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Résumé. En utilisant la décomposition des permutations en “arbres
binaires croissants”, on établit une formule de récurrence qui donne des
généralisations et plusieurs g-analogues des polyndmes eulériens, des
nombres d'Euler, des nombres de Catalan, des polynémes de Stirling de
premiére et de deuxiéme espéces, des polyndmes d'Hermite, des polyndmes
de Bell, etc. Dans plusieurs cas, les séries génératrices des g-analogues
obtenus peuvent étre exprimées sous forme de produits infinis.

Abstract. Using the "arbre binaire croissant” permutation decomposi-
tion, a relatively simple recurrence relationship is derived that provides
refinements, generalizations, and several g-analogs of the Eulerian
polynomials, the Euler numbers, the Catalan numbers, the Stirling
polynomials of both the first and second kinds, the Hermite polynomials,
the Bell polynomials, and others. In several cases, the generating
functions for the g-analogs may be expressed in the form of infinite
products.

Avec 1'appui financier du programme FCAR (Québec, EQ 1608) et du CRSNG
(Canada, AS660).

1. Introduction The similarity in form of the following recurrence
relationships, which respectively define (n+1)!, the Eulerian polynomials,
the Catalan numbers, and the Stirling polynomials of the first and second
kinds,
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lies in the fact that essentially the same counting argument may be used
in deriving each one of them. The argument is elementary and is based on
the "arbre binaire croissant” permutation decomposition, henceforth
referred to as the ABC decomposition, which may be described as follows:

A permutation ¢ of a set D of n integers will be written as a list
0 =0y 0y..0,and the symbol LID] will denote the set of such lists. For

simplicity, LIn] will signify the set of lists of {1,2,..,n}.

For o € L[C] where C is a non-empty set of (n+1) integers, let (k+1) be
the unique index such that Ok+) is equal to the minimum element in C.

Further, let

(1.2) @ A:={o,0,,. Oy
)  B:= {0y, Opss, ..., Onet)

Then, the ABC decomposition of ¢ € LIC] is defined to be the unique
factorization of ¢ into the sublists indicated by

(1.3) g=omp

where o := 010y..0y € LIA]L, m := minimum element of C, and
B = Ohk42 0k‘3 0'n¢] € L[B]

The reason for referring to (1.3) as the ABC decomposition becomes
Clear i one views g = x m B geometrically as follows:

(1.9

[teration of (1.4) will produce a unique rooted binary planar tree in which
each vertex has a different label from the set C, such that the labels
appear in Increasing order as one moves Up and away from the root. This
unique tree is the so-called "arbre binaire crolssant” associated to ¢ as
described by Foata and Schutzenberger [13].  For example, the ABC
corresponding to

(1.5) ' 0 = 26147385 € L[8)
Is the following one:

(1.6)
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Note that, given any ABC, the corresponding permutation may be recovered
by projecting the labels of the vertices onto a horizontal axis in such 2
way that the left (respectively right) subtree above a vertex h falls to the
left (resp. right) of h.

The essential counting argument underlying the relationships listed in
(1.1) is exemplified by the derivation of recurrence (1.13) which goes as
follows: First, observe that (1.3) may be viewed as a bijection from L[C]
to the set of 4-tuples

n
(7 U {(AB; «,B) |A] =k, A+B=C\{m}, o € L[A], B € LB}
k=0

where |A| denotes the cardinality of the set A and A + B signifies the
disjoint union of A and B. Also, note that [LID)] depends only on the
cardinality of D. In fact, [LID])| = nl'if [D| =n. Then, if we let

(1.8) L, = Ll
the following calculation based on (1.3) and (1.7)

(1.9) le1= & 1= 2 2 > >

gellc] k=0 |A|=k o €L[A] B e€LIB]

establishes the fact that the recurrence for (n+1)!is indeed (1.1a). As will
become apparent later, to obtain the remaining recurrences of (1.1), one
merely places various restrictions and weights on ¢ and then uses the
same decomposition.

While it is interesting that the simple argument in (1.9) may be
modified and exploited in several settings, the remarkable fact is that the
ABC decomposition may be used to derive a single recurrence which
contains all of the relationships listed in (1.1). In fact, in addition to
containing all of (1.1), the “master” recurrence (3.3) given in Theorem (3.1)
of 83 provides refinements, generalizations, and several g-analogs of a
multitude of other recurrences pertaining to partitions of sets and to the

descent set, the inversion set, the pattern sets, and the cycle type of
permutations (see §2 for all definitions). Surprisingly, the proof of
Theorem (3.1) 1s not significantly more difficult than the one given for
(1.12) One begins by observing that certain permutation statistics are

compatible with the ABC decomposition and then just follows then through
(1.9).

