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Abstract. Combining results of T. K. Lam and J. Stembridge, the type C Stanley sym-
metric function FC

w pxq, indexed by an element w in the type C Coxeter group, has
a nonnegative integer expansion in terms of Schur functions. We provide a crystal
theoretic explanation of this fact and give an explicit combinatorial description of the
coefficients in the Schur expansion in terms of highest weight crystal elements.
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1 Introduction

Schubert polynomials of types B and C were independently introduced by Billey and
Haiman [1] and Fomin and Kirillov [6]. Stanley symmetric functions [15] are stable lim-
its of Schubert polynomials, designed to study properties of reduced words of Coxeter
group elements. In his Ph.D. thesis, T. K. Lam [12] studied properties of Stanley sym-
metric functions of types B (and similarly C) and D. In particular he showed, using
Kraśkiewicz insertion [10, 11], that the type B Stanley symmetric functions have a posi-
tive integer expansion in terms of P-Schur functions. On the other hand, Stembridge [16]
proved that the P-Schur functions expand positively in terms of Schur functions. Com-
bining these two results, it follows that Stanley symmetric functions of type B (and
similarly type C) have a positive integer expansion in terms of Schur functions.

Schur functions sλpxq, indexed by partitions λ, are ubiquitous in combinatorics and
representation theory. They are the characters of the symmetric group and can also be
interpreted as characters of type A crystals. In [13], this was exploited to provide a com-
binatorial interpretation in terms of highest weight crystal elements of the coefficients in
the Schur expansion of Stanley symmetric functions in type A. In this paper, we carry out
a crystal analysis of the Stanley symmetric functions FC

w pxq of type C, indexed by a Cox-
eter group element w. In particular, we use Kraśkiewicz insertion [10, 11] and Haiman’s
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mixed insertion [7] to find a crystal structure on primed tableaux, which in turn im-
plies a crystal structure Bw on signed unimodal factorizations of w for which FC

w pxq is a
character. Moreover, we present a type A crystal isomorphism Φ : Bw Ñ

À

λ B
‘gwλ

λ for
some combinatorially defined nonnegative integer coefficients gwλ; here Bλ is the type
A highest weight crystal of highest weight λ . This implies the desired decomposition
FC

w pxq “
ř

λ gwλsλpxq (see Corollary 23) and similarly for type B.
In Section 2, we review type C Stanley symmetric functions and type A crystals. In

Section 3 we describe our crystal isomorphism by combining a slight generalization of
the Kraśkiewicz insertion [10, 11] and Haiman’s mixed insertion [7]. The main result
regarding the crystal structure under Haiman’s mixed insertion is stated in Theorem 18.
The combinatorial interpretation of the coefficients gwλ is given in Corollary 23.

2 Background

2.1 Type C Stanley symmetric functions

The Coxeter group WC of type Cn (or Bn), also known as the hyperoctahedral group or
the group of signed permutations, is a finite group generated by ts0, s1, . . . , sn´1u subject
to the quadratic relations s2

i “ 1 for all i P I “ t0, 1, . . . , n´ 1u, the commutation relations
sisj “ sjsi provided |i ´ j| ą 1, and the braid relations sisi`1si “ si`1sisi`1 for all i ą 0
and s0s1s0s1 “ s1s0s1s0.

It is often convenient to write down an element of a Coxeter group as a sequence
of indices of si in the product representation of the element. For example, the element
w “ s2s1s2s1s0s1s0s1 is represented by the word w “ 2120101. A word of shortest length
` is referred to as a reduced word and `pwq :“ ` is referred as the length of w. The set of
all reduced words of the element w is denoted by Rpwq.

We say that a reduced word a1a2 . . . a` is unimodal if there exists an index v, such
that a1 ą a2 ą ¨ ¨ ¨ ą av ă av`1 ă ¨ ¨ ¨ ă a`. Consider a reduced word a “ a1a2 . . . a`pwq
of a Coxeter group element w. A unimodal factorization of a is a factorization A “

pa1 . . . a`1qpa`1`1 . . . a`2q ¨ ¨ ¨ pa`r`1 . . . aLq such that each factor pa`i`1 . . . a`i`1
q is unimodal.

