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Abstract

We define or redefine new Mahonian permutation statistics, called
mad, mak and env. Of these, env is shown to equal the classical
inv, that is the number of inversions, while mak has been defined
in a slightly different way by Foata and Zeilberger. It is shown that
the triple statistics (des,mak,mad) and (exc,den,env) are equidis-
tributed over Sn. Here den is Denert’s statistic. In particular, this
implies the equidistribution of (exc, inv) and (des,mad). These bis-
tatistics are not equidistributed with the classical Euler-Mahonian
statistic (des,maj). The proof of the main result is by means of a
bijection which is essentially equivalent to several bijections in the
literature (or inverses of these). These include bijections defined by
Foata and Zeilberger, by Françon and Viennot and by Biane, between
the symmetric group and sets of weighted Motzkin paths. These bijec-
tions are used to give a continued fraction expression for the generating
function of (exc, inv) or (des,mad) on the symmetric group.

1 Introduction

The subject of permutation statistics, it is frequently claimed, dates back at
least to Euler [7]. However, it was not until MacMahon’s extensive study
[19] at the turn of the century that this became an established discipline of
mathematics, and it was to take a long time before it developed into the vast
field that it is today.

In the last three decades or so, much progress has been made in discover-
ing and analyzing new statistics. See for example [9, 10, 12, 13, 14, 22, 24, 26].
Inroads have also been made in connecting permutation statistics to various
geometric structures and to the classical theory of hypergeometric functions,
as in [8, 15, 16, 20].

MacMahon considered four different statistics for a permutation π: The
number of descents (desπ), the number of excedances (exc π), the number of
inversions (inv π), and the major index (maj π). These are defined as follows:
A descent in a permutation π = a1a2 · · · an is an i such that ai > ai+1, an
excedance is an i such that ai > i, an inversion is a pair (i, j) such that i < j
and ai > aj, and the major index of π is the sum of the descents in π. (In
fact, MacMahon studied these statistics in greater generality, namely over the
rearrangement class of an arbitrary word w with possibly repeated letters.
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However, although all of our present results except those of section 3 can be
generalized to words, and this will be done in a subsequent publication, [4],
we restrict our attention here to permutations.)

MacMahon showed, algebraically, that exc is equidistributed with des, and
that inv is equidistributed with maj, over Sn. That is to say,∑

π∈Sn
texcπ =

∑
π∈Sn

tdes z and
∑
π∈Sn

qINV π =
∑
π∈Sn

qMAJπ.

The first combinatorial proof of these equidistribution results were given by
Foata (see [10]).

Any permutation statistic that is equidistributed with “des” is said to be
Eulerian and a permutation statistic that is equidistributed with inv is said
to be Mahonian (see [9]). Most of the permutation statistics found in the
literature fall into one of these two categories; they are either Eulerian or
Mahonian.

Curiously, new Eulerian statistics have not become prominent since Mac-
Mahon’s definition of des and exc, whereas new Mahonian statistics are con-
stantly entering the scene. Proving directly that a statistic is Mahonian is by
no means always trivial, and there are still many such statistics for which no
direct proof exists. What is more interesting, however, is the study of pairs of
statistics, usually an Eulerian one and a Mahonian one, and equidistribution
of such bistatistics, first developed in [9].

The first pair of equidistributed Euler-Mahonian bistatistics to be dis-
covered was that of (des, inv) and (des, imaj), where imaj π is the major
index of the inverse of the permutation π (see [13]). Although instrumental
in some of the analytic developments of the subject, this discovery cannot
be extended to words with repetition of letters. In addition, the purists
among us are reluctant to admit to the Euler-Mahonian club a pair of pairs
that really is only a triple. Thus, they would recommend that (des, inv) be
accompanied by exc and a suitable Mahonian partner.

The first discovery of a proper pair of equidistributed Euler-Mahonian
bistatistics is only a few years old, and it came from a rather unexpected
direction. Denert [6], in 1990, conjectured that the pair (des,maj) was
equidistributed with the pair (exc,den), where den is a Mahonian statistic
somewhat related to, but crucially different from, inv. Shortly afterwards,
her conjecture was proved by Foata and Zeilberger [14], who named the new
statistic “Denert’s statistic”. In the process, Foata and Zeilberger defined
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yet another Mahonian statistic on permutations, which they called mak,
and which, when taken together with des, they showed to be equidistributed
with (exc,den).

It is fair to say that the discovery of Denert’s statistic paved the way to
the more esoteric reaches of Mahonian statistics, because it was the first such
statistic to be composed of “smaller” partial statistics. Since then, many such
composite Mahonian statistics have been discovered, and most of these are
treated here.

The pairs of bistatistics (exc,den), (des,maj) vs. (exc,den), (des,mak)
were the first proper pairs of Euler-Mahonian statistics to be shown equidis-
tributed over the symmetric group, and they are, to the best of our knowl-
edge, the only ones preceding the present paper. It is possible to vary the
definition of mak slightly, as will be made clear later, to obtain a new statis-
tic. However, the bistatistics obtained are equidistributed with each other,
and this is easy to show.

—————

In the present paper, we define some new Mahonian statistics and redefine
many of the existing ones, with an eye to illuminating their common prop-
erties and thus also their differences. Doing this allows us to recover some
of the known instances of equidistribution among Euler-Mahonian pairs, and
to prove the equidistribution of two new pairs introduced, as well as that of
some similiar, but not equal, pairs of bistatistics. We do this simultaneously
for all the statistics involved, by means of a single, simply described bijection.