The agenda for this paper is as follows: After providing the
necessary background in §2 and proving the master recurrence in §3, a

variety of corollaries to Theorem (3.1) will be discussed in sections 4
through 9.

Section 4 is devoted to the presentation of some of the generalized
Catalan numbers considered by Carlitz and Riordan [S] and by Firlinger and
Hofbauer [18].

In section 5, examples concerning the descent set of a permutation

are given. In particular, the (p,r)-Eulerian polynomia:s of Gessel [20] and
the p-Euler numbers found in [15,20] are considered.
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In sections 6 through 8, we present a number of recurrences which
pertain to what at this point are best described as “left-to-right” and
‘right-to-left” cycle type results on permutations.  Among the many
recurrences of these sections, one will find Gould's [22] p-Stirling
numbers of the first type, the p-analog of the number of derangements
given in [32], both of the g-Hermite polynomials of Cigler [8], a g-analog of
the double Stirling numbers considered by Carlitz and Scoville [7], and
others. Interestingly, the “left-to-right” and “right-to-left” cycle types
lead to two classes of infinite products that are, in a sense that will
become clear, complementary.

In the final section, results concerning  “left-to-right" and
‘right-to-left” partitions of a set C are considered.  Recurrence
relationships are given for new analogs of the Stirling numbers of the
second kind and of the Bell polynomials.

A few remarks are in order at this point:

Remark 1. In selecting and specializing the parameters in the master
recurrence to obtain the corollaries of sections 4 through 9, it should be
noted that one is at the same time choosing and placing weights on a class
of increasing rooted binary trees. Only in some cases will the particular
Class of ABC's be described, .

Remark 2. The approach used in this paper provides a common
combinatorial setting for many classic g-analogs that have previously
been studied in a variety of contexts.

Remark 3. The ABC decomposition is certainly one of the most basic in
combinatorics and has been used by a number of mathematicians to
generate various refinements of the Eulerian numbers. Although it would
be difficult to give a complete set of references, the influence on the
present paper by the works of Foata and SchUtzenberger [12,13], Frangon
[16,17], Viennot [17,35], and, in particular, by the work [4] of Bergeron and
Reutenauer, should be acknowledged. In fact, the generation of several
refinements of the Eulerian numbers in [4] provided the direct stimulus for
this paper.

Remark 4. Rather than working with recurrences, the modern school of
combinatorics [23, 24, 26, 28, 29, 30] derives a functional or differential
equation for the generating series directly from the decomposition being
considered. For instance, using the language of UQAM [24, 29, 30), if L
denotes the species of lists on linearly ordered sets, then decomposition
(1.3) may be written in the compact form

(1.10) L'=2
Furthermore, if

(m LOO:= 30 Ly x/ni
"0

denotes the exponential generating series of the species L, then (1.10)
implies immediately that

(1.12) L'tx) = 12x)
which Is equivalent to (1.1.3),

Certainly, this derivation of (1.12) is much clearer and more direct
than the one given In (1.9) of (1.12) However, It i1s not clear to what
extent the generality of Theorem (3.1) can be lifted to the level of
generating serles, and, for this reason, the focus of this paper will be on
recurrences. A starting point for such a 11fting perhaps 1ies In the theory
of non-commutative generating functions as developed by Longtin [31] in
the study of descent set problems.
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2. Preliminary definitions and facts Throughout this section, D
will be an n element set of integers. The notions of descent set, “cycle”
type, and three letter patterns are defined as follows: The set of descents
and the number of descents of a permutation ¢ € L[D] are respectively
defined to be

Des(a) = {i: G(> Gjuy, O<icn}

and
des(c) = |Des(a)|.

As an example, for ¢ in (1.5), note that Des(g) = {2,5,7} and des(g) = 3. For
later use, observe that for ¢ € L[C] as factorized in (1.3) we have

(2.1) (@) Des(g) = {i+1:1 € Des(B)} ifk=0
(b) Des(q)={k}UDes(ax)U{i+k+ 1:i€Des(B)} if 0 <kn.

Because of a certain incompatibility with the ABC decomposition, the
notion of a cycle in a permutation will be replaced by the enumeratively
equivalent notion of a left-to-right (or right-to-left) minimum component
[32], which is compatible with (1.3): An integer ¢y in the list ¢ € L[D] is

said to be a left-to-right (respectively right-to-left) minimum If G > 0
for 1 < i < j(resp. g < gj for j <i<n) Inthe terminology of (7], a

left-to-right minimum would be referred to as a left lower record. In
terms of the associated ABC, the left-to-right (resp. right-to-left)
minimums of ¢ correspond to the labels of the vertices on the extreme
left (resp. right) branch. For instance, in (1.6) the left-to-right minimums
of ¢ are {1,2} and the right-to-left minimums are {1,3,5}

. The unique factorization of ¢ € L[D] as

where each sublist wj, 1 <1 < j, begins with and contains only one

left-to-right minimum is referred to as the left-to-right minimum
component factorization of . For ¢ in (1.5), we have 0 = w W where

W, =26 and w, = 147385,

On the other hand, the factorization

(2.3) g=VyiVo.. Ve

where each sublist v; ends with and contains only one right-to-left

minimum will be referred to as the right-to-left minimum component
factorization of ¢. For ¢ in(1.5), observe that g =v, v, V3 where

Vi ’261,\/2"473, andV3=85.