Factors can be empty.
For a fixed Coxeter group element w, consider all reduced words Rpwq, and denote

the set of all unimodal factorizations for reduced words in Rpwq as Upwq. Given a
factorization A P Upwq, define the weight of a factorization wtpAq to be the vector
consisting of the number of elements in each factor. Denote by nzpAq the number of
non-empty factors of A.

Example 1. For the factorization A “ p2102qpqp10q P Ups2s1s2s0s1s0q, we have wtpAq “
p4, 0, 2q and nzpAq “ 2.
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Following [1, 6, 12], the type C Stanley symmetric function associated to w P WC is
defined as

FC
w pxq “

ÿ

APUpwq

2nzpAqxwtpAq. (2.1)

Here x “ px1, x2, x3, . . .q and xv “ xv1
1 xv2

2 xv3
3 ¨ ¨ ¨ . It is not obvious from the definition why

the above functions are symmetric. We refer reader to [2], where this fact follows easily
from an alternative definition. Type B Stanley symmetric functions are also labeled by
w P WC given by FB

wpxq “ 2´opwqFC
w pxq, where opwq is the number of zeroes in a reduced

word for w.

2.2 Type A crystal of words

Crystal bases [8] play an important role in many areas of mathematics. For example,
they make it possible to analyze representation theoretic questions using combinatorial
tools. Here we only review the crystal of words in type An and refer the reader for more
background on crystals to [3].

Consider the set of words Bh
n of length h in the alphabet t1, 2, . . . , n` 1u. We impose

a crystal structure on Bh
n by defining lowering operators fi and raising operators ei for

1 ď i ď n and a weight function. The weight of b P Bh
n is the tuple wtpbq “ pa1, . . . , an`1q,

where ai is the number of letters i in b. The crystal operators fi and ei only depend
on the letters i and i` 1 in b. Consider the subword bti,i`1u of b consisting only of the
letters i and i` 1. Successively bracket any adjacent pairs pi` 1qi and remove these pairs
from the word. The resulting word is of the form iapi` 1qb with a, b ě 0. Then fi changes
this subword within b to ia´1pi` 1qb`1 if a ą 0 leaving all other letters unchanged and
otherwise annihilates b. The operator ei changes this subword within b to ia`1pi` 1qb´1

if b ą 0 leaving all other letters unchanged and otherwise annihilates b. We call an
element b P Bh

n highest weight if eipbq “ 0 for all 1 ď i ď n.

Theorem 2. [9] A word b “ b1 . . . bh P Bh
n is highest weight if and only if it is a Yamanouchi

word. That is, for any index k with 1 ď k ď h the weight of a subword bkbk`1 . . . bh is a partition.

Two crystals B and C are said to be isomorphic if there exists a bijective map Φ : B Ñ
C that preserves the weight function and commutes with the crystal operators ei and fi.
A connected component X of a crystal is a set of elements where for any two b, c P X
one can reach c from b by applying a sequence of fi and ei.

Theorem 3. [9] Each connected component of Bh
n has a unique highest weight element. Fur-

thermore, if b, c P Bh
n are highest weight elements such that wtpbq “ wtpcq, then the connected

components generated by b and c are isomorphic.

We denote a connected component with a highest weight element of highest weight λ

by Bλ. The character of the crystal B is defined to be the polynomial χBpxq “
ř

bPB xwtpbq

in the variables x “ px1, x2, . . . , xn`1q.
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Theorem 4 ([9]). The character of Bλ is equal to the Schur polynomial sλpxq (or Schur function
in the limit n Ñ 8).

3 Crystal isomorphism

3.1 Kraśkiewicz insertion

In this section, we describe Kraśkiewicz insertion. To do so, we first need to define the
Edelman–Greene insertion [5]. It is defined for a word w “ w1 . . . w` and a letter k
such that the concatenation w1 . . . w`k is an A-type reduced word. The Edelman–Green
insertion of a letter k into an increasing word w “ w1 . . . w`, denoted by w ø k, is
constructed as follows:

1. If w` ă k, then w ø k “ w1, where w1 “ w1w2 . . . w` k.

2. If k ą 0 and k k` 1 “ wi wi`1 for some 1 ď i ă `, then w ø k “ k` 1 ø w.

3. Else let wi be the leftmost letter in w such that wi ą k. Then w ø k “ wi ø w1,
where w1 “ w1 . . . wi´1 k wi`1 . . . w`.

