
PUBL. I.R. M. A. STRASBOURG, 1991, 476/S-26
ACTES 26C SEMINAIRE LOTHARINGIEN, P. 29-42

Enumeration in Musical Theory

Harald Fripertinger *
Voltsberg, Graz

Abstract

Being a mathematician and a musician (I play the flute) I found it very interesting
to deal with Polya's counting theory in my Master's thesis. When reading about Polya's
theory I came across an article, called "Enumeration in Music Theory" by D. L. Reiner
[11]. I took up his ideas and tried to enumerate some other "musical objects".

At first I would like to generalize certain aspects of 12-tone music to n-tone music,
where n is a positive integer. Then I wiU explain how to interpret intervals, chords, tone-
rows, all-interval-rows, rhythms, motifs and tiopes in n-tone music. Transposing, inversion
and retrogradation are defined to be permutations on the sets of "musical objects". These
permutations generate permutation groups, and these groups induce equivalence relations
on the sets of "musical objects". The aim of this article is to determine the number of
equivalence classes (I will caU them patterns) of "musical objects". Polya's enumeration
theory is the right tool to solve this problem.

In the first chapter I wiU present a short survey of parts of Polya's counting theory. In
the second chapter I will investigate several "musical objects".

1 Preliminaries

There is a lot of literature about Polya's counting theory. For instance see [I], [2], [3], [9] or [10].
Let M be a set with |M| = m. You should know the definition of the type (Ai, A2,... ", A^') of
a permutation TT e SM and the definition of the cycle index CI(r; x^,.. ., x^) of a permutation
group T ^ SM- In particular we will use the cycle index of the cyclic group and of the dihedral
group.

2 Applications of Polya's Theory in Musical Theory

Some parts of this chapter were already discussed by D. L.Reiner in [11]. Now we are going
to calculate the number of patterns of chords, intervals, tone-rows, all-interval-rows, rhythms,
motifs and tropes. Proving any detail would carry me too far. For further information see [6].

The author thanks Jens Schwaiger for helpful comments.
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2. 1 Patterns of Intervals and Chords

2. 1. 1 Number of Patterns of Chords

Definition 1 (n-Scale) 1. If we divide one octave into n parts, we will speak of an n-scale.
The objects of an n-scale axe designated as 0, 1,. .., n - 1.

2. In twelve tone music we usually identify two tones which are 12 seini-tones apart. For
that reason we define an n-scale as the cycUc group (Zn, +) of order n.

Definition 2 (Transposing, Inversion) 1. Let us define T the operation oftransposing
as a permutation T:Zn -> Zn, a *-> T(a):= 1 + a. The group {T} is the cyclic group
AE)
Sn .

2. Let us define I the operation of inversion as I:Zn ->. Zn, a <->. J(a):= -a. The group
{T, I} is the dihedral group i9^).

Definition 3 (fc-Chord) 1. Let k <: n. A. fc-chord in an n-scale is a subset of k elements
of Zn. An interval is a 2-chord.

2. Let G'= ̂ n."'' or G = i?n"'1. Two fc-chords AI, AZ are called equivalent ifF there is some
7   Gf such that Az = '/(Ai).

Remark 4 1. We want to work with Polya's Theorem, therefore I identify each fe-chord
A with its characteristic function %A- Two A-chords Ai, A2 are equivalent ifF the two
functions -^^i and ̂ ^2 are equivalent in the sense of Polya's Theorem.

2. Let us define two finite sets: P: == Zn and F:^ {0, 1}. Each function f e Fp wiU be
identified with A/: = {k e Z^\ f{k) = 1}.

3. Let w. F -> 'R.:= Q[a;] be a mapping with w(l):= x and w(0):= 1, where x is an
indeterminate. Define the weight W(/) of a function / G Fp as

w(f\. = n w(/(^).
kez^.

We see that the weight of a A;-chord is a;fc. The weight of a pattern W([f]):= W{f) is
well defined.

