Δ -matroids and Pfaffian Forms

Walter Wenzel, Bielefeld

In analogy to the fact that representable matroids may be defined in terms of Grassmann-Plücker maps we want to describe representability of Δ -matroids by skew-symmetric matrices in terms of Pfaffian forms. In the sequel we assume $n \in \mathbb{N}, S := \{1, \ldots, n\}$, and K denotes some commutative field.

Definition 1 (cf. $[B1, \S6]$ or $[B2, \S1]$):

Assume $\mathcal{F} \subseteq \mathcal{P}(S)$. The pair (S, \mathcal{F}) is a Δ -matroid, if \mathcal{F} satisfies

(SEA) For
$$F_1, F_2 \in \mathcal{F}$$
 and $e \in F_1 \Delta F_2$ there exists some $f \in F_1 \Delta F_2$ with $F_1 \Delta \{e, f\} \in \mathcal{F}$.

For $\mathcal{F} \subseteq \mathcal{P}(S)$ and $T \subseteq S$ we put $\mathcal{F} \Delta T := \{F \Delta T \mid F \in \mathcal{F}\}.$

Definition 2 (cf. $[B2, \S4]$):

A Δ -matroid (S, \mathcal{F}) is representable over K by a skew-symmetric matrix $A = (a_{ij})_{i,j \in S}$, if for some $T \subseteq S$ we have

 $\mathcal{F}\Delta T = \mathcal{F}(A) := \{ S' \subseteq S \mid A' := (a_{ij})_{i,j \in S'} \text{ is nonsingular} \},\$

where $(a_{ij})_{i,j\in\emptyset}$ is considered to be nonsingular. A is then called a **presentation** of (S, \mathcal{F}) .

Theorem 3: A Δ -matroid (S, \mathcal{F}) is representable over K by a skew-symmetric matrix if and only if there exists some map $P : \mathcal{P}(S) \to K$ and some $T \in \mathcal{F}$ such that

(P0) For $I \subseteq S$ we have $P(I) \neq 0$ if and only if $I \Delta T \in \mathcal{F}$.

(P1) If $I \subseteq S$ and $\#I \equiv 1 \mod 2$, then P(I) = 0.

(P2) If $I_1, I_2 \subseteq S$ and $I_1 \Delta I_2 = \{i_1, \ldots, i_k\}$ with $i_j < i_{j+1}$ for $1 \le j \le k-1$, then

$$\sum_{j=1}^{k} (-1)^{j} \cdot P(I_1 \Delta\{i_j\}) \cdot P(I_2 \Delta\{i_j\}) = 0.$$

If (S, \mathcal{F}) is representable by $A = (a_{ij})_{i,j \in S}$, then P may be choosen to be the corresponding Pfaffian form, which may be defined by P(I) := 0 for $\#I \equiv 1 \mod 2$, $P(\emptyset) := 1$, $P(\{i, j\}) := a_{ij}$ for $1 \le i < j \le n$, and

$$P(\{i_1, \dots, i_{2m}\}) := \sum_{j=2}^{2m} (-1)^j \cdot P(\{i_1, i_j\}) \cdot P(\{i_2, \dots, i_{2m}\} \setminus \{i_j\})$$

for $2 \le m \le \frac{n}{2}$ and $i_j < i_{j+1}$ for $1 \le j \le 2m - 1$.

W.WENZEL

Vice versa, if P satisfies (P0), (P1), (P2), then (S, \mathcal{F}) is representable by the matrix $A = (a_{ij})_{i,j\in S}$ given by $a_{ii} := 0$ for $1 \leq i \leq n$, $a_{ij} = -a_{ji} = P(\{i, j\})$ for $1 \leq i < j \leq n$.

Corollary: A Δ -matroid (S, \mathcal{F}) , representable by some skew-symmetric matrix, satisfies the following strong exchange property:

For
$$F_1, F_2 \in \mathcal{F}$$
 and $e \in F_1 \Delta F_2$ there exists some

$$f \in (F_1 \Delta F_2) \setminus \{e\}$$
 with $F_1 \Delta \{e, f\} \in \mathcal{F}$ and $F_2 \Delta \{e, f\} \in \mathcal{F}$.

Furthermore, Theorem 3 suggests

Definition 4: Assume $F \subseteq \mathcal{P}(S)$.

- i) (S, \mathcal{F}) is an **orientable** Δ -matroid, if there exists some $T \in \mathcal{F}$ and some map $P : \mathcal{P}(S) \to \{0, 1, -1\}$ satisfying
- (OP0) For $I \subseteq S$ we have $P(I) \in \{1, -1\}$ if and only if $I \Delta T \in \mathcal{F}$.
- (OP1) For $I \subseteq S$ with $\#I \equiv 1 \mod 2$ we have P(I) = 0.
- (OP2) If $I_1, I_2 \subseteq S, I_1 \Delta I_2 = \{i_1, \ldots, i_k\}$ with $i_j < i_{j+1}$ for $1 \le j \le k-1$, and if for some $w \in \{1, -1\}$ we have $\kappa_j := w \cdot (-1)^j \cdot P(I_1 \Delta\{i_j\}) \cdot P(I_2 \Delta\{i_j\}) \ge$ 0 for $1 \le j \le k$, then $\kappa_j = 0$ for every j.
- ii) Assume $P : \mathcal{P}(S) \to \mathbb{R}^+ \dot{\cup} \{0\}$ is some map. (S, \mathcal{F}, P) is a valuated Δ matroid, if for some $T \in \mathcal{F}$ we have
 - (VP0) For $I \subseteq S$ we have P(I) > 0 if and only if $I \Delta T \in \mathcal{F}$.
 - (VP1) For $I \subseteq S$ with $\#I \equiv 1 \mod 2$ we have P(I) = 0.
 - (VP2) If $I_1, I_2 \subseteq S$ with $\#I_1 \equiv \#I_2 \equiv 0 \mod 2$, then for every $i \in I_1 \Delta I_2$ there exists some $j \in (I_1 \Delta I_2) \setminus \{i\}$ with

$$P(I_1) \cdot P(I_2) \le P(I_1 \Delta\{i, j\}) \cdot P(I_2 \Delta\{i, j\}).$$

References

- [B1] A. Bouchet: Greedy algorithm and symmetric matroids, Mathematical Programming 38 (1987), 147-159.
- [B2] A. Bouchet: Representability of Δ -matroids, Colloquia Mathematica Societatis János Bolyai 52. Combinatorics, Eger (Hungary), 1987, 167-182.
- [DW] A.W.M. Dress and W. Wenzel: Grassmann-Plücker relations and matroids with coefficients, to appear in Advances in Mathematics.
 - [K] G. Kowalewski: Determinantentheorie, Chelsea Publishing Company, New York, 1948.
 - [S] J.R. Stembridge: Nonintersecting Paths, Pfaffians, and Plane Partitions, Advances in Mathematics 83 (1990), 96-131.
- [W] W. Wenzel: Pfaffian Forms and Δ -Matroids, in preparation.

116