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Gauge symmetries
in the Heisenberg model of a magnet

T. Lulek and W. Florek

Abstract

A relation between geometric and gauge symmetries for the Heisenberg model
of magnet is pointed out. The space of quantum states of the magnet exhibits
the structure of a btmdle, with the base consisting of nodes of the crystal, and
the typical fiber spanned on the set of the single-node spin projections. The
geometric symmetry group acts on the base, the gauge group - on the typical
fiber, and all combined operations form the wreath product. In particular, all
global gauge transformations yield the direct product group - a subgroup of the
wreath product.

1 Introduction

The Heisenberg model of a magnet exhibits a rich combinatorial structure, associated
with a group enumeration of various classes of magnetic configurations [1,2]. These
classes are orbits of certain groups of the magnet. The most obvious symmetry is the
geometric one, consisting of such operations that preserve the distances between mag-
netic nodes. Here we aim to point out some other operations, called gauge symmetries
[3], which involve transformations of internal spaces of each magnetic node. They are
well described in terms of fiber structure of space of all quantum states of the magnet
[4, 5]. We also discuss here the relation of gauge symmetries to wreath products.

2 The Heisenberg model and combinatorics

Kinematics of the Heisenberg model of a magnetic crystal is specified by the space of
all its quantum states. Let X be the set of all nodes of the crystal, and let each node
carries a spin s. Let Y be the set of aU projections of the single-node spin. Let

\X\=n, [VI =m, (1)

so that n is the number of the crystal nodes, and m = 2s +1 defines the value of the
spin s. Then the set

YX=:{f:X^Y} (2)
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of aU mappings
f =\ii,..., in}, ij^Y, j ^X, (3)

is the set of all magnetic configurations. Eq. (3) displays the Dirac ket notation for a
magnetic configuration /. The linear closure

L = lc<tV; (4)

of the set Yx over the field   of complex numbers is a linear space. This space is
equipped with the unitary structure by demand that the set Yx is an orthonormal
basis in it. L is the space of aU quantum states of the inagnet.
Combinatorial enumeration of orbits is given in terms of various group actions. Let Sn
and Sm be the symmetric group on the set X and Y, respectively. Then the defining
actions U :SnXX -^ X andV : S^xY ^Y we naturally Ufted to P : SnXYX -^Yx
and Q : 5'm x Yx -». V^. Subductions of actions P and/or Q to various subgroups of
Sn and/or Sm yield orbits, associated with appropriate symmetries.

3 Geometric symraetries

Let H C Snbe the geometric syminetry group of the crystal (it can be a point group or
a finite extension of translation group, resulting from the periodic Born-von Karman
boundary conditions). Similarly, let G' C 5'n»be a subgroup of the single-node group
Sm, e.g. the two-element group involving the time reversal. In such a case, the direct
product H xG describes the total space-time symmetry of the magnet. This symmetry
is realized in terms of the subduced action (P [H) x{Q [ G).
The geometric, and - more generally - space-time symmetry of the magnet is there-
fore related to the direct product group H x G. A more general combinatorial con-
struction is the wreath product G I H. There is thus a temptation to ask whether the
action of the wreath product G I H on the set Yx of all magnetic configurations has
also a physical meaning? We propose an answer in Sec. 6.

Let

Fiber structure of the space L of quantum states
of the magnet

W = lccV (5)
be the linear unitary space of quantum states of single-node spin 5, with Y as its
orthonormal basis. We can think of X as the base of a bundle E with the typical fiber
W. To be more specific, let <f)j : W -> Wj, j ^. X, be a, copying isomorphism, which
produces a faithful copy of the space W, centered at the node j of the crystal X. Then



GAUGE SYMMETRIES 65

the collection of all such copies,

E=UW,
jex

(6)

is the fiber bundle with the base X and the typical fiber W. The canonical bundle
projection p:E -^ X is given by

p(e) = j for e G W; C E.

Every mapping i}> :X -^ E with the property

po'0 =idjr,

(7)

(8)

where id^- is the identity mapping on the base -X", is called a section of the bundle E.
We observe that if

^(j)=^, J^X, (9)

then V> G V^. Thus some sections of the bundle E can be identified as magnetic
configurations.

Clearly, the action V : S^xY ̂ Y can be extended to the action V : U{m) Y. W -, W
of the unitary group U(m) on the typical fiber W. The unitary group U(m) is the
maxlmal quantum symmetry group for the single spin s.

5 Gauge symmetries

Now we are in a position to consider a subgroup T C U{m} as the gauge group.
Some prominent examples from physics are F = U{1) for quantum electrodynamics,
r = 5'U'(2) for isospin symmetry, and F = 5'?7(3) for quarks.
We consider the action of the gauge group T on the space L of the Heisenberg magnet.
The simplest case is when each g ^T acts in the same way on each fiber Wj, i.e. when

(^)a)=^W71 (v'o)))> j^x. (10)

Eq. (10) defines a global gauge transformation in the space £, imposed by the ele-
ment g ^ T. Clearly, combination of global gauge transformations with geometric
symmetries H yields the action of the direct product group F x £T in the space L.
We proceed to introduce local gauge transformations. To this aim, we consider a
mapping c : X -^T, called a cochain, such that each element c(j") G F, j" G X, of the
gauge group F acts on its own fiber Wj. Under such an action, each section ^ ^ L
transforms to a new section

c^ = y>/ e L, (11)

given by
(^)O) - ^«wlwjm 3 e X. (12)
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Eq. (12) defines the local gauge transformation in the space L. It is worth to notice
that ci{? is not a composition of mappings, but only a short notation for a new section
V>   £, the image of ip under the local gauge transformation c.
The group of aU local gauge transformations in the space Z, imposed by the gauge
group T coincides with the set

C\X, T)=TX ={c:X -^T} (13)

of aU cochains on the set X, valued in the group F, with the group multiplication
imposed by T.

6 Wreath product

Assume that the crystal X is an orbit of the geometric symmetry group H C Sn.
Then the group (13) of all local gauge transformations imposed by F C U{m) can be
identified as the base group of the wreath product

TlH =rxDH (14)

of the gauge symmetry group F by the permutation group H on the set X of nodes
of the crystal. We have thus arrived at a clear physical interpretation of the wreath
product (14). In particular, operations (c, !^) G Fl H ot the base group Tx of the
wreath product are local gauge transformations. Operations of the form (ip, h) ̂ . TlH
coincide with purely geometric transformations, whereas general operations (c, h) G
T I H are combinations of geometric and gauge symmetries.

7 Conclusions

We have shown a relation between the wreath product structure and gauge symmetries
of the Heisenberg model of a magnet. This relation is readily expressed in terms of fiber
bundle structure of the space L of all quantum states of the magnet. The geometric
symmetries, described by a subgroup H of the syinmetric group Sn, are related to the
base X of the bundle E, whereas the gauge group T is the subgroup of the unitary group
t7(m). The former describes the spatial distribution of nodes of the crystal, whereas
the latter emerges from the internal symmetry of the typical fiber TV, spanned on
the set V of single-node spin projections. AU combinations of geometric and gauge
symmetries are given by the wreath product F ( H.
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