Applying Polya's Theorem. of [2], we derive:

Theorem 5 (Patterns of A-Chords) 1. Let G be a permutation group on Zn. The num-
her of patterns of k-chords in the n-scale Zn is the coefficient of x in

CI(G';l+a;, l+.c2,..., l+a;n).

"

2. IfG= Cn > tfle number of patterns of k-chords is - ^ y?(j) ( ^ ), where
" j\Scd(rz. k) V J

y is

Euler's <p-function.
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3. If G = ^', the number of patterns of k-chords is

^( E ^)(D+"(^)) ifn=lmod2
3\Scd(n, k)

^( S^ ^(.?')(I)+"(D) t/n=0mod2 anrfA=Omod2
., |gcd(n,fe) ' 2

^n{ Z^ vU){Tk) + n(2, k, )) ifn=0mod2 andk=lmo<i2.
J-|gcd(n, fc)

4. In the case n=12 and G = Cw, we get the numbers in table 1 on page 31.
5. In the case n=12 and G = 'ffw, we get the numbers in table 2 on page 32.

2. 1.2 The Complement of a Jb-Chord

Definition 6 (Complement of a k-Chord) Let A C Z^ with |A| = Jb be a Jb-chord. The
complement of A is the (n - fc)-chord Z^ \ A.

Remark 7 1. Let Gl = ^ or G = ^£) be a permutation group on ̂  and let Kfc < n.
There exists a bijection between the sets of patterns of fc-chords and (n - A;)-chords.

2. If n = 0 mod 2, the complement of an ̂ -chord is an ̂ -chord. Now I want to figure out
Uie number of patterns of ̂ -chords [A] with the property A ~ Z^ \A. Applying the
Theorem of [l] we get:

Theorem 8 1. Let n = 0 mod 2. The number of patterns of ̂ -chords which are equivalent
to their complement, is C1(G; 0, 2, 0, 2,... ).

2. Ifn= 12 and G = ^E), there are 20 patterns of 6-chords which are equivalent to their
complement.

3. Ifn= 12 and G = i9^), fAere are 5 patterns of 6-chords which are equivalent to their
complement.

2. 1.3 The Interval Structure of a fc-Chord

In this^section we use ̂ ) as the permutation group acting on Zn. The set of all possible
intervals between two difFernet tones in n-tone music wiU be called Int(n), thus

Int(n): ={x-y\x, yeZn, x^y}={l, 2,..., n-l}.
Definition 9 (Interval Structure) On ̂  we define a linear order 0<!<2<... <n-l.
Let A:.= ^l't2''" . 'ik^ be a A!-chord. Without loss of generality let z'l <t'2< . . < ifc The
interval structure of A is defined as the pattern [f^], wherein the function ,4 is defined as-

k

/A:{l, 2,..., fc}-. Int(n)

123 4 5 6 7 8 9 10 11 12
# of patterns | 1 6 19 43 66 80 66 43 19 6IT

Table 1: Number of patterns of A-. Chords in 12-tone music with regard to (w.
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/A(1):=^-^1, /A(2):=t3-»2,..., /A(^-1):=U-^-1, /A(fc):=t'l-tfc,
and two functions /i, /2:{l, 2,..., fc} -> Int(n) are called equivalent, ifF there exists some
y £ i9i.£;) such that , 2 = A °y- The group i9^) is generated by T and J with f(i) :=i+l mod fc
and I(i): =k+l-i{oii=l,..., k. The differences ij^i - ij must be interpreted as differences
in Zn. They are the intervals between the tones ij and ij^.

Theorem 10 Let Ai:= {zi, ^,... , ^'fc} and Az:= O'i,.?2,... ,. ?fc} &e <wo k-chords with ii <
z'2 < ... < ik and ji < J2 < ... < jk- Furthermore let f:= /AI and g:= /A, : {1, 2,... , fc} -»
Int(n) be constructed as in Definition 9. Then

[/] = [ff]<==^ [{»1, »2,..., ^}]= [{jl, j2,...,. ?'fe}].