Note that, in the corresponding ABC, each left-to-right (resp.
right-to-left) minimum component corresponds to a vertex h on the
extreme left (resp. right) branch together with the upper right (resp. left)
subtree attached to h.

In order to keep track of the minimum component type of ¢ € L[D], the
statistics

2ri(0) := |{w : w is a sublist in (2.2) of length i}

and
r21(a):= |{v: v is a sublist in (2.3) of length i }|
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will be used. In (1.5), 2r2(g) = | and r23(a) = 2. Again for later use, note
that for ¢ = acmp as in (1.3) we have

(2.4) (@  mpBisaleft-to-right min. component of length n-k+ 1
(b)  om is aright-to-left min. component of length k+1.

As in [33], an ordered triple (i, j, h) where 1 <1 <¢j<h<nissaid to be
a 213 patternin g e L[D] if 0§ <0} <Gy, and gy<0p fori<r<h. The triple

(4,6, 7) is just such a pattern for ¢ in (1.5). Similarly, (i, j, ) is said to
be a 312 pattern of ¢ if crj ¢ 0n <0} and oj Lo fori<r<h The

statistics defined by

213(0) = [{t: T is a 213 pattern in o}
and

312(0) = [{t: T isa 312 pattern in o}

will be utilized to record the number of 213 and 312 patterns in .

For A and B two disjoint sets of integers, the number of inversions
from A to B is defined to be

Iv(AB):= [{(i,)): €A, jeB,i>j)}.
It is not difficult to verify that the numbers of patterns in o € L[C] are
related to those of o € L[A] and P € L[B] in (1.3) according to the
relationships
(2.5) @  213(6) = 213(cx) + 213(B) + k(n=k) - Inv(A,B)
() 312(0) = 312(x) + 312(B) + Inv(A,B).

The various g-analogs which appear in later sections arise not only in
connection with the previously described patterns but also in connection
with the well known statistics defined on ¢ € L[D] by

maj(@):= 5
i € Des(a)
and

inv(o) = [{(i,)): 1 <icjen o> oj}l,

which are respectively known as the ma jor index and inversion number. In
the setting of (1.3) we have

(2.6) (@  inv(g) =k + inv(e) + inv(B) + Inv(A,B)

(®)  maj(g)= k + maj(cc) + maj(R) + (k+1) des(p).

Some rudiments of the g-calculus [2,27] will be needed. The a-analog,
q-factorial, and g-binomial coefficient of a non-negative integer n are
respectively defined to be

()g=1+q sq2e .+ q"!

(n)ql = (1)q (2)q (n)q

n = -
Ky 2 (n)q! / (k)q!(n Kg!
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where, by convention, (0)q = 0 and (O)Q! = 1. The usual two exponential
functions in this setting are

(2.7) @ Exa:= 3 @250/ (gl
n>0

®  exq):= T x"/(n)gl

n0

which have the infinite product expansions

(2.8) @ Exa) =TT+ (1-q) xa¥]
k20

(b) exq)= TT (1 - (1-q)xa¥] !
k>0

for 0 <q< 1 (see[3, p.19]). The g-exponential generating function F(x) of a
a-sequence f,(q) is defined as

(2.9) Fx):= 3 1@ x /7 (n)g!
n>0

and the q-derivative of F(x) is given by

(2.10) [d/dx) F(x) = EQZJ]—'%@-
-q)X

It 1s not difficult to show that

211 (/X1 Fx) = 3 feq @XM/ (gl
n20

In §6, the left-to-right and right-to-left minimum component
factorizations give rise respectively to the gq-separable differential
equations
(2.12) (@  [d/dx] F(x) = W(x) F(xq)

(b)  [d/dx] G(x) = W(xq) G(x).

The solutions of these equations are given by

213 (a) F(x)=F(O)T[)[I*U-q)quwuqk)]
K
() G(x) = 6(0) kﬂ'oll - (1-) xq¥ wWixgk* hy!
>

provided that 0 < g < 1. The proof of (2.133) is straightforward and goes as
follows: By (2.10), equation (2.12a) may be rewritten in the equivalent
form

F(x) = F(x@) [1 + (1-q) x W(X)],
which, when iterated, yields (2.13a). The proof of (2.13b) is similar.