All of our constructions, and some of our statistics, have appeared pre-
viously, in the work of several authors and in many different guises. They
have involved Motzkin paths, binary trees, and even more exotic structures.
As we will show, the bijections in the literature pertaining to these statistics,
those of Foata–Zeilberger, Françon–Viennot [15], de Médicis–Viennot [20],
Simion–Stanton [24] and Biane [1], defined in different ways and for different
purposes, are all essentially the same, or inverses of each other. These bi-
jections are equivalent to the bijection of this paper, but their relationships
with each other have not before been elucidated.

Perhaps the most interesting fact to emerge is the equidistribution of
the two bistatistics (des,mad) and (exc, inv), where mad is one of our
new statistics. The latter bistatistic, whose components are classical, is
not equidistributed with (des,maj) and might therefore, together with its
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equidistributed mates, be classified as an “Euler-Mahonian pair of the second
kind.” In fact there exist at least three different families of Euler-Mahonian
statistics. The first one, containing (des,maj), (des,mak), and (exc,den),
has been extensively studied, both analytically and bijectively. For the fam-
ily containing (des, inv) and (des, imaj), only the analytic branch has seen
substantial development (see [11]). The bijective theory of the family with
(des,mad) and (exc, inv) is thoroughly analyzed in the present paper, but
its analytic properties remain to be further elicited.

It is, of course, possible to define scores of different families of Euler-
Mahonian statistics by arbitrarily combining an Eulerian statistic and a Ma-
honian one. Although some needles are sure to be found in that haystack,
most of the possible such statistics seem rather unattractive, and unlikely to
possess particularly interesting properties.

An essential feature of our bijection is that it simultaneously preserves
each of several building blocks of the statistics involved. This allows us to
derive the equidistribution of the triples of statistics (des,mak,mad) and
(exc,den, inv), involving Mahonian statistics of both the first and second
kind.

—————

In the rest of this section we will present the formal definitions of our
statistics and state the main results and indicate precisely the relationship
between our statistics and those previously defined. These results will be
proved in sections 2 and 3. In section 4 we present some variations and
generalizations on our statistics.

1.1 Definitions and main results

We consider the set SA of all permutations π = a1a2 · · · an on a totally
ordered alphabet A. Although it is not necessary, we always take A to be
the interval [n] = {1, 2, . . . , n}. Thus, we consider permutations in Sn.

The biword associated to a permutation π = a1a2 . . . an is

π̃ =
(

1 2 · · · n
a1 a2 · · · an

)
This notation will be adhered to throughout, that is, if π is a permutation,

then π̃ has the above meaning.

5



Definition 1 Let π ∈ Sn. A descent in π is an integer i with 1 ≤ i < n
such that ai > ai+1. Here ai is called the descent top and ai+1 is called the
descent bottom. An excedance in π is an integer i with 1 ≤ i ≤ n such that
and ai > i. Here ai is called the excedance top. The number of descents in
π is denoted by des π, and the number of excedances is denoted by exc π.

The descent set of π, D(π), is the set of descents. The excedance set of
π, E(π), is the set of excedances.

Given a permutation π = a1a2 · · · an, we separate π into its descent blocks
by putting in dashes between ai and ai+1 whenever ai ≤ ai+1. A maximal
contiguous subword of π which lies between two dashes is a descent block. A
descent block is an outsider if it has only one letter, otherwise it is a proper
descent block. The leftmost letter of a proper descent block is its closer and
the rightmost letter is its opener. A letter which lies strictly inside a descent
block is an insider. For example, the permutation 1 8 5 2 6 7 9 3 4 has descent
block decomposition 1−8 5 2−6−7−9 3−4, with closers 8, 9, corresponding
openers 2, 3, outsiders 1, 6, 7, 4 and insider 5. We will frequently write a
permutation π with its separating dashes to emphasize this structure.

Let B be a proper descent block of the permutation π and let c(B) and
o(B) be the closer and opener, respectively, of B. If a is a letter of w, we
say that a is embraced by B if c(B) > a > o(B).

Definition 2 Let π = a1a2 · · · an be a permutation. The (right) embracing
numbers of π are the numbers e1, e2, . . . , en, where ei is the number of descent
blocks in π that are strictly to the right of ai and that embrace ai. The right
embracing sum of π, denoted by Res π, is defined by

Res π = e1 + e2 + · · ·+ en.

For instance, the embracing numbers of π = 4 1 − 7 − 8 2 − 5 − 6 3 are
2 0− 1− 0 0− 1− 0 0, so Res π = 4.

One can obviously define Les π in an analogous way, by simply replacing
“right” by “left” in the above definition. (See section 4.)

Definition 3 The descent bottoms sum of a permutation π = a1a2 · · · an,
denoted by Dbotπ, is the sum of the descent bottoms of π. The descent tops
sum of π, denoted by Dtopπ, is the sum of the descent tops of π. The descent
difference of π is

Ddif π = Dtopπ −Dbotπ.
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Otherwise expressed, Ddif π is the sum of closers minus the sum of openers of
descent blocks. As an example, for π = 4 1−2−6 5 3−7, Dbotπ = 1+5+3 =
9, Dtopπ = 4 + 6 + 5 = 15 and Ddif π = 15− 9 = (4 + 6)− (1 + 3) = 6.

Definition 4 The excedance bottoms sum of a permutation π = a1a2 · · · an,
denoted by Ebotπ, is the sum of the excedances of π. The excedance tops
sum of π, denoted by Etopπ, is the sum of the excedance tops of π. The
excedance difference of π is

Edif π = Etop π − Ebotπ.

The excedance subword of π, denoted by πE, is the permutation consisting of
all the excedance tops of π, in the order induced by π. The non-excedance
subword of π, denoted by πN, consists of those letters of π that are not ex-
cedance tops.