I omit the proof of this theorem..

Remark 11 If the permutation group acting on Zn is the cyclic group <n";, then the interval
structure of A: = {ti, ^, . . . , ik} must be defined as the pattern [f^} in regard to ^': = {T}
with t(i): = i+1 mod k. The function /A is defined as in Definition 9.

Remark 12 Let / be a function /:{1, 2,... , fc} -^ Int(n). The pattern [/] is the interval
structure of a Jb-chord, iff Y,^ f(i) = n. One must interpret this siun as a sum of intervals,
thus as a sum. of positive integers.

Remark 13 Let .c, yi, i/2,... , 2/n be indeterminates over Q and let 7^ be the ring Ti:= Q[a;, yi,
y2, ---, yn}- Now I want to define a weight function w:Int(n) -r Ti, i ^ w(i):= xt yi. The

weight of a function /: {1, 2,... , fc} -+ Int(n) is the product weight

w(fy. = n W(/(Q) = n .c/My^) = ^s;=. /w jj y^^.
1=1 1=1 1=1

Now we can define W([f}):= W(f). According to Remark 12 the pattern [/] is the interval
structure of a fc-chord, ifFI;,fc=i f{i) = "-This is true, iffW(f) = .c" H^i!//(, ). The indices of
the y's in W(f) show, which intervals occur in the fe-chord.

An Application of Polya's Theorem of [2] is

Theorem 14 The inventory of interval structures ofk-chords in n-tone music is the coefficient

of ̂  in Cl(^; ̂  . l2/,, E ̂ 2ty^ E .C3ty. 3> ... ').
t=l t=l 1=1

Example 15 The inventory of the interval structures of 3-chords in 12-tone music is the
coefHcient of x12 in

Cl(^E^xiy^.V^.V).
1=1 z=l 1=1

123 4 5 6 7 8 9 10 11 12

# of patterns |l6 12 29 38 50 38 29 12 6 1 1

Table 2: Number of patterns of fc-Chords in 12-tone music with regard to -i9^(E)
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This is

yi yio + yi(y2 !/9 + ysys + y^yr + ysye) + y2 2ys + y^ysy? + y^ye + ys2) + ys^ye + y^y^ + y^

If you are interested in the number of patterns of 3-chords with intervals > k, then put
2/1: = 2/2: = ... := yfc-i: = O and yk: = yfe+i: = ... := y^: = 1. In the case k =2 there are 7
patterns of 3-chords with intervals greater or equal 2.

2. 2 Patterns of Tone-Rows

Definition 16 (Tone-Row, &-Row) 1. Arnold Schonberg introduced the so called tone-
rows. Here I am going to give a mathematical form of his definition. Let n > 3. A
tone-row in an n-scale is a bijectiv mapping f:{0, l,... , n - 1} -> Z^, i ^ f(i). f(i) is
the tone which occzirs in tth position in the tone-row.

2. Let n > 3 and 2 <k <, n. K fc-row in n-tone music is an injective mapping /: {0, 1,... , fc-
1} -> Zn.

Remark 17 1. A k-iow with k = nis a. tone-row.

2. Two k-iows ,1/2 are equivalent if /i can be written as transposing, inversion, retrogra-
dation or an arbitrary sequence of these operations of ,2.
Transposing of a k-iow f isTof, Inversion of/ is Jo /. According to Definition 2, we
know that T and I are permutations on Z^, and that (T, 7) = i9^). ActuaUy inversion of
afc-row / should be defined as TW oIoT-W o f. Retrogradation R, is a'permutation
R   .S'{o, i,..., fc-i} defined as:

^=<f(o>A-1
.

(0, ^-1
if fc = 0 mod 2-l)o(l, A-2)o... o(i-l, |)

l)o(l, A-2)o... o(^3, ^l)o(^l) if^=lmod2.
Let H:= {R} < 5'{o, i,..., fc-i}, then |H| = 2. Retrogradation of a k-iow f is defined as
f o R.