For a fixed set D of n integers, the fact (see [23, p. 98]) that
Inv(AB) ("
(2.14) 2 q = (g0

where the sum is over all ordered pairs (A,B) such that |A| = k and
A+ B =D, will be crucial in the proof of Theorem (3.1).
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3. The master recurrence. The parameters TJ = (tl*j' t2+1, t3+J: ),
Y=y, Y2, ¥3, . )and Z := (z4, 22, 23, .. ) are respectively associated

with the descent set, the lert-to—right minimum components, and the
right-to-left minimum components of a permutation ¢ € L[D] according to
(3.1) below:

(3.1) (a) TJDeS(G)I= ﬂ t“_]
i € Des(g)

(b) yﬂr(G) ‘= 'ﬂ' y’ﬁrl(ﬁ)
i1

(c) zMe0).. T 2,7 410)
21

By convention, an empty product will be equai to 1. For convenience, an
expression of the form Z := 1 wil] mean that z; := 1 for 1> 1.

For D an n element set of integers, the expression Ln(u,v,p; T},Y,Z)
will be used to denote the generatlng polynomial
(3.2) 5 u213(0) v312(a) pinv(c) TJDes(o‘) y2r(a) ZrAa)
g € L[D)

for permutations by patterns, inversions, descent set, and minimum
components. Note that Ln(u,v,p; TJ-,Y,Z) is indeed well defined since (3.2)

depends only on the Cardinality of D.

For expedience, the parameters u,v, and P will sometimes be
suppressed. For instance the symbol Ln(TJ,Y,Z) will occasionally be used

to denote the polynomial defined in (3.2). The main theorem of this paper
may now be stated and easily proven,

Theorem 3.1. The polynomial defined in (3.2) satisfies the following
‘master” recurrence:

n
(3.3) Lyt (T2 = 3¢ : )q F(k) L(To.Y. 1) Lk (Tke 1, 1,2
k=0 '

where q := pvy~ '. F(k) := yk(n=k) pk ty Yn-k+1 Zg+ 15 Lo = 1, and Lg=1.

Proof. With respect to the ABC decomposition of ¢ ¢ LIC] given in (1.3), it
1s clear from (2.1), (2.4), (25), and (2.6) that

(@) .
(3.4) (a) TODeS () TODes(oz) t Tee | Des(B)
(b) y£r(0) = Yn-k+l er(oc)
(c) ZFi(O’) = zk*] Zr,E(B)

(@ 4213002 213(c0) 213(8) k(n-k) -Inv(AB)

140



(e) y312(0) - y312(e) y312(B) yInv(A,B)
f) pinv(cr) - Pk Pinv(o:) Pinv(p) plnv(A,B)v

Placing the expressions y213(0) 312(0) pinv(a) TODes(cr)' y2r(@) ang

Z”(G) into derivation (1.9), making use of the identities in (3.9),
regrouping terms appropriately, and, finally, utilizing (2.14) with
g:=pVv u ! yields (3.3).

4 Generalized Catalan numbers. It is known [25,33,34] that, for a
fixed T € {213, 312}, the number of permutations g € L[n] that have no T
patterns is equal to the Catalan number Cn, Thus, to obtain recurrences

for generalized Catalan numbers oné only needs to set u:=0orv:= 0 in
(3.3). Three such recurrences, which respectively define the first and
second p-Catalan numbers of Riordan and Carlitz [5] and a (t,r)-Catalan
number of Furlinger and Hofbauer [18], are presented in Corollaries (4.1),
(4.2), and (43). 1t should be remarked that the combinatorial setting used
here differs from the models in [5,18].

Noting that (1) if g:= O then the g-binomial coefficient of n equals 1,
and that (2) there is no problem in setting u := 0 in (3.3) since the
g-binomial coefficient of n is a monic polynomial of degree k(n-k); the
following consequences of (3.3) become immediate:

Corolllary 4.1. Let C(p) = Ln(1,0,p; 1,1,1). Then

n
Cro ) = T 9K C(P) Cpog(P)
k=0

where C (p) = 1.
0
Corollary 4.2. Set cy(p) = Ln(0,1.p; 1,1,1). Then

n
&rs D)= Zo pk* =KD ¢ (p) i (P
k=

where co(p) =

Corollary 43. Define Kn(t) = L(1,0,1; To,1,1) in the case when t; = tr' for

i> 1. Thus,
Ko(t) = 5 tdes(a) -maj(o)

where the summation is over ¢ € L[n] that have no 312 patterns. From
Theorem (3.1) it follows that

n
Kne 1 (1) =Kn(tr) + £ 30 I Ky(t) Kn_j(trj‘ h
J=!