In the cases above, when w ø k “ k1 ø w1, the symbol k1 ø w1 indicates a word w1

together with a “bumped” letter k1.
Next we consider a reduced unimodal word a “ a1a2 . . . a` with a1 ą a2 ą ¨ ¨ ¨ ą av ă

av`1 ă ¨ ¨ ¨ ă a`. The Kraśkiewicz row insertion [10, 11] is defined for a unimodal word
a and a letter k such that the concatenation a1a2 . . . a`k is a C-type reduced word. The
Kraśkiewicz row insertion of k into a (denoted similarly as a ø k), is performed as
follows:

1. If k “ 0 and there is a subword 101 in a, then a ø 0 “ 0 ø a.

2. If k ‰ 0 or there is no subword 101 in a, denote the decreasing part a1 . . . av as d
and the increasing part av`1 . . . a` as g. Perform the Edelman-Greene insertion of k
into g.

(a) If a` ă k, then g ø k “ av`1 . . . a`k “: g1 and a ø k “ dg ø k “ d g1 “: a1.

(b) If there is a bumped letter and g ø k “ k1 ø g1, negate all letters in
d (call the resulting word ´d) and perform the Edelman-Greene insertion
´d ø ´k1. Note that there will always be a bumped letter, and so ´d ø

´k1 “ ´k2 ø ´d1 for some decreasing word d1. The result of the Kraśkiewicz
insertion is: a ø k “ drg ø ks “ drk1 ø g1s “ ´r´d ø ´k1s g1 “ rk2 ø

d1sg1 “ k2 ø a1, where a1 :“ d1g1.

Example 5. 31012 ø 0 “ 0 ø 31012, 31012 ø 1 “ 1 ø 32012.
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The insertion is constructed to “commute” a unimodal word with a letter: If a ø

k “ k1 ø a1, the two elements of the type C Coxeter group corresponding to the words
a k and k1a1 are the same.

The type C Stanley symmetric functions (2.1) are defined in terms of unimodal factor-
izations. To put the formula on a completely combinatorial footing, we need to treat the
powers of 2 by introducing signed unimodal factorizations. A signed unimodal factor-
ization of w P WC is a unimodal factorization A of w, in which every non-empty factor
is assigned either a ` or ´ sign. Denote the set of all signed unimodal factorizations of
w by U˘pwq.

For a signed unimodal factorization A P U˘pwq, define wtpAq to be the vector with
i-th coordinate equal to the number of letters in the i-th factor of A. Notice from (2.1)

FC
w pxq “

ÿ

APU˘pwq

xwtpAq. (3.1)

We will use the Kraśkiewicz insertion to construct a map between signed unimodal
factorizations of a Coxeter group element w and pairs of certain types of tableaux pP, Tq.
We define these types of tableaux next.

A shifted diagram Spλq associated to a partition λ with distinct parts is the set of
boxes in positions tpi, jq | 1 ď i ď `pλq, i ď j ď λi` i´ 1u. Here, we use English notation,
where the box p1, 1q is always top-left.

Let X˝n be an ordered alphabet of n letters X˝n “ t0 ă 1 ă 2 ă ¨ ¨ ¨ ă n ´ 1u, and
let X1n be an ordered alphabet of n letters together with their primed counterparts as
X1n “ t11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ ă n1 ă nu.

Let λ be a partition with distinct parts. A unimodal tableau P of shape λ on n letters
is a filling of Spλq with letters from the alphabet X˝n such that the word Pi obtained
by reading the ith row from the top of P from left to right, is a unimodal word, and
Pi is the longest unimodal subword in the concatenated word Pi`1Pi [2] (cf. also with
decomposition tableaux [14, 4]). The reading word of a unimodal tableau P is given by
πP “ P`P`´1 . . . P1. A unimodal tableau is called reduced if πP is a type C reduced word
corresponding to the Coxeter group element wP. Given a fixed Coxeter group element
w, denote the set of reduced unimodal tableaux P of shape λ with wP “ w as UT wpλq.