3. Since H: = (A), the cycle index of II is
k

= 0 mod 2

inod 2.
^.y^-^=[w+v2s)^ '"s01

i(yifc+yiy2 ^) iffcsi:

Thus two A;-rows /i, ,2 are equivalent ifF 3y? e i?^;)3o- G H such that ,1=^0/200-.
Applying Theorem 5. 2 of [2], we get

The number of patterns of k-rowsTheorem 18 (Number of Patterns of A-. Rows)
m zn {s CI(][I;^'^'--'^)CI(^1 + ^-1 + 2^-'1 + -n)|, =^...^o.

This is

1.

+^((1)k'+2^'KK<2^21<t)!((j)-(T)))^((:)-
ifn^O mod 2 and ̂  = 0 mod 2. For integers k, v, v >0 the expression (k\ is defined
as:

{k^:=k-(k-l)..... (k-(v-l)).
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2.
1,'! - -k=

i^'2'2"
if n = 0 mod 2 anc? A; s 1 mod 2.

k^(^}(k-lv. +^-
fc-1 1<. -0-^

1 (n^

2n\k
fc!],

3.

^Qv^(st)^-
if n = I inod 2 and A; = 0 mod 2.

4.

lfJ-fn^!+l2 fcflf?l'|(A-i^2{2n[k)k]+22^[k^)(^~r-)-
if n = 1 inod 2 and fc ̂  1 mod 2.

In the case n = 12 the number of patterns of k-rows is in table 3 on page 34.

The special case of Theorem 18 foi k = n is

Theorem 19 (Number of patterns of Tone-Rows) Let n > 3. The number of patterns
of tone-rows in n-tone music is

^((n-l)!+(n-l)!!) t/n=lmod2
^((n - 1)! + (n - 2)!!(^ +1)) if n = 0 mod 2.

If n is in N then
,
11 _ Jn'(n-2) . ... '2 ifn=0mod2

n-(n-2)-... -1 ?/n=lmod2.

Especially there are 9 985 920 patterns of tone-rows in 12-tone music.

2. 3 Patterns of All-Interval-Rows

Let A and B be two finite sets. The set of aU injective functions f:A -> B wiU be denoted by
Inj(A, B). For that reason the set of all tone-rows is Inj({0, 1,... , n - 1}, Zn). In this chapter
let n ^ 3.

Definition 20 (All-Interval-Rows) Let us define a mapping

a:Inj({0, l,..., n-l}, ^)-^{^|ff:{l, 2,..., n-l}-^Int(n)}

/ -"(/)

k 2 3

^ of patterns I 6 30 275 2000 14060 83280
fc I 8 9 10 11 12

# of patterns ] 416880 1663680 4993440 9980160 9985920

Table 3: Niimber of patterns of k-rows in 12-tone music.
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anda(/)(i):= f(i)~ f(i-l}{or i = l, 2,..., n-l. Thisis subtractionin Zn. The function a(/)
is called all-interval-row, ifFo;(/) is injective, that means a(/)   Inj({l, 2,... , n-l}, Int(n)). In
other words a tone-row induces an aU-interval-row, iff all possible intervals occur as differences
between two successive tones of the tone-row. The set of aU aU-interval-rows wiU be denoted

as Allint(n).

Let's define some mappings:

1.

^:Inj({l, 2,... , n - l}, Int(")) -^ {? I ff:{0, l, ..., n - 1} ̂  Z^}

f^0(f)
/3(/)(0):= 0 and j9(/)(z):= /3(/)(i - 1) + /(i) mod n for i = l, 2,..., n - 1. You can
easily derive that for i = 0, 1,... , n- 1

^(/)(z)=^/(j)modn.
3=1

2. Let /   Zr,.

/3:Inj({l, 2,... , n - l}, Int(n)) ^ {5 |g:{o, l,... , n - 1} ̂  Zn}

/ ̂  /?(/), ^(/)(z) = E /(J) + ! mod n.
.>=!