with the initial condition Ko =1

The set of arbres binaires croissants associated to Corollaries (4.1),
(4.2), and (4.3) are easily described. For instance, setting v := O selects
the sub_set of ABC's that satisfy the following condition : If h is any
vertex in such a tree and Ay, (resp. Bp) is the set of vertices in the upper
left (resp. right) subtree attached to h, then Inv (A;,B,) = 0. Such a tree is

sketched in (4.1).
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Note that each ABC satisfying the condition Inv(An,B,) = 0 for all h is

uniquely labelled by what is commonly known as prefix order. Thus, the
act of removing the labels is a bijection from the set of ABC's with no
312 patterns to the set of unlabelled binary rooted planar trees. The
latter set is a well known combinatorial model of the Catalan numbers. Of
course, the ABC's corresponding to setting u := 0 are just the planar
reflections of the type sketched in (4.1).

For further details concerning generalized Catalan numbers, the
interested reader is referred to [5,18].

5. D-Qﬁﬁi'lt_&ﬂ_m_iul_t_a By specializing the parameter TJ, it is
possible to obtain from Theorem (3.1) a recurrence relationship for any

enumerative descent set problem on permutations. As examples, the
Eulerian polynomials and the Euler numbers are considered in this sect{on.

The Eulerian polynomial [12] is combinatorially defined to be

(5.1) Z tdes(a) .
G €Ln]

Corollary (5.1) below defines Gessel's [20] (p,r)-analog of the Eulerian
polynomials in terms of the major index and inversion number. OF course,
when p := 1 and r:= 1 the recurrence relationship given in Corollary (5.1)
reduces to (1.1b).

Corollary 1. Let An(t):= Ln(1,1,p; T, 1,1) in the case when t, := tr for
12 1. Thus,

Apty= 57 tdes(a) pinv(o) maj(a) .
o €Ln]

In this setting, Theorem (3.1) reduces to

n
Ane 1 (D = Agttr e t 57 pk ek (0 Aty A bkt )
k=1
where Ag := 1.

The Euler number E, of André [1] is combinatorially defined to be the

cardinality of the set of “down-up” permutations in LIn], that fis,
permutations ¢ € L(n] with

(5.2) Des(a) = {1,3,5, .., m}

where m s the greatest odd integer less than n. To obtain a recurrence for
the Euler numbers, one needs to extract the appropriate terms from (3.3).
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This may be done by setting to; := Oforixl, tojq = t for i > 0, and then

inductively extracting the coefficient of maximum degree in t from
recurrence (3.3). Note that when this done, only odd indices remain in the
summation in (3.3) since t:= 0 for i>1andtq:= 1. Arecurrence for the

p-Euler numbers of [15,20] is given in the following corolary:

Corollary 5.2. Settyj:=0forix 1 andtyi, =t for 1> 0. Inthis case, let
En(p) denote the coefficient inLy(1,1,p; Tp,1,1) of maximum degree in t. It
then follows from Theorem (3.1) that

Ene1® = 3 oK (D) Eny®
k odd

where EO =1 and El =1,

The trees associated with Corollary (5.2) are well known and may be
described as follows: Since k is odd in the summation, and therefore in
the ABC decomposition, it inductively follows that the left upper subtree
attached to a non-leaf is non-empty. Furthermore, as to;= Ofori>1, the

right upper subtree attached to a non-leaf (except perhaps the non-leaf on
the extreme right branch) is also non-empty. Thus, in this case, the ABC's
are complete (or nearly complete).

From the derivation of Corollary (5.2), it is clear that one can obtain a
recurrence relationship for the number A(n; dy,do, ..., dry) of permutations

o € LInl having a fixed descent set {d; < d, < .. < dy,} by simply extracting

the appropriate terms from identity (3.3). This is left as an exercise. For
an explicit formula for A(n; dy,doy, ..., dm) see [21].

6. Minimum component resuits. Analogs of results concerning
permutations by cycle type may be obtained from Theorem (3.1) by
specializing either the parameter Y or the parameter Z respectively
associated with left-to-right and right-to-left minimum components.
After the derivation of two p-exponential functions for permutations by
minimum component “type”, the classic enumeration problems concerning
the Stirling numbers of the first kind, derangements, and involutions are
considered in Corollaries (6.1), (6.2) and (6.3). It should be noted that part

(d) of Corollary (6.1) defines Gould's [22] p-Stirling numbers of the first
kind and that Corollaries (6.2b) and (6.3b) respectively give the
recurrences for the p-derangements and the p-involutions that appear in
[32].