For example, let π = 6 5 4 3 7 1 2, so

π̃ =
(

1 2 3 4 5 6 7
6 5 4 3 7 1 2

)
.

Then πE = 6 5 4 7 and πN = 3 1 2. Also, Ebotπ = 1 + 2 + 3 + 5 = 11,
Etopπ = 6 + 5 + 4 + 7 = 22 and Edif π = 22− 11 = 11.

Definition 5 An inversion in a permutation π = a1a2 · · · an is a pair (i, j)
such that i < j and ai > aj. The number of inversions in π is denoted by
inv π.

The reason we spell inv with all capital letters is that inv is a Mahonian
statistic. We do this consistently throughout the paper, that is, all Mahonian
statistics are spelled with uppercase letters. The two Eulerian statistics, exc
and des, are spelled with lowercase letters, while “partial statistics” (such as
Res), used in the definitions of Mahonian statistics, are merely capitalized.

Definition 6 Let π = a1a2 · · · an be a permutation and i an excedance in π.
We say that ai is the bottom of d inversions if there are exactly d letters in π
to the left of ai that are greater than ai, and we call d the inversion bottom
number of i. Similarly, if i is a non-excedance in π and there are exactly d
letters smaller than ai and to the right of ai in π, then we say that d is the
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inversion top number of i. The side number of i in π is the inversion bottom
number or the inversion top number of i in π, according as i is an excedance
or not in π. The sequence of side numbers of π is the sequence s1, s2, . . . , sn
where si is the side number of i.

For example, let π = 6 5 4 3 7 1 2 as before, with πE = 6 5 4 7 and πN = 3 1 2.
Then the inversion bottom numbers of the excedances in π are 0, 1, 2, 0 and
the inversion top numbers of the non-excedances in π are 2, 0, 0. Hence the
sequence of side numbers of π is 0, 1, 2, 2, 0, 0, 0.

Note that if i is an excedance of the permutation π, then any letter in
π that is to the left of ai and greater than ai must also be an excedance.
Hence, the sum of the inversion bottom numbers of the letters in πE equals
the total number of inversions in πE, that is, inv πE. Similarly, the sum of
the inversion top numbers of the letters in πN equals inv πN.

Definition 7 Let π be a permutation. Then

Ine π = inv πE + inv πN.

Hence, from the remark preceding definition 7, we have

Ine π = s1 + · · ·+ sn. (1)

We now define the four Mahonian statistics central to this paper. All
these statistics have been more or less introduced in the litterature in different
ways (see [14, 20, 24, 21] and section 1.2), but we redefine them here in a
way suitable to generalize to words).

Definition 8 Let π be a permutation. Then

makπ = Dbotπ + Resπ.

mad π = Ddif π + Resπ.

den π = Ebotπ + Ine π.

env π = Edif π + Ine π.

As it turns out, our statistic env equals the classical inv. It may seem
superfluous to redefine inv in this way, but it turns out that env’s similarity
in definition to mad is crucial in proving our main results.

We now describe the main results of this paper.
In section 1.2 we will prove the result referred to above.
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Proposition 1 For any permutation π we have env π = inv π = invMV π.

Here invMV is a statistic, first defined by de Médicis and Viennot, that will
be defined below.

In section 2 we will define a mapping Φ on Sn and prove the following
result.

Proposition 2 For any permutation π, we have

(des,Dbot,Ddif,Res) π = (exc,Ebot,Edif, Ine) Φ(π),

(des,mad,mak) π = (exc, inv,den) Φ(π).

By showing that Φ is a bijection, we deduce the following theorem.

Theorem 3 The quadristatistics

(des,Dbot,Ddif,Res) and (exc,Ebot,Edif, Ine)

are equidistributed over the symmetric group Sn. That is,∑
π∈Sn

tdesπxDbotπyDdif πqResπ =
∑
π∈Sn

texcπxEbotπyEdif πqIneπ.

Hence the triple (des,mad,mak) is equidistributed with (exc, inv,den) over
Sn.

In section 3, we shall make evident the relation between our bijection
Φ and some well-known bijections between the symmetric group Sn and
weighted Motzkin paths. As a by-product, we will obtain a continued fraction
expansion, equation (14), for the ordinary generating function of

Dn(x, q) =
∑
π∈Sn

xdesπqmadπ,

and then derive a symmetric property of Dn(x, q), see Corollary 10.

1.2 Links to the past

Some Mahonian statistics on Sn equivalent or similar to our env and mad

have been given by Simion and Stanton [24] and by de Médicis and Viennot
[20], and more recently by Randrianarivony [21].
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More precisely, de Médicis and Viennot introduced a statistic which we
denote by invMV and which can be defined in our notation by

invMV π = Ine π + #{(i, j) | i ≤ j < π(i), π(j) > j}
+ #{(i, j) | π(i) < π(j) ≤ i, π(j) ≤ j}. (2)

However, their proof that inv equals invMV is fairly complicated, and can
be compared to that of the equivalence of the two definitions of den given
in [14]. Another proof that inv equals invMV was given by Randrianarivony
[21], who used Motzkin paths and the bijection of Foata and Zeilberger. In
[2], Clarke gave a short proof of the equivalence of the two definitions of den,
using equation (7) below. Here we will give a short proof of the results of de
Médicis and Viennot and of Clarke, as well as of Proposition 1.