Theorem 21 Let f be a mapping /: {1, 2,... , n - 1} -^ Int(n). The following statements are
equivalent:

1. f is an all-interval-row.

S. / G Inj({l, 2,... , n - l}, Int(n)) and f3{f) 6 Inj({0, 1,.. ., n - 1}, ^).

5. / 6 Inj({l, 2,... , n - l}, Int(n)) and /3(/) £ Inj({0, l,. .., n - 1}, Z»).

The proof is omitted.
You can easily prove the following results:

1. If n = 1 mod 2, there are no all-interval-rows.

2. If n = 0 mod 2 the function / defined as

i if i = 1 mod 2

('t) \-i ifi=0mod2

is an aU-interval-row.

For the rest of this chapter let n ^ 4 and n = 0 inod 2.

3. / e Allint(n) implies /3(/)(n - 1) = ^.

4. / e AUint(n) implies /(I) ^ ^ and /(n- 1) ̂  ^.
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Remark 22 1. On Int(n) we have the following permutations:

J:Int(n) ̂  Int(n), j >-> I(j):= n - j.

I stands for inversion. I is of the type (1, ̂ -1, 0,... ).
In the case n = 12 there is a further pennutation called

<3:Int(n) -> Int(n), j ^ Q(j):= 5 . j mod 12.

Q stands for quartcircle symmetry. Since gcd(5, 12) = 1, Q is a, permutation on Zn,
and since 5-0= 0, Q isa permutation on Int(n). Q is of the type (3, 4, 0,... , 0). You
can easily prove that (J o Q)(j) = (<? o I)(j) = 7 . j mod 12 and that it is of the type
(5, 3, 0,... , 0). I o Q is called quintcircle symmetry.

2. On the set {1, 2,.. ., n - 1} retrogradation R is a permutation, defined as

A:=(l, n-l)o(2, n-2)o... o(^-l, ^+l)o(^).
3. If /   AlUnt(n), then lo f, fo Rare'm Allint(n). Furthermore if n == 12 then <? o / e

Allint(12).

4. For that reason we can define the following permutations on AUint(n).

VT, y^, y(9:AUint(n) -». AUint(n)

f^Vl(f):=Iof, f^v>R(f):==foR, f^VQ(f):=Qof.

For (pq we need the assumption that n = 12.

5. It is easy to prove that these permutations commute in pairs and that y?j2 = <fj^ =
y»Q2 = id.

6. In [4] there is a further permutation E called exchange at ̂ . It is defined as

E: AlUnt(n) -^ AUint(n), / ̂  E(f)

and
.

/(/-l(i)+z) ifz<n-/-l(^)
E(f)(i):={^ ifz=n-/-l(^)

^(z-n+/-l(f)) ifz>n-/-l(f).
I have already mentioned, that /(I) / ^ and /(n - 1) ^ ^. Since / G Allmt(n) is
bijective, there exists exactly one j, such that 1 < j <n-l and f(j) = ^. The values
of the function E{f){i) for z = l, 2,..., n - 1 are f(j + l), f(j + 2),... , /(n - 1), /(j) =
i> /(i)> , (2),..., /0' - 1). The permutation E is defined for n ^ 4, but in the case n = 4
we have E = <pR.

7. The following formulas hold: Eoyi = ipio E, E otpq = ipq o E, E oipa^ (fip, o E and
E2 = id.

8. Let us define three perinutation groups on Allint(n).
G'i:= {vi, <PR}, G2'-= {yi, v>R, E} und G3:= {yi^^E^Q}- For Gz we must assume
n > 6, and for Gs we must assume n = 12. We calculate that Gi = 4, G>2 = 8, G'3 =
16.
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Remark 23 (Counting of AlI-Interval-Rows) Let

a;l, a'2, . . . , 2-n-l , yi, y2, . . ., 2/n-l , 2l, 22, . . . , Zn_i

be indetennmates over Q. Fiu-thermore let / be a mapping /:{1, 2,.. ., n - 1} ̂  Int(n). We
define 7Z:= Q[a-i, a-2,... ,.1-n-i, 21, ^2,... , 2:n-i] and