Let LRCH(Y) := Ln(1,1,p; 1,Y,1) and RLC,(2) := Ly (1,1,p; 1,1,2). From the
fact (see [3, p. 41] that

pinv(o) = (n)D!
g €Lln]

and from (3.3) it follows that

n

(6.1) @ LRCh (N =3 pKyppay (), (7Kl LRCLY)
k=0
n
() RLCy (D= T K70y (}), KR (D)
k=0-
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where LRCO = RLCO = 1. If LRC(x; Y) and RLC(x; Z) denote the respective

p=exponential functions (see 2.9) of the p-Sequences defined in (6.1), then
it is not difficult to show that

(6.2) (a) [d7dx] LRC(x; Y) = J(x; Y) LRC(xp; Y)
(b)  [d/dx] RLC(x; 2) = J(xp; 2) RLC(x; 2)
where q:=p in(2.10) and

Jx; 9= 3 Yooy X .
n20

By (2.13), the solutions of the equations n (6.2) are

6.3) @ LRCOGY) = TT 11+ (1-p) xpK yixpK: vy)
k>0

®) RLCOG 2= TT 11 - (1-p) xpK ytxpk* 1. 9
k20

which provide p-exponential generating functions for permutations by
minimum component types. As one might expect, the functions in (6.3)
may in a sense be viewed as respective compositions of the two basic
p=exponential functions in (2.8) with the function J. As corollaries of
(6.1) and (6.3), we have:

Lorollary 6.1 (Stirling numbers of the first kind), Let £rsnly) := LRC,(Y)
wheny, :=y and let resn(z) = RLCH(2) when Zy:=2 Then

n
@ drspm=y 3 opkep, (n=k)p! 2rs, (y)
k=0

n
®) s, (y)= kno lypK + (k)]

n
(€ rsy, (2)=2 kZO pRE (k)p! 125, (2)

n
(@ resy, (=17 [z¢p(k)p]
k=0

where £rsply) = résp(z) := 1. Furthermore, if 2rs(x) and res(x) are the

respective p-exponential generating functions in x for the p-sequences of
(a) and (c), then

©  2rsC) = TT [1+ (1-p) xpK y(1-xpK)~1
k>0

(0 restd = TT (1 - (1-p)xpK Z(1-xpK*1y=11 .
k>0

Proof. Parts (@), (), (e), and () are obvious in view of (6.1) and (6.3). The
following calculation shows that (a) implies (b):
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n
Aspay)=y 2 pK ( ' ), (N=K)p! £rsy (y)
k=0
' n-1
= yp" 2rs(y) +y (n)y (" ;')D pK (n=1-k)p! 2rs(y)
k=0

= yp" 2rsp(y) + (n) Arsp(y)

n
= Arsp(y) [yp" + ()= TT [yp + (g
k=0

In a similar manner, (d) follows from (c).

Corollary 6.2 (Derangements). Let LRD, := LRC,(Y) wheny, := 0 and y; :=1
for i > 1. Further, let RLD,, := RLC,(Z) when z; := 0 and z; := | for i> L.
Then, forn 1,
n-1
(@  LRDy,; = 3 pX (}), (n=K)yILRDy = (n)y [LRDL + p"! LRD ]
k=0

n
() RLDG, = = pK (1), (K)pIRLD,y = p(n), [RLDy + RLD,_ ]
k=1

(©) LRDG) = TT [1+(1-px2 p2K (1-xp%)™ 1)
k>0

(@ RLDGO = TT [1-(1-px2 p2K*1 (-xpk* 1y~ 1)7
k>0
where LRDg = RLDg =1, LRD, := RLD; := 0, and LRD(x) and RLD(x) are the
respective p-exponential generating functions.

Corollary 6.3 (Involutions). Let LRIy := LRC,(Y) wheny, =y, := 1 and
y; =0 fori>3. Also, let RLI,:= RLCH(Z) when 2z, := 25 = | and Z; := 0 for
i>3. Then, fornx1,

(@ LRip, =" LRI+ "1 (M) LRI

() RLlpyq =RLI + p(n)y RLIL

(€)  LRIx)= TT [1+(1-p) xpX (1+xpX)]
k>0

(@)  RLIGO =TT [1-(1-p)xpK (1 + xpk* 1))~
k>0

where LRIg := LRI} = RLIg := RLI} = |, and, LRI(x) and RLI(x) are the
corresponding p-exponential generating functions.
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The ABC's will only be described here for Corollary (6.2a). Setting
Y1 = O selects the ABC's satisfying the following property: If h is a

vertex on the extreme left branch of such a tree, then the upper right
subtree attached to h must be non-empty. Such a tree is sketched in (6.4)
below:

(6.4)

An example of a tree that does not satisfy this condition is sketched in

(41) The right upper subtree attached to the vertex labeled 3 in (4.1) is
empty.

7. Generalized Hermite polynomials. It is a well known fact
[8,11,14] that the Hermite polynomials have a combinatorial interpretation
in terms of weighted involutions. To be specific, a 1-cycle (resp. 2-cycle)
is given the weight y (resp. -1). Thus, by assigning the appropriate
weights to minimum components, recurrences for the Hermite polynomials
may be easily obtained from (3.3).