Lemma 4 For any permutation π = a1a2 · · · an we have∑
i∈E(π)

(ai − i) =
∑

i∈E(π)

#{ j | i < j, ai > aj, j /∈ E(π) }. (3)

Proof: The right-hand side equals∑
i∈E(π)

(#{ j | i < j, ai > aj } −#{ j | i < j, ai > aj, j ∈ E(π) }) . (4)

Now,

ai − i = #{ j | aj < ai } −#{ j | j < i}
= #{ j | j > i, aj < ai } −#{ j | j < i, aj > ai }. (5)

Hence, comparing (4) and (5), we must show that∑
i∈E(π)

#{ j | i < j, ai > aj, j ∈ E(π) } =
∑

i∈E(π)

#{ j | j < i, aj > ai }. (6)

Clearly, each of the sums in equation (6) is inv πE.

Lemma 5 For any permutation π = a1a2 · · · an we have

#{(i, j) | i ≤ j < ai, aj > j} = #{(i, j) | ai < aj ≤ i, aj > j}, (7)

#{(i, j) | i ≤ j < ai, aj ≤ j} = #{(i, j) | ai < aj ≤ i, aj ≤ j}. (8)
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Proof: Notice that∑
i∈E(π)

(ai − i) = #{(i, j) | i ≤ j < ai}

= #{(i, j) | i < j < ai, aj ≤ j} (9)

+ #{(i, j) | i ≤ j < ai, aj > j},

and the right-hand side of (3) equals

#{(i, j) | i < j < ai, aj ≤ j}+ #{(i, j) | i < ai, aj < ai ≤ j}.

Identity (7) follows then from Lemma 4. On the other hand, it is not hard
to see that

∑
i∈E(π)(ai − i) can be written as

#{(i, j) | i ≤ j < ai} = #{(i, j) | ai < j ≤ i} = #{(i, j) | ai < aj ≤ i}.

Identity (8) follows immediately from (7).

Identity (7) is that of Clarke [2].

Proof of Proposition 1: The first equality follows immediately from the
first part of Lemma 4. Comparing definition (2) with equation (9), it follows
from (8) that invMV π = env π.

On the other hand, de Médecis and Viennot [20, Proposition 6.2] gave
a Mahonian statistic they called “lag” (but which we call lag, for the sake
of consistency). It can be defined as follows: Given a permutation π =
a1a2 · · · an, let

π′ = (n+ 1)a1a2 · · · an0 ∈ Sn+2

and let Run π be the number of descent blocks in π. Then

lag π = Ddif π′ + Les π′ − Runπ − n.

It is not hard to see that lag π = mad πr, where πr = anan−1 · · · a1.
We define the dual of a permutation π = a1a2 · · · an ∈ Sn as the permu-

tation π∗ = b1b2 · · · bn, where bi = n + 1 − ai for 1 ≤ i ≤ n. Simion and
Stanton [24] use notions dual to ours, with ascents instead of descents, and
embracing by ascent blocks, which they call “runs”. They also use the notion
of left embracing. Their statistic, translated into our dual setting, is

sist π = n− Runπ + 2 Les π + Res π
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(see Theorem 2 in [24]), so, since n− Runπ = des π, we have

sist π = des π + 2 Les π + Resπ.

A counterpart of this statistic, namely

sist
′ π = des π + 2 Res π + Les π,

whose dual was also defined by Simion and Stanton, is readily seen to equal
mad, because of the identity:

Ddif π = des π + Resπ + Les π.
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2 The bijection Φ

Before proving Proposition 2 and Theorem 3, we describe the construction
of a bijection Φ : Sn → Sn which takes a permutation π to a permutation
τ such that the set of descent tops in π equals the set of excedance tops
in τ and the set of descent bottoms in π equals the set of excedances in τ .
Moreover, the embracing numbers of π are preserved in a way that we now
describe.

Observe that, since the letters of a permutation are distinct, we can refer
to the i-th embracing number ei of the permutation π as the embracing
number of the letter ai in π, and we will then denote ei by e(ai). Similarly,
we may if we wish denote the i-th side number of π by d(ai).

We will construct τ = Φ(π) in such a way that the embracing number of
a letter ai in π is the side number of ai in τ .

Given a permutation π, we first construct two biwords,
(
f
f ′

)
and

(
g
g′

)
,

and then form the biword τ ′ =
(
f g
f ′ g′

)
by concatenating f and g, and f ′

and g′, respectively. The permutation f is defined as the subword of descent
bottoms in π, ordered increasingly, and g is defined as the subword of non-
descent bottoms in π, also ordered increasingly. The permutation f ′ is the
subword of descent tops in π, ordered so that the inversion bottom number
of a letter a in f ′ is the embracing number of a in π, and g′ is the subword of
non-descent tops in π, ordered so that the inversion top number of a letter b
in g′ is the embracing number of b in π. Rearranging the columns of τ ′, so
that the top row is in increasing order, we obtain the permutation τ = Φ(π)
as the bottom row of the rearranged biword.

Example 1 Let π = 4 1− 2− 7− 9 6 5− 8 3, with embracing numbers 1,
0, 0, 2, 0, 1, 1, 0, 0. Then(

f
f ′

)
=
(

1 3 5 6
8 4 6 9

)
,
(
g
g′

)
=
(

2 4 7 8 9
1 2 7 5 3

)
, τ ′ =

(
1 3 5 6 2 4 7 8 9
8 4 6 9 1 2 7 5 3

)

and thus Φ(π) = τ = 8 1 4 2 6 9 7 5 3. It is easily checked that the descent
tops and descent bottoms in π are the excedance tops and excedances in τ ,
respectively, and that the embracing number of each letter in π is the side
number of the same letter in τ .

13



Proof of Proposition 2: Assuming that the construction of f ′ and g′ can
be carried out in the way described, and such that f ′ = τE and g′ = τN, it is
clear that the excedance tops and excedances in τ are the descent tops and
descent bottoms, respectively, in π, and that

Res π = inv τE + inv τN = Ine τ.