^(/)==n^w)).
t':=l

The functions w. are defined as w. :Int(n) ^ 7Z, j ^ w. (j):= ^n^a. ^. After calcu-
l^ting W{f} you have to replace terms of the form x^ by'y. ^dn^ 'Then you get W{f)~^
(^[yl'. ^2L^:'. ?/n-l^l'f2 '"''2:n-1^ Accol'ding to Theorem2l7isan aU-mterval-row, ifand

only if, W(f) = n^li/. ^. Consequently the number of aU-interval-rows in n-tone music is
the coefRcient of f[^1 y, z» in

n-1 n-1 n-1

n(E^n^)|.,.,,. ^.r=i v^i ' ^i / }s-'=V^<"ln

Remark 24 For ̂ 0 e G'i or ̂ 2 or Gy we want to calculate

^):=|{/£AUmt(n)|y, (/)=/}|.

AftCT some calculations we can derive that there are only 4 permutions y) such that ̂ (y) / 0.
In Remark 23 we calculated ̂ (id). The value of ̂(<Pi o Vp) is the coefficient of^Z'fyiZi in

n-1
21
2-~i n-l n-1 n-

n (E z^n-. n ̂ J ii ^n-J>i 'ii
i=l '3=1

^?

n-1 n-1

' n ̂ j n
k=i k=n-i

Xk
,="
'-2"

a! .'.'=</; mod I

Now let n ^ 6. The value of ̂ (yi o V) is the coefficient of H^ y. zi in
t^.1 /"z1 nzl . n-1 . "-1
II(E^"-. II^ ff ^n-J)^'ii. <-^|
.al'K, k=i k=^+i) k=^ xv3=y, mod,

Now let n = 12. In order to calculate -^{(pq oV o <pa) you must compute
_S_ / 11 - 11 11 11 11

E(^i][^6^(n., 3 n .,9+n., 9 n./).
i=l v J=2t j'=t j=t+6 j=i j'si+6

. n( E ^^modizfi^ n ^5fc^").
;=.;. l=2i-jJ=l k=l

ltg{3, 6,9}

i+5 . n-1 11 11

ZkZ5k^dl2'[[xik JJ .e;^modl2^
l=j l=12+2i-j

n ( E
j=2i+l *=l

tg{3,S,9}

Then substitute yj modi2 for x^j and find the coefficient of Y[]^ yiZi.
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Theorem 25 (Number of Patterns of All-Interval-Rows) For i = 1, 2, 3 the number of
patterns of all-interval-rows in regard to G{ is

1. ^(x(id) + x((Pl ° VR}) for t" = 1.
2. |(x(id) + X(<PJ ° <<?7?) + X(W ° ^)) for i = 2.
3. For i = 3 we calculate

^(^(id) + x(y/ ° v^) + x{<fi o ^) + x(yo ° y?fi ° ^)) =

= 7::(3856 + 176 + 120 + 120) = 267.
16

This is an application of the Lemma of Bunside of [2].

2. 4 Patterns of Rhythms

Definition 26 (n-Bar, Entry-time, fc-Rhythm) A bar is an iinportant contribution in a
composition. Usually a lot of bars of the same form follow one another. If you know the
smallest rhythmical subdivision of a bar, you can figure out how many entry-times (think of
rhythmical accents played on a drum) a bar holds. If there are n entry-times in a bar, I call it
an n-bar. In inathematical terms an n-bar is expressed as the cyclic group Zn- We can define
cyclic teinporal shifting 5 as a permutation S:Zn -> Zn, t <->. S(t):= t + 1. Retrogradation
-R (temporal inversion) is defined as R: Zn -> Zn, t i-r R(t): = -t. The group (5) is ̂  ; and
(S, R} = 'ffti . A fc-rhythin in an n-bar is a subset of k elements of Zn. The perinutation

groups ̂  ; or i9^ ; induce an equivalence relation on the set of aU fc-rhythins. Now we want
to calculate the number of patterns of fc-rhythins. We get the saine numbers as in Theorein 5.