A signed primed tableau T of shape λ on n letters (cf. semistandard Q-tableau [12])
is a filling of Spλq with letters from the alphabet X1n such that:

1. The entries are weakly increasing along each column and each row of T.

2. Each row contains at most one i1 for every i “ 1, . . . , n.

3. Each column contains at most one i for every i “ 1, . . . , n.

The reason for using the word “signed” in the name is to distinguish the set of primed
tableaux above from the “unsigned” version described later in the chapter.
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Denote the set of signed primed tableaux of shape λ by PT ˘pλq. Given an element
T P PT ˘pλq, define the weight of the tableau wtpTq as the vector with i-th coordinate
equal to the total number of letters in T that are either i or i1.

Example 6.
˜

4 3 2 0 1
2 1 2

0
,

1 1 21 31 3
21 2 31

4

¸

is a pair consisting of a unimodal tableau and a signed

primed tableau both of shape p5, 3, 1q.

For a reduced unimodal tableau P with rows P`, P`´1, . . . , P1, the Kraśkiewicz inser-
tion of a letter k into tableau P (denoted again by P ø k) is performed as follows:

1. Perform Kraśkiewicz insertion of the letter k into the unimodal word P1. If there is
no bumped letter and P1 ø k “ P11, the algorithm terminates and the new tableau
P1 consists of rows P`, P`´1, . . . , P2, P11. If there is a bumped letter and P1 ø k “
k1 ø P11, continue the algorithm by inserting k1 into the unimodal word P2.

2. Repeat the previous step for the rows of P until either the algorithm terminates,
in which case the new tableau P1 consists of rows P`, . . . , Ps`1, P1s, . . . , P11, or, the
insertion continues until we bump a letter ke from P`, in which case we then put ke
on a new row of the shifted shape of P1, so that the resulting tableau P1 consists of
rows ke, P1`, . . . , P11.

Example 7.
4 3 2 0 1

2 1 2
0

ø 0 “
4 3 2 1 0

2 1 0
0 1

.

Lemma 1. [10] Let P be a reduced unimodal tableau with reading word πP for an element
w P WC. Let k be a letter such that πPk is a reduced word. Then the tableau P1 “ P ø k is a
reduced unimodal tableau, for which the reading word πP1 is a reduced word for wsk.

Lemma 2. [12, Lemma 3.17] Let P be a unimodal tableau, and a a unimodal word such that πPa
is reduced. Let px1, y1q, . . . , pxr, yrq be the (ordered) list of boxes added when P ø a is computed.
Then there exists an index v, such that x1 ă ¨ ¨ ¨ ă xv ě ¨ ¨ ¨ ě xr and y1 ě ¨ ¨ ¨ ě yv ă ¨ ¨ ¨ ă yr.

Let A P U˘pwq be a signed unimodal factorization with unimodal factors a1, a2, . . . , an.
We recursively construct a sequence pH,Hq “ pP0, T0q, pP1, T1q, . . . , pPn, Tnq “ pP, Tq of
tableaux, where Ps P UT pa1a2...asqpλ

psqq and Ts P PT ˘pλpsqq are tableaux of the same
shifted shape λpsq.

To obtain the insertion tableau Ps, insert the letters of as one by one from left to right,
into Ps´1. Denote the shifted shape of Ps by λpsq. Enumerate the boxes in the skew shape
λpsq{λps´1q in the order they appear in Ps. Let these boxes be px1, y1q, . . . , px`s , y`sq.

Let v be the index that is guaranteed to exist by Lemma 2 when we compute Ps´1 ø

as. The recording tableau Ts is a primed tableau obtained from Ts´1 by adding the boxes
px1, y1q, . . . , pxv´1, yv´1q, each filled with the letter s1, and the boxes pxv`1, yv`1q, . . . ,
px`s , y`sq, each filled with the letter s. The special case is the box pxv, yvq, which could
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contain either s1 or s. The letter is determined by the sign of the factor as: If the sign is
´, the box is filled with the letter s1, and if the sign is `, the box is filled with the letter
s. We call the resulting map the primed Kraśkiewicz map KR1.