As a consequence, we have

(des,Dbot,Ddif,Res) π = (exc,Ebot,Edif, Ine) Φ(π).

To complete the proof, we need to show two things. Firstly, that f ′ and g′

can be constructed so that the inversion bottom numbers and the inversion
top numbers of f ′ and g′ respectively are those claimed, and, secondly, that
f ′ = τE (and thus g′ = τN).

Let a be the least descent top in π. Then, if the embracing number of a
in π is k, there are k descent blocks in π to the right of a that embrace a.
Thus, there are at least k descent tops in π that are larger than a, namely
the closers of the descent blocks embracing a. Also, there are at least k + 1
descent bottoms in π that are smaller than a, namely the openers of the
descent blocks embracing a, together with the opener of the descent block
containing a. If we put a in the (k+ 1)–st place in f ′ from the left, then the
inversion bottom number of a in f ′ is k as desired, and the (k + 1)–st place
does exist in f ′, because, as pointed out, there are at least (k + 1) descent
bottoms, and thus at least (k + 1) descent tops, in π if a has embracing
number k.

Moreover, the same argument shows that a is larger than the (k + 1)–st
letter in f , because the first (k + 1) letters in f are descent bottoms in π
that are smaller than a. Hence, a is an excedance in τ . If we now remove the
letter a from f ′ and its corresponding descent bottom, the (k + 1)–st letter
of f , from f , then we can repeat the argument, appealing to induction, to
show that f ′ can be constructed in the way described. That is, so that each
letter x in f ′ is an excedance top in τ whose inversion bottom number equals
the embracing number of x in π. An analogous argument shows that g′ can
be constructed as claimed, and so that each letter in g′ is not an excedance
top in τ .

In order to prove Theorem 3, we must show that Φ is a bijection. Since
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Φ is a map from a finite set to itself, it suffices to show Φ injective, but in
the process we will, in fact, construct an inverse to Φ.

We introduce the idea of the skeleton of a permutation. This is closely
related to the idea of “gravid permutation” introduced by Foata and Zeil-
berger [7]. We first adjoin to the positive integers a symbol ∞ such that
a <∞ for any positive integer a.

Definition 9 Let n be a positive integer. A block is a subset B of [n] ∪∞
such that B ∩ [n] 6= ∅. The block B is called open if ∞ ∈ B, closed if ∞ /∈ B
and improper if |B| = 1. The opener, o(B), of B is the smallest element of
B, the closer, c(B), of B is the largest element of B.

A skeleton is a sequence S = B1 − B2 − . . .− Br of blocks such that any
pair of blocks intersect in at most {∞}. The skeleton S is valid if for each i
with 1 ≤ i < n we have o(Bi) < c(Bi+1).

Definition 10 Let π ∈ Sn be a permutation with descent block decomposition
B1 − B2 − · · · − Br. Let 1 ≤ a ≤ n. The a-skeleton of π is the sequence of
blocks obtained by

• deleting any descent block B of π for which o(B) > a;

• replacing any remaining letter of π that is greater than a by ∞;

• replacing each remaining descent block (which is a sequence of ele-
ments) by its underlying set.

For example, if π = 3 1 − 6 − 7 5 − 9 8 4 2, the 4-skeleton of π is the
sequence {1, 3} − {2, 4,∞}, which we will write as 3 1−∞ 4 2.

It is clear that one can recover π from its n-skeleton.

Lemma 6 Let π ∈ Sn. For any a with 1 ≤ a ≤ n, the a-skeleton of π is
valid.

Proof: We use downwards induction on a, knowing that the result is true for
the n-skeleton. Suppose it is true for a. To obtain the (a− 1)-skeleton from
the a-skeleton, we merely replace a by ∞ in the block B in which it occurs
and delete that block if it now contains only ∞. But as the a-skeleton is
valid and a is the largest finite element occuring in it, a block {a,∞} or {a}
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can only occur as the last block in the a-skeleton, in which case its deletion
will not cause invalidity.

The following result is easy to see.

Lemma 7 The embracing number of the letter a in π equals the number of
open blocks to the right of the block containing a in the a-skeleton of π.

Proof of Theorem 3: We show that Φ is an injection by showing that,
given a permutation τ in the image of Φ, there is at most one permutation
π such that Φ(π) = τ . Given such a τ , it is clear what the associated

biword
(
f g
f ′ g′

)
must be. Namely,

(
f
f ′

)
consists of those columns of τ̃ that

represent excedances in τ , and
(
g
g′

)
consists of the remaining columns of τ̃ .

Now denote by F , F ′, G and G′ the sets whose elements are the letters of f ,
f ′, g and g′ respectively. Then we can identify the openers of π as the letters
in F ∩G′, the closers as the letters in F ′ ∩G, the insiders as those in F ∩F ′
and the outsiders as those in G ∩G′. As we can calculate the side numbers
of τ , we know the embracing numbers of π. We will show how to construct
successively the 1-, 2-, . . . , n-skeletons of π.

The 1-skeleton of π is either {1} or {1,∞}, according as 1 is an outsider
or an opener. Suppose that the (a− 1)-skeleton S = B1−B2− . . .−Br of π
has been constructed. To construct the a-skeleton of π we must insert a in
the correct place in S. Let the embracing number of a in π be e. Let Bi be
the (e+ 1)-st open block from the right in S. If a is an insider or a closer in
π then, by Lemma 7, a must be inserted into Bi, and if a is a closer then Bi

must be closed by the removal of its∞. Suppose that a is an outsider. Then
the improper block B = {a} must be inserted immediately to the left of Bi.
For if B is inserted to the left of Bi−1 then either the resulting skeleton will
be invalid or Lemma 7 will be violated. Similarly, if a is an opener, the open
block {a,∞} must be inserted immediately before Bi.