2. 5 Patterns of Motifs

Definition 27 (fc-Motif) 1. Now I want to combine both rhythinical and tonal aspects of
music.

2. Assume we have an n-scale and an m-bar, then the set M

M:={(x, y}\x^ Zm, y G Z»} = ^ X ^

is the set of all possible combinations of entry-times in the m-bar Zm and pitches in the
n-scale Zn- Furthermore let G' be a perinutation group on M. In Remark 29 we are
going to study two special groups G. The group G defines an equivalence relation on M:

(<ci, yi) ~ (2-2, 2/2): ̂ => 3ff   G' with (x2, y-s) = ff(.ci, yi).

In addition to this we have \M\ = m -n.

3. Let 1< k < m-n. A A-motifis a subset of k elements of M.

Theorem 28 (Number of Patterns of A-Motifs) The number of patterns of k-motifs in
an n-scale and in an m-bar is the coefficient of x in

CI(G';l+.c, l+.c2,..., l+.cm-n).
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This completely follows from Polya's Theorem of [2].

Remark 29 (Special Permutation Groups) Now I want to demonstrate two examples for
group G.

1. In Defmition 2 we had a permutation group 6'z = Cn"; or G-s, = t?n"'' acting on the n-scale

Zn- Moreover in Definition 26 there was a permutation group G\ = Qn' or G\ = i?^,
defined on the m-bar Zm, - For that reason, we define the group G as G: = G\ 0 G>2. Two
elements (.Ci, yi), (2:212/2) £ A^ are called equivalent with respect to G, iff there exist
y E G-i and ̂  e Gz, with

(.C2, 2/2) = (y, ^)(a;i, yi) = (y?(zi), ^(yi)).

Because of the fact that we know how to calculate the cycle index of Gi <gi Gs, we can
compute the number of patterns of A-motifs.

2. In the case m = n, we can define another permutation group G, as it is done in [8]. The
group G is defined as G>: = {T, S, <pA \ A 6 Gl(2, Zn)}, with

T:M ̂  M,

S-. M-

^A'-M

M,

> M,

x

y+i

x+1
ys(:):-

-(:)-(:).
The inultiplication A- ( ^ ) stands for matrix multiplication. The set Gl(2, Zn) is the
group of all regnlar 2 X 2-matrices over Zn.
You can easily derive the following results:

(a) Tn= Sn= idM and T' i- id^f and S^ ̂  id^ for \ ^ j <n.

(b) To5' = 5'o T. In addition to this T^ {S) and S ^ (T}.

(c) Let 0 < i, j < n, then: Tt o S^ ^(y>A |A G Gl (2, Zn)), iff i ^ 0 or j ^ 0.

(d) Let A: = [a ^ , then: ̂ oT^ o S' = T(^+^) o 5(a(+6fc) o y>^.
(e) G' is the group of aU afHne mappings Z^ -^ Zr?.

Although we know quite a lot about the group G, I could not find a formula for the cycle
index of G for arbitrary n.

Example 30 Let us consider the case, that n= m = 12.

1. If G is defined as G: = -Qw ® ̂ \ then we derive

CI(G';a;i, a;2,. --, a'i44) =

= ^(.ci44 + 12a-^.i;J0 + 36xixw + 147. C? + 8zf + 2^x1° + 60a.f + 96.c|4 + 192.BIJ).
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By applying Theorem 28, the number of patterns of A-motifs is the coefl&cient of xk in
l+a;+48a:2 +937a:3+31261.c4+840 006a;519 392669a;6+381 561 281a;7+6 532 510709a;8+
98 700483 548-c9 + 1 332 424197 746a;10 + ....