Moreover, in leaving the parameters U, v, and p in the recurrence,
several g-analogs of the Hermite polynomials arise, including both types
considered by Cigler (8] In fact, the combinatorial setting used here
provides several new interpretations of Cigler's q-Hermite polynomials.
The following corollary fs an immediate consequence of Theorem (3.1);

Corollary 7.1 (Hermite polynomials). Let LRH,(u,v,p; y) := Lp(uv,p; 1,Y,1)
when y, =y, Yo = -1, and yp=0forix3 Also, set

RLHR(Uv,p; 2) = L(u,v,p; 1,1,2) when 2122, 2p:=-1,and z;:= 0 for 1 » 3.
Then, forn 1,

(@ LRHy(y) = pMy LRH,(y) - p~T 0= (Mg LRHy(y)
®) RUHns (@) = 2 RUHA\@) - pu™ ! () ALK,y 2)

where the parameters u, v, and p have been-suppressed In the expressions
LRHj(u,v,p; y) and RLHJ(u,v,p; 2), and, where LRHy := RLHg == 1, LRH; =y,

RLH; :=z,and q:= pvu !

The recurrence relationships for LRHR(1,v,1; y) and RLHy(u,u,u; 2),

which may be obtained from Corollary (7.1), respectively define Cigler's
first and second q-Hermite polynomials. It Is Interesting to note that
Cigler's g-Hermite polynomials of the first kind arise in 3 other ways in
~ this setting: The sequences LRH(v, 1,15 y), RLHA(1,v,1;y), and

RLH,(v,1,1; y) have the same recurrence as LRHA(1,v,1; y).

The exponential generating functfons for the g-sequences of Corollary
(7.1) may be derived in some Cases. For instance, using calculations
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similar to the proof of (2.13), one obtains
(7.1 (@  LRH) = TT [1 * (1-p)xpX (y-xp¥))
k>0

() RLHX) = TT [1 = (1-pv)xpK vK (z-xvK pk* 1y
k20

© RHO=TT 0 -0-wx2uX* )1 -0-wxz k!
k20

where  LRH(x), RLH(x), and RH(x) are the respective g-exponential
generating functions in x for LRH,(1,1,p; y) with g := p, RLH,(1,v,p; Z) with

q:= pv, and RLH,(u,u,u; 2) with g:= u.

The trees corresponding to Corollary (7.13) are the so-called “combs”
(35] as sketched below:

(7.2

That is, each upper right subtree attached to a vertex on the extreme left
branch has at most 1 vertex. Of course, the ABC's associated with
Corollary (7.1b) are just the planar reflections of those of the furm
sketched in (7.2).

8. Double minimum component results. In [7], Carlitz and Scoville
studied a sequence of numbers that may be thought of as “double™ Stirling
numbers of the first kind. By simultaneously working with Y and Z in (3.3),
the result of Carlitz and Scoville may be extended in a number of
directions.  Corollary (8.1) provides a q-analog for the previously
mentioned sequence of [7]. As Corollaries (8.1), (8.2), and (8.3) are

immediate in light of Theorem (3.1), they are stated without further
comment.

Corollary 8.1 (Double Stirling pumbers of the first kind), Let
DSp(y,2) = Ln(1,1,p; 1,Y,Z) wheny; =y and z;:= z for i 2 1. Then

n
DSpe 1,2 =yz T pK(§)) Arsyy) rds,y(2)
k=0

where DSq := 1, and, ,Ersj(y) and rst(z) are the polynomials defined in
Corollary (6.1).
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Corollary 8.2 (Double derangements). Let 0Dy, := La(1,1,p; 1,Y,2) when
Y1=2):=0andy, = Zy:=1forix2 Then, forny 2,

n-1
DOn.y = 3 o (}), LRD RLD, .,
k=1
where DDy := 1, DDy := DD, := 0, and, LRDJ- and RLDJ are defined in Corollary
(6.2).

Corollary 8.3 (Stirling derangements). Let SDp(y) := La(1,1,p; 1,Y,2) when
Yp=yforixi, z,:=0, and zy:= 1 for |2 Then, forny 1,

n
SDp+ () =y kzl PK (L), Ars(y)RD .,
where SDg = 1, SDy := 0, and, ,ersj(y) and RLDJ are defined in Corollaries
(6.1) and (6.2).

9. Set partition resyjts By simuitaneously specializing the

parameters Tj and Y (or Tj and Z), Theorem (3.1) will yield the solution to

the problem of counting partitions of a set C by type. The focus of this
section will be on the derivation of the Q-éxponential generating functions
for some analogs of the classic Bel] polynomials as defined in [9].