After the n-skeleton of π has been constructed, we can immediately con-
struct π. Hence there is at most one permutation π such that Φ(π) = τ .
Hence, Φ is injective, and so a bijection, and its inverse is defined by the
construction just described.

The equidistribution of (des, Dbot, Ddif, Res) and (exc, Ebot, Edif,
Ine) now follows from Proposition 2 and the fact that Φ is a bijection. As
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inv = env, the equidistribution of (des, mak, mad) with (exc, den, inv)
follows from the definitions of the Mahonian statistics involved, since each is
the sum of two of the partial statistics Dbot, Ddif, Res and Ebot, Edif, Ine,
respectively.

Example 2 Let τ = 8 1 4 2 6 9 7 5 3, so(
f
f ′

)
=
(

1 3 5 6
8 4 6 9

)
,
(
g
g′

)
=
(

2 4 7 8 9
1 2 7 5 3

)
, τ ′ =

(
1 3 5 6 2 4 7 8 9
8 4 6 9 1 2 7 5 3

)
.

For clarity, we now rewrite τ ′ with a bar separating f from g and f ′ from g′,
and we write the inversion bottom and inversion top numbers in f ′ and g′

respectively as subscripts of their corresponding letters, omitting those that
are zero.

τ ′ =
(
f | g
f ′ | g′

)
=

(
1 3 5 6 | 2 4 7 8 9
8 41 61 9 | 1 2 72 51 3

)
.

The sequence of k-skeletons, for k = 1, 2, . . . , 9, of our required permutation
π is:

∞ 1;

∞ 1− 2;

∞ 1− 2−∞ 3;

4 1− 2−∞ 3;

4 1− 2−∞ 5−∞ 3;

4 1− 2−∞ 6 5−∞ 3;

4 1− 2− 7−∞ 6 5−∞ 3;

4 1− 2− 7−∞ 6 5− 8 3;

4 1− 2− 7− 9 6 5− 8 3.

Hence
π = 4 1− 2− 7− 9 6 5− 8 3.
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3 Motzkin paths and a continued fraction ex-

pansion

A Motzkin path, informally, is a connected sequence of n line segments, or
“steps,” in the first quadrant of R2, starting out from the origin in R2 and
ending at (0, n). The steps are of four different types, northeast steps (N)
going from (a, b) to (a+1, b+1), southeast (S) going from (a, b) to (a+1, b−1)
and solid/dotted east steps (E,dE), from (a, b) to (a + 1, b) (see Figure 1).
Formally, a Motzkin path is defined as follows.

Definition 11 A Motzkin path is a word w = c1c2 · · · cn on the alphabet
{N, S,E, dE} such that for each i the level hi of the i-th step, defined by

hi = #{j|j < i, cj = N} −#{j|j < i, cj = S},

is non-negative, and equal to zero if i = n.

Definition 12 A weighted Motzkin path of length n is a pair (c, d), where
c = c1 · · · cn is a Motzkin path of length n, and d = (d1, . . . , dn) is a sequence
of integers such that

0 ≤ di ≤
{
hi if ci ∈ {N,E},
hi − 1 if ci ∈ {S, dE}.

The set of weighted Motzkin paths of length n is denoted by Γn.

Françon and Viennot [15] gave the first bijection ΨFV between Sn and Γn.
Here we describe one variant of this bijection.

Definition 13 Let π = a1 · · · an ∈ Sn and set a0 = 0 and an+1 = n+ 1. For
1 ≤ i ≤ n we say that ai is a

• linear double ascent (outsider) if ai−1 < ai < ai+1;

• linear double descent (insider) if ai−1 > ai > ai+1;

• linear peak (closer) if ai−1 < ai > ai+1;

• linear valley (opener) if ai−1 > ai < ai+1.
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Figure 1

The bijection ΨFV of Françon and Viennot

Given a permutation π ∈ Sn, determine the right embracing number ei for
each i ∈ [n]. Form the weighted Motzkin path (c, d) = ΨFV(π) by setting
dπ(i) = ei and by defining ci as follows:

• if i is a linear double descent, then ci = dE;

• if i is a linear double ascent then ci = E;

• if i is a linear peak then ci = S;

• if i is a linear valley then ci = N.

For example, if π = 6 1− 8 7 4 2− 5− 9 3, then the corresponding weighted
Motzkin path ΨFV(π) = (c, d) is shown in Figure 1.

The bijection ΨFZ of Foata and Zeilberger

In [14] Foata and Zeilberger gave another bijection from Sn to Γn, which can
be described by the following example.

Start with a permutation π, say, π = 9 4 7 6 1 2 8 5 3, so

π̃ =
(

1 2 3 4 5 6 7 8 9
9 4 7 6 1 2 8 5 3

)
.

As in section 2, separate π̃ into two biwords corresponding to πE and πN to
get (

f
f ′

)
=
(

1 2 3 4 7
9 4 7 6 8

)
,

(
g
g′

)
=
(

5 6 8 9
1 2 5 3

)
.
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Form the weighted Motzkin path (c, d) = ΨFZ(π) as follows: Let s1, s2, . . . , sn
be the sequence of side numbers of π (see Definition 6) and put

dπ(i) = si for i = 1, 2, . . . , n. (10)

Let

ci =


dE, if i ∈ F ∩ F ′,
E, if i ∈ G ∩G′,
S, if i ∈ F ′ ∩G,
N, if i ∈ F ∩G′.