2. IfG:= {T, S, y>A | A G Gl(2, ^n)), I computed the cycle index of G with a Turbo Pascal
program as

Cl(G;x,, x,,..., x^)=-^^(xw+18x'[2xi6 +36xi8 xf+... ).

By applying Theorem 28, the nuinber of patterns of A;-inotifs is the coefficient of xk in
14- a; +5a;2+ 26a;3 + 216-c4 + 2 024a;5 + 27 806-c6 + 417 209-c7 + 6 345 735a;8 + 90 590 713a:9 +
1190 322 956a;lo+....
For k = 1, 2, 3, 4 these numbers are the same as in [8]. In the case k = 5 however, it
is stated that there exist 2032 different patterns of 5-motifs, while here we get 2024 of
these patterns.

2. 6 Patterns of Tropes

Definition 31 (Trope) 1. If you divide the set of 12 tones in 12-tone music into 2 dis-
jointed sets, each contaimng 6 elements, and if you label these sets as a first and a second
set, we will speak of a trope. This definition goes back to Josef Matthias Hauer. Two
tropes are called equivalent, ifFtransposing, inversion, changing the labels of the two sets
or arbitrary sequences of these operations transforni one trope into the other.

2. For a mathematical definition let n > 4 and n = 0 mod 2. A trope in n-tone music
is a function /: Zn ^ F:= {1, 2} such that |/-1({1})| = |/-1({2})| = |. /(z) = k
is translated into: The tone i lies in the set with label k. Furthermore T and I are

permutations on Zn as in Definition 2. The group {T, I) is i9n"'1. Two tropes /i, /2 are
caUed equivalent, if and only if, 3v G i?^i ; 3y? £ ^z such that ,2 = V o /i o TT.

3. Let x and y be indeterminates over Q. Define a function w. F -> Q[x,y] by w(l):= x
and w(2): = y. For / G -F " the weight of / is defined as product weight

w(f):= n w(f(x)).
a! ^

2 2
A function /: Zn-» F:= {1, 2} is a trope, ifFW(/) = a;?y7.

Theorem 32 (Patterns of Tropes) Let y be Euler's y-function. The number of patterns
of tropes in regard to '9^, ' is

i(^(E^)(|)+ E ^)2?)+(|)+2?-1) z/n^0mod4
ntit tl»

tSOmod2

i(^(E^)(i)+ E ^)22)+@+2?-1) z/n=2mod4.
v^ti 2< . -^F...t\n

t=0mod2

In 12-tone music there are 35 patterns of tropes. (See [5]. ) Hauer himself calculated that there
are 44 patterns of tropes, because in his work the permutation group acting on Zn was the
cyclic group {T}.

This is an application of of the Power Group Enumeration Theorem in polynomial Form of [7].
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2. 7 Special Remarks on 12-tone music

In addition to the operations of transposing T and ofinversion I we can study quartcirde- and
quintcircle syrrunetry in 12-tone music.

Remark 33 (Quartcircle Symmetry) The quartcircle symmetry Q is defined as

Q:Zi2-^Zl2, X^Q(x):=^X.

<? is a permutation on ^12, since gcd(5, 12) ==: 1. Furthermore Q ^ {I, T}, QoT = T5 oQ,
Q = idz^ and QoI=IoQ=7x, which is called the quintcircle syminetry.
Let G be G: = {I, T, Q}. Each element y? G G> can be written as y =Tk o P o Ql such that
A; £ {0, l,..., n- l}, j   {0, 1}, and/G {0, 1}. The cycle index of G: = {I, T, Q} is

CI(G'; a-i, a;2,..., a-i2)=

= ^ (E V(t)xtt + ̂ 61^32 + 3z^i + 6x2^ + llzJ + 4zJZ 6 + 62;^ + 4a|).
t|12

This group G is an other permutation group acting on Z^ with a musical background. The
question arises, how to generalize the quartcircle symmetry of 12-tone music to n-tone music.
Should we take any unit in Zn or only those units e such that e2 = 1 ?
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