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ABSTRACT, n-dimensional lattice paths which do not touch the hyperplanes a;, -a;, -|-i =
-1, i = 1, 2,... , n - 1, and a-n - a:i = -1 - K are enumerated by McMahon's major
index and variations of the major index. A formula involving determinants is obtained.
For n = 2 we also present a formula for counting these lattice paths simultaneously by
major and descents.

Consider n-dimensional lattice paths consisting of positive unit steps. In the sequel
they are called simply paths for short. Any path p from ft to \ may be represented
by the pair (/i, 7r), where ft is the initial point of p and TT is the multiset permutation
of {lAl-/tl, 2A2-/x2,... , nArl-Aln} which comes out of p by successively writing i for
a step in a;, -direction. For example, the path po: (2, 1, 0) -». (3, 1, 0) -» (3, 1, 1)
(3, 2, 1) ^ (3, 3, 1) ^ (4, 3, 1) ̂  (4, 4, 1) ^ (5, 4, 1) ^ (5, 4, 2) in this representation
reads ((2, 1, 0), 13221213).

The number of descents of a multiset permutation TT = TTi^ ... TT;,, desTT, is

deSTT = |{? :7Ti > 7T;+i, 1 < 2 < -Z.. -l}| .

The major of a multiset permutation TT, maj TT, is the sum of the positions where a
descent occurs,

L-l

maj TT = ^ ix(^i > '""i+i) .
t'=l

(^ is the usual truth function. ) For example, for TTQ = 13221213 we have des-TTo == 3
and maj TTQ = 2+4+6 = 12. These definitions are extended to paths p = (ft, 7r) by
raaj p = maj TT and desp = des TT.

It was McMahon who introduced these two notions in his treatise on generating
functions for plane partitions [7]. His idea of computing plane partition generating
functions with the help of counting "lattice permutations" by major and descents, was
formalized and generalized by Stanley in his thesis (cf. [9]). In particular, Stanley's
theorem [9, Corollaries 5. 3 and 5. 7] implies that the generating function for plane
partitions of the skew shape A//i, AI > \2 ^ ... ^ ^n an(i /^i ^j"2 ^ . '. ^ /^n; can
be computed by solving the problem of counting n-dimensional lattice paths from ft
to A which do not touch any of the hyperplanes

(1) a"; - a;,4. i =-1, ? = l, 2,..., n-1 .

Besides, another theorem of Stanley [9, Proposition 8. 2] implies that the generating
function for plane partitions of shape \I{M, with parts bounded, by m can be computed
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by counting the same family of paths with respect to maj and des. While the case
of major counting has been solved completely [4], for the case of counting simulta-
neously by major and descents we have only a solution for n = 2. In fact, a more
general theorem is given below (Theorem C). Yet, the existence of a simple formula
for the generating function for plane partitions with bounded parts (see e.g. [2, The-
orem 16]) strongly suggests that there should be also a simple formula for counting
n-dimensional paths which do not touch any of the hyperplanes in (1) by major and
descents.

In this paper we encounter the more general problem of counting paths from /x to
A which do not touch any of the hyperplanes in (1) and do not touch the additional
hyperplane

(2) Xn-Xi =-1- K ,

where K is some positive integer, by major and descents. While the case of counting
by only major is solved completely (Theorem A), and this result is even generalized
to statistics which are variations of the major statistics (Theorem B), for counting by
both major and descents we are only able to give a formula for n = 2 (Theorem C),
as mentioned above.

The cardinality of the family of paths under consideration has been previously
computed by Filaseta [1]. His theorem comes out of Theorem A by setting q = 1.

For sake of brevity we do not give proofs of our results. Detailed proofs of Theo-
rems A and B can be found in [5], the proof of Theorem C is given in [6].