There are two possibilities for obtaining a recurrence for the Bell
polynomials from Theorem (3.1):

(9.1 (@)  Extract the terms from (3.3) in which the degree with
respect to T, is equal to the degree with respect to Y
minus 1.

(b)  Extract the terms In (3.3) In which the degree with
respect to Ty plus the degree with respect to 7 fs equal

to(n+1).

However, the following combinatorial extractions are perhaps more
Hluminating. To do this, it is important to keep in mind that & and B of
(1.3) respectively give rise to the terms L and Lp-k In (3.3).

First, for D a fixed set of n integers, let LRTID] denote the set of
permutations ¢ of D that have ABC's that satisfy the following condition:

(9.2) Every upper right subtree attached to the extreme left branch
looks like a line segment.

For example, the permutation ¢ = 568942317 € L[9] is an element of LRT[9]
since the corresponding ABC sketched in (9.3) satisf ies condition (9.2).
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(9.3)

Note that each ¢ € LRT[D] may be associated to a partition of D in the
following natural way: Each right “tilted” line segment of the
corresponding ABC may be viewed as a subset in the partition of D. For
instance, the tree in (9.3) corresponds to the partition {1,7}, (2,3}, {4}, and
{5,6,8,9} of {1,2,..,9). Furthermore, note that the monomial

ToDeS(O) A0 < ¢ ytotay 1yp2y4 for o of (9.3) is of the type described

in (9.1a).

Now consider the generating polynomial for weighted "left-to-right”
partitions of the set D defined to be

(9.4) Lan(TJ,Y) = Z V312(0‘) pinV(O') TJDes(o) Yﬂl"(O')

where the summation is over ¢ € LRT[D]. To extract a recurrence from
Theorem (3.1) for this polynomial, begin by observing that LRPn(Tj,Y) is

equal to the sum of the terms in Ly(1,v,p; Tj,Y,l) that correspond to

permutations having ABC's of the form sketched in (9.3). In this setting,
B € L[B] in decomposition (1.3) is restricted to the unique increasing list
of B. Thus, the only term to be extracted from Ly _, (1,v,p; Tys 1, 1,1in

(3.3) is 1. Theorem (3.1) then yields

n
(95 LRPL(ToW) = T DRty yngey () LRPL(TY)
k=0

where LRPy = 1 and g := pv. Note that (9.5) is precisely the recurrence

that is obtained when one extracts from (3.3) the terms that satisfy
(9.12).

. On the other hand, consider the generating polynomial for weighted
‘right-to-left” partitions of the set D defined to be

(9.6) RLPn(TJ,Z) =5 y312 plnv(G) TjDes(u‘) 7M1 4(0)

where the summation is over ¢ € L[D] having ABC's which are planar
reflections of the type sketched in (9.3). In this case, o € L[A] in (1.3) is
restricted to the unique decreasing list of A. Thus, extracting the
appropriate terms from (3.3) yields

n
©O7) R (TeD) = 3 oK zpey (1) byt . b RLP(Th 1,2)
k=0
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where RLPO =1 and q:= pv. Note that the permutation corresponding to

the planar reflection of (9.3) glves rise to a monomial of the form
described In (9.1b).

Recurrences for generalized Bell polynomials may now be obtained

from (95) and (9.7) by setting To == 1. This Is done In the following
corollary:
Corollary 9.1. Let LRBy(v,p; Y) := LRPL(1,Y) and RLB,(v,p; 2) := RLPL(1,2).

Then recurrences (9.5) and (3.7) respectively reduce to

n

@ WRBnu g V= T pRyy uy (1), LRBY,D; )
k=0
n

©) BB vp; D)= 5 oKz (1), RLB- (v,p; )
k=0

where LRBO = RLBO =1andq:=pv.

Note that the recurrences for LRB,(1,1; Y) and RLBn(l,l; Z) each
define the classic Bell polynomials.  Further, observe that LRBn(v,p; Y)
when y; :='y for 1> 1 and that RLB(v,p; Z) when Zj =z for 1> 1 both
provide g-analogs of the Stirling numbers of the second kind.

As before, using calculations similar to those used in proving (2.13),
some g-exponential generating functions may be obtained for the
sequences in Corollary (9.1). et LRB(x), LB(x), and RLB(x) denote the
g-exponential generating functions in x respectively of LRBn(I,p; Y) with

q:=p, LRBn(v, 1,Y) withq:=v, and RLB,(v,p; Z) with g := pv. Then

(9.8) (@ LRBOO = TT [1+ (1-p) xpk wixpk: v)]
k20

() LB = TT [1 - (1-v) xvK wixk; !
k>0

() RBO) =TT [1-(1-pv) xpK vK wixvk pk* 1. 7!
k>0

where

WOGY) = 3y x”/(n)q!.
no0
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