Here we have d = (0, 0, 0, 1, 1, 2, 1, 1, 0) and

F ∩F ′ = {4, 7}, G∩G′ = {5}, F ′ ∩G = {6, 8, 9}, F ∩G′ = {1, 2, 3}.

Definition 14 For π ∈ Sn and i ∈ [n], we say that i is a

• cyclic double ascent if π−1(i) < i < π(i);

• cyclic double descent if π−1(i) ≥ i ≥ π(i);

• cyclic peak if π−1(i) < i > π(i);

• cyclic valley if π−1(i) > i < π(i).

Note that the four sets F ∩ F ′, G ∩ G′, F ′ ∩ G and F ∩ G′ correspond
respectively to cyclic double ascents, cyclic double descents, cyclic peaks and
cyclic valleys of π. The corresponding weighted Motzkin path is the same
as in Figure 1. We note that ΨFV = ΨFZ ◦ Φ. In other words, we have the
commutative diagram in Figure 2.

Biane’s bijection

In [1], Biane gave a bijection similar to ΨFZ which we now describe.

Definition 15 A labeled path of length n is a pair (c, ξ), where c = c1 · · · cn
is a Motzkin path of length n, and ξ = (ξ1, . . . , ξn) is a sequence such that

ξi ∈


{∆}, if ci = N,
{0, . . . , hi}, if ci = dE or E,
{0, . . . , hi − 1}2, if ci = S.
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Biane’s bijection is from the labeled paths of length n to Sn. Using the
same notation as in the description of ΨFZ, the inverse of Biane’s bijection
can be summarized as follows. Let d1, d2, . . . , dn be the sequence of numbers
calculated using equation (10) from the side numbers of π. Note that Biane
gave a recursive algorithm to compute these numbers but did not point out
that they are actually the side numbers of π, that is the inversion bottom
and inversion top numbers in f ′ and g′ respectively. Form the labeled path
(c, ξ) thus:

• if i ∈ F ∩G′ (valley), let ci = N and ξi = ∆;

• if i ∈ F ∩ F ′ (double ascent), let ci = dE and ξi = di;

• if i ∈ G ∩G′ (double descent), let ci = E and ξi = dπ(i);

• if i ∈ F ′ ∩G (peak), let ci = S and ξi = (dπ(i), di).

The path is the same as for ΨFZ, the only difference being the distribution
of the side numbers associated to each step of the path. If we apply Biane’s
bijection to the permutation π above, we get the labeled path in Figure 3.

In [14], Foata and Zeilberger’s purpose with the bijection ΨFZ was to code
the den statistic by weighted Motzkin paths, in order to show that (exc,den)
was equidistributed with (des,maj). That ΨFZ also keeps track of the inv

statistic was first remarked by de Médicis and Viennot [20, Proposition 5.2].
They proved that

inv π =
n∑
i=1

hi +
n∑
i=1

di. (11)

In Biane’s bijection, on the other hand, the inv statistic is seen to equal

inv π =
n∑
i=1

(hi + |ξi|),
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where |ξ| = x + y if ξ = (x, y) and |ξ| = 0 if ξ = ∆. This is obviously
equivalent to (11).

Using the connections between Motzkin paths and permutations we have
described, we now give a continued fraction expansion for the generating
function Dn(x, q) =

∑
π∈Sn x

desπqMADπ.
For n ≥ 0 let [n]q = 1 + q + · · ·+ qn−1 and let

fn(x, p, q) =
∑
π∈Sn

xexcπqEdif πpIneπ.

Then, by Theorem 3, we also have

fn(x, p, q) =
∑
π∈Sn

xdesπqDdif πpResπ.

Theorem 8 The ordinary generating function of fn(x, p, q) has the following
Jacobi continued fraction expansion:

∑
n≥0

fn(x, p, q)tn =
1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

1− bnt−
λn+1t

2

. . .

,

where bn = qn(x[n]p + [n+ 1]p) and λn+1 = xq2n+1([n+ 1]p)
2 for n ≥ 0.
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Proof: For π ∈ Sn, if ΨFZ(π) = (c, d), then it is easy to see that

exc π =
∑
ci=N

1 +
∑
ci=dE

1,

Edif π =
∑
ci=S

i−
∑
ci=N

i =
n∑
i=1

hi,

Ine π =
n∑
i=1

di.

It follows that

fn(x, p, q) =
∑

(c,d)∈Γn

∏
ci=N

xqhipdi
∏
ci=S

qhipdi
∏

ci=dE

xqhipdi
∏
ci=E

qhipdi

=
∑
c∈Mn

∏
ci=N

xqhi [hi + 1]p
∏
ci=S

qhi [hi]p
∏

ci=dE

xqhi [hi]p
∏
ci=E

qhi [hi + 1]p,

where Mn is the set of all Motzkin paths of length n. The theorem then
follows by applying a result of Flajolet [8, Theorem 1].

Using the contraction formula

c0

1−
c1t

1−
c2t

. . .

= c0 +
c0c1t

1− (c1 + c2)t−
c2c3t

2

1− (c3 + c4)t−
c4c5t

2

. . .

, (12)

we immediately get the following Stieltjes continued fraction expansion for
the same generating function.

Corollary 9 We have∑
n≥0

fn(x, p, q)tn =
1

1−
t

1−
xqt

. . .

1−
qn−1[n]pt

1−
xqn[n]pt

. . .

. (13)
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k\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1
1 5 4 7 8 10 10 8 4 1
2 10 12 24 32 41 44 43 36 27 18 10 4 1
3 10 12 24 32 41 44 43 36 27 18 10 4 1
4 5 4 7 8 10 10 8 4 1
5 1

Table 1: [xkqm]Dn(x, q) for n = 6.