We use the usual multidimensional notation. If A = (\i, \2,... , \n) and ft ==
(/^i, ^2,... , A(n)> then |A| == Al+A2+-. -+An, andA-/i= (\l-IJ. l, \2-fJ-2, . .., An-^n).
If \i > fii for all z = 1, 2,... , n, we write \>. ft.

Let q be an indeterminate. The g-notations we use are [a} = (1 - $a), [m]! =

[m]. [m-l]... [l], [0]!==l, and[lj;l]-[|A|]!/[Ai]![A2]!... [A, ]!.
Let K be an arbitrary fixed positive integer and let Kn denote the set of all n-tuples

A of integers with
\l>\2^---^\n^>l-I<-

THEOREM A. Let \, {i  Kn and \ ^ /i. The generating function ^gmajp, wiiere
the sum is over all lattice paths from p, to X which do not touch any one of the
hyperplanes in (1) and (2), is given by

: [IA-/11]! Kde<t<n (^T(s't'u'lt)/^ -S-^+t-(K+ n)u, ]!) ,
n

where Un is the set of all n-tuples u of integers with ui +... +Un = 0, and

Sl
"ec/n

u',

T(s^u^) = (^ - t){s -t)+(n- l)u^ -t)+(K+ n)((n - l)y + su,) .
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This result generalizes Theorem 1 of [4].
Let T be a fixed permutation of [l, n]. We extend r to multiset permutations

7T = 7Ti7T2 ... 7T/, which satisfy Tr, G {1, 2,..., n) by

r(7T) = T(7Tl)T(7T2) . . . T^L) .
The action of r on a path p = (/i, 7r) then is defined by r(p) = (/i, r(7T)). Now we
introduce the following permutation-indexed statistics:

maj^ p := maj r(p) .

Obviously, maj^ is identically with the major (= greater) index, while for TO given
by TO (z) = n+ 1 - z the statistics maj^ coincides with McMahon's lesser index [7,
p. 136]. The next theorem is the maj^-analogue of Theorem A.

THEOREM B. Let \, p, £ Kn and A ^ /i. The generating function ^ gmaJrP, wAere
the sum is over all lattice paths from {i to \ which do not touch any one of the
hyperplanes in (1) and (2), is given by

[|A-^|]!_det, (qT^3't'u^/[X, -s-^+t-(K+n)u, }\) .
^' '" 1<S'(<"

The exponents TT (s, t, u, ft) are given by
s-1

r, (. ^, u^)==(^-<)^ca)+u, (^-<)^c0)
J=t j^l

3-1

+(J<+n)^^cO-)+(J<+n)^^c(j),
J=l J=l

where c(j') = x(TO) < r(J + 1))? c(n) = x(T(n) < T(l))tanc^ we adopt (;lie convention

that ̂ y a, = 0, and ̂ if aj = - ^^ aj whenever k < I.
Our last theorem gives the promised result for counting 2-dimensional paths not

touching the lines xi - x^ = -1 and 3-2 -.TI == -1 - K by major and descents. The
formulation of the theorem even is slightly more general.

THEOREM C. Given c, d ^I, d> c, let \i+c ^ \2 < \i + d and fJ. i + c <:
^2 ̂  /^i + d. The generating function ̂  a;despgmajp^ ivjigre (;Ae sum is over all lattice
paths from p. = {fi\ , , ^2) to A = (AI , ̂ 2) w^hicii do not cross the lines x^ = x-^ + d and
X2 = Xi -}- c, is given by

xn V^ gn2+fc2 (d-C+l)-fc(l-C+/Z2-^i)

n>0 fcez

x
^i - ^i - k^d - c)

n + k
A? - ^2 + k(d- c)

n - k

\2 ~ fJ'i ~ k{d - c) -c+ 1
n + k

AI - ^2 + k{d -c) +c - 1
n - k

where [^] is the Gaussian binomial coefficient, [^] = \i, V. U-bV.'
Previous results of McMahon [8, p. 1429] and of one of the authors [3, Theorems

5-7] are special cases of this theorem.
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