6. 1).
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Corollary 8.2 (Double derangements). Let DDp, ;- L^( 1, 1 ,p; I ,Y,Z) when
y 1 := z) ;= 0 and Y) := Z) := 1 for 1 i 2. Then, Tor n >. 2,

n-1

DD^, = Z Pk(;)pLRDkRLD^
t(=l

where DD() := I, DD] :s DD^ := 0, and, LRD, and RLD, are defined in Corollary
(6. 2).

Corollary 8. 3 (Stirling derangements). Let SDp(y) := Lp(l, l,p; 1,Y,Z) when
Y) :=y Con 2. 1, Z| := 0, and Z| := 1 for i >. 2. Then, for n i I,

n

SDn. |(y)-y 2 pk(^), -ers^y) RLD^
k=l

where SOQ ;= I, SO, := 0, and, ̂ rS)(y) and RLD| are defined in Corollaries
(6. 1) and (6. 2).

9. Set partition results. By simultaneously specializing the
parameters Tj and Y (orTj and Z), Theorem (3. 1) will yield the solution to

the problem of counting partitions of a set C by type. The focus of this
section will be on the denvatlon of the q-exponentfal generating functions
for some analogs of the classic Bell polynomfals as defined in 19].

There are two possibilities for obtaining a recurrence for the Bell
polynomials from Theorem (3. 1):

(9. 1) (a) Extract the terms from (3. 3) in which the degree with
respect to TQ is equal to the degree with respect to Y
minus 1.

(b) Extract tDe terms in (3, 3) In wnicri the degree wltn
respect to TQ plus the degree with respect to Z Is equal
to (n + I).

However, the following comblnatorial extractions are perhaps more
flluminatfng. To do this, it is Important to keep In mind that oc and p of
(1. 3) respectively give rise to the terms L|( and i^.^ in (3. 3).

First, for D a fixed set of n integers, let LRT(D] denote the set of
permutations a of D that have ABC's that satisfy the following condition:

(9. 2) Every upper right subtree attached to the extreme left branch
looks I ike a line segment.

For example, the permutation c = 568942317 e L[9) 1s an element of LRT(9]
since the corresponding ABC sketched in (9. 3) satisfies condition (9. 2).
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(9.3)

Note that each o- e LRT[D] may be associated to a partition of D in the
following natural way: Each right "tilted" line segment of the
correspondfng ABC may be viewed as a subset In the partition of D. For
instance, the'tree in (9. 3) corresponds to the partition {1, 7}, (2, 3), {4}, and

), 6, 8,9}of{), 2,..., 9}. Furthermore, note that the monomial
y Des(ff) Y-Cf~(o) = t4t5t7y, y22y4 for o- of (9. 3) Is of the type described
in (9. la).

Now consider the generating polynomial for weighted "left-to-nght"
partitions of the set D defined to be

(9. 4) LRPn(Tj.Y)- S v312(T)plnv(a)^Des(a)Y^cD
where the summatfon Is over a e LRTIDl To extract a recurrence from

Theorem (3. 1) for this polynomia), begin by observing that LRP^Tj. Y) is
equal to the sum of the terms In Lr, (l, v, p; Tj, Y, l) that correspond to
pemutations having ABC's of the form sketched in (9. 3). In this setting
p   L[B] in decomposltion (1. 3) Is restricted to the unique Increasing list
of B. Thus, the only term to be extracted from L^-K (1 ,v, p; T|(+), I , 1) In
(3. 3) Is 1. Theorem (3. Dttien yields

(9. 5) LRPn. i (TQ.Y) = S Pk tk ̂ ^, ( ^, LRP|, (TO, Y)
k=0

where LRPQ := 1 and q := pv. Note that (9.5) Is precisely the recun-ence
that is obtained when one extracts from (3. 3) the terms that satisfy
(9. 13).

On the other hand, consider the generating polynomial for weighted
"nght-to-left" partitions of the set D defined to be

(9. 6) RLPn(Tj, Z):' ̂  v3 '2 Pfnv((T) TjDes(a) Zr'/e(<7)

where the summation is over o-   L[D] having ABC's which are planar
reflections of the type sketched In (9. 3). In this case, a   L[A] in (1. 3) Is
restricted to the unique decreasing list of A. Thus, extracting the
appropriate terms from (3. 3) yields

n

(9. 7) RLP^, (TQ, Z)- S PI<Zk-l (^Vlt2-tkRLPn-k(T^|, Z)
k»0
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where RLPQ ;= I and q := pv. Note that the permutation corresponding to
the planar reflection of (9.3) gives rise to a monomlal of the form
(lescnbedln(9. lb).

Recurrences for generalized Bell polynomtals may now be obtained
from (9.5) and (9. 7) by setting TQ := 1. This Is done In the following
corollar/:

Corollary 9. 1. Let LRBn<v, p; Y) :° LRPn<1,Y) and RLBn(v, p; Z) :- RLPn(1, Z).
Then recurrences (9. 5) and (9. 7) respectively reduce to

n

(a) LRBn,, (v,p; Y) = ^ Pk Yn-k^ 1 ("k )g LRB|<(v,p; Y)
k=0

n

(b) RLB^, (v, p; Z) = S Pk ZK. ) (^ )gRLBn_,<(v, p; Z)
k=0

where LRBQ := RLBQ := I and q ;= pv.

Note that the recurrences for LRBnO. t; Y) and RLBn(l, 1, Z) each
define the classic BeH polynomials. Further, observe that LRB^(v, p; Y)
when y, :=y for li l and that RLBp(v,p; Z) when z, :=z for 1i 1 both
provide Q-analogs of the Stirling numbers of the second kind.

As before, using calculations similar to those used in proving (2, 13),
some q-exponentia) generating functions may be obtained for the
sequences in Corollary (9. 1). Let LRB(x), LB(x), and RLB(x) denote the
q-exponential generating functions in x respectively of LRBp(I, p; Y) with
q :s p, LRB^v, 1 , Y) with q := v, and RLB^v, p; Z) with g := pv. Then

(9. 8) (a) LRB(x) = FT [I ̂  (1-p) xpk W(xpk; Y)]
k^O

(b) LB(x)= f[ [I -d-v)xvkW(xvk; Y)]-l
k>0

(c) RLB(x) = ft [1 -d -pv) xpk vk W(xvk pk+'; Z)]"
k>0

where

Wx;Y):- Zyn. )Xn/(n)q'.
n>.0
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