In particular, if Dn(x, q) =
∑
π∈Sn

xdesπqMADπ, then it follows from Corol-

lary 9, by putting p = q in the above equation, that

∑
n≥0

Dn(x, q)tn =
1

1−
t

1−
xqt

. . .

1−
qn−1[n]qt

1−
xqn[n]qt

. . .

. (14)

Note that the continued fraction expansion of the generating function of

Dn(x, q) =
∑
π∈Sn

xdesπqMADπ =
∑
π∈Sn

xexcπqINVπ

can also be derived from [20, Theorem 6.5].

Corollary 10 For 0 ≤ k ≤ n− 1 and 0 ≤ m ≤ n(n−1)
2

we have

[xkqk+m]Dn(x, q) = [xn−1−kqn−1−k+m]Dn(x, q), (15)

where [xkqm]Dn(x, q) is the coefficient of xkqm in the polynomial Dn(x, q).

Proof: Let Bn(x, q) = Dn(xq−1, q). Then (15) is equivalent to

[xkqm]Bn(x, q) = [xn−1−kqm]Bn(x, q). (16)
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From (14) and (12) we derive

∑
n≥1

Bn(x, q)tn =
t

1− (c1 + c2)t−
c2c3t

2

1− (c3 + c4)t−
c4c5t

2

. . .

, (17)

where c2n−1 = qn−1[n]q and c2n = xqn−1[n]q for n ≥ 0. Replacing x by 1/x
and t by xt in (17) we get

∑
n≥1

xn−1Bn(x−1, q)tn =
t

1− (c1 + c2)t−
c2c3t

2

1− (c3 + c4)t−
c4c5t

2

. . .

. (18)

Comparing (17) and (18) then yields Bn(x, q) = xn−1Bn(x−1, q), which is
clearly equivalent to (16).

To illustrate the above corollary, we give in Table 1 the number of permu-
tations corresponding to the values of (des,mad) when n = 6 and for clarity
we omit writing zeros.

4 Generalizations on our statistics

4.1 Left and right variations

Two new statistics madl and makl are defined for a permutation π as
follows.

Definition 16

madl π = Ddif π + Les π.

makl π = Dbotπ + Les π.

Recall that Lesπ is the sum of the left embracing numbers of π, defined by
replacing “right” by “left” in the definition of Resπ. (See Definition 2.)

The relationship between these statistics and mad and mak is based on
the following result, for the proof of which we refer the reader to [4].
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Proposition 11 There is an involution ε on Sn such that, for each π ∈ Sn,

(des,Dbot,Dtop,Res,Les) π = (des,Dbot,Dtop,Les,Res) ε(π).

In particular,

mad π = madl ε(π),

makπ = makl ε(π).

The involution ε can be informally described as follows. Let π be a
permutation with descent block decompostion B1−B2−· · ·−Bk. Write the
descent blocks of π down in reverse order to give a permutation π′ = Bk −
Bk−1−· · ·−B1. Now this may not be the descent block decomposition of π′,
as new descents may have been introduced between adjacent descent blocks.
If o(B2) > c(B1), that is, if a new descent has been introduced between B2

and B1, then move block B2 to the right of B1 to get Bk−Bk−1−· · ·−B1−B2,
otherwise leave block B2 where it is. Now consider block B3. If there is a
descent between B3 and the block to its right, move B3 past that block.
Continue moving B3 to the right until there is no descent between it and the
block to its right. Continuing in this way we arrive at the permutation ε(π).

Example 3 If π = 3 1− 5 4 2− 7 6 with descent blocks B1 −B2 −B3 then
π′ = B3 −B2 −B1 = 7 6− 5 4 2− 3 1 and, as there is a descent between B3

and B2, we get successively 5 4 2− 7 6− 3 1 and ε(π) = 5 4 2− 3 1− 7 6.

It follows from Proposition 11 that the triple (des, madl, makl) is
equidistributed with the triple (des, mad, mak) on Sn.

4.2 Extensions to words

The two Mahonian statistics inv and den have already been generalized to
words [19, 17]. Indeed, all of the results in this paper except those in section
3 can be nicely extended to the case of words with repeated letters. (Al-
though we can code words with repeated letters to weighted Motzkin paths,
we cannot (yet) use this coding to obtain results analogous to Theorem 8.)
The definitions of our partial statistics Res, Dbot, etc., become more com-
plicated, but no essential difficulties ensue. This theory will be presented in
[4].
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4.3 Large and small letters

Various authors, for example [3, 18, 27], have considered statistics on words
and permutations in the context of an alphabet A = [m] in which the letters
are divided into two classes, large and small . Namely, for some k with
0 ≤ k ≤ m and for ` = m− k, the letters 1, 2, . . . , ` are designated small and
the letters `+1, . . . ,m are designated large. Then, for a word w = a1a2 · · · am,
a k-descent is an integer i such that one of the following conditions holds:

• 1 ≤ i < m and ai > ai+1;

• 1 ≤ i < m and ai = ai+1 > `;

• i = m and ai > `.

Then desk w equals the number of k-descents of w. One can similarly define
k-extensions of the other Eulerian and Mahonian statistics. The results of
the present paper can all be k-extended, as will be presented by the present
authors in a subsequent note [5].
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les permutations, J. de Math. 4 (1839), 236–240.

[24] S. Simion and D. Stanton: Specializations of generalized Laguerre poly-
nomials, SIAM J. Math. Anal. 25 (1994), 712–719.

[25] S. Simion and D. Stanton: Octabasic Laguerre polynomials and permu-
tation statistics, J. Comp. Appl. Math., to appear.

[26] R. Stanley: Binomial posets, Möbius inversion and permutation enu-
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