Example 8. Given a signed unimodal factorization A “ p´0qp`212qp´43201q, the se-
quence of tableaux is

pH,Hq, p 0 , 11 q,
´

2 1 2
0

, 11 21 2
2

¯

,

˜

4 3 2 0 1
2 1 2

0
,

11 21 2 31 3
2 31 3

31

¸

If the recording tableau is constructed, instead, by simply labeling its boxes with
1, 2, 3, . . . in the order these boxes appear in the insertion tableau, we recover the origi-
nal Kraśkiewicz map [10, 11], which is a bijection KR: Rpwq Ñ

Ť

λ

“

UT wpλq ˆ ST pλq
‰

,
where ST pλq is the set of standard shifted tableau of shape λ, i.e., the set of fillings of
Spλq with letters 1, 2, . . . , |λ| such that each letter appears exactly once, each row filling
is increasing, and each column filling is increasing.

Theorem 9. The primed Kraśkiewicz map is a bijection KR1 : U˘pwq Ñ
Ť

λ

“

UT wpλqˆPT ˘pλq
‰

.

Theorem 9 and (3.1) imply the following relation:

FC
w pxq “

ÿ

λ

ˇ

ˇUT wpλq
ˇ

ˇ

ÿ

TPPT ˘pλq
xwtpTq. (3.2)

Remark 10. The sum
ř

TPPT ˘pλq xwtpTq is also known as the Q-Schur function. The
expansion (3.2) was shown in [1].

At this point, we are halfway there to expand FC
w pxq in terms of Schur functions. In

the next section we introduce a crystal structure on the set PT pλq of unsigned primed
tableaux.

3.2 Mixed insertion

Set Bh “ Bh
8. Similar to the well-known RSK-algorithm, mixed insertion [7] gives a

bijection between Bh and the set of pairs of tableaux pT, Qq, but in this case T is an
(unsigned) primed tableau of shape λ and Q is a standard shifted tableau of the same
shape.

An (unsigned) primed tableau of shape λ (cf. semistandard P-tableau [12] or semi-
standard marked shifted tableau [4]) is a signed primed tableau T of shape λ with only
unprimed elements on the main diagonal. Denote the set of primed tableaux of shape
λ by PT pλq. The weight function wtpTq of T P PT pλq is inherited from the weight
function of signed primed tableaux, that is, it is the vector with i-th coordinate equal to
the number of letters i1 and i in T. We can simplify (3.2) as

FC
w pxq “

ÿ

λ

2`pλq
ˇ

ˇUT wpλq
ˇ

ˇ

ÿ

TPPT pλq
xwtpTq. (3.3)
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Remark 11. The sum
ř

TPPT pλq xwtpTq is also known as a P-Schur function.

Given any word b1b2 . . . bh in the alphabet X “ t1 ă 2 ă 3 ă ¨ ¨ ¨ u, we recursively con-
struct a sequence of tableaux pH,Hq “ pT0, Q0q, pT1, Q1q, . . . , pTh, Qhq “ pT, Qq, where
Ts P PT pλpsqq and Qs P ST pλpsqq. To obtain the tableau Ts, insert the letter bs into Ts´1
as follows. First, insert bs into the first row of Ts´1, bumping out the leftmost element y
that is strictly greater than bi in the alphabet X1 “ t11 ă 1 ă 21 ă 2 ă ¨ ¨ ¨ u.

1. If y is not on the main diagonal and y is not primed, then insert it into the next
row, bumping out the leftmost element that is strictly greater than y from that row.

2. If y is not on the main diagonal and y is primed, then insert it into the next column
to the right, bumping out the topmost element that is strictly greater than y from
that column.

3. If y is on the main diagonal, then it must be unprimed. Prime y and insert it into
the column on the right, bumping out the topmost element that is strictly greater
than y from that column.

If a bumped element exists, treat it as a new y and repeat the steps above – if the new y
is unprimed, row-insert it into the row below its original cell, and if the new y is primed,
column-insert it into the column to the right of its original cell.

The insertion process terminates either by placing a letter at the end of a row, bump-
ing no new element, or forming a new row with the last bumped element. The shapes
of Ts´1 and Ts differ by one box. Add that box to Qs´1 with a letter s in it, to obtain the
standard shifted tableau Qs.

Example 12. For a word 332332123, some of the tableaux in the sequence pTi, Qiq are
´

2 31
3

, 1 2
3

¯

,
´

2 2 31 3
3 3

, 1 2 4 5
3 6

¯

,

˜

1 21 2 31 3
2 31 3

3
,

1 2 4 5 9
3 6 8

7

¸

.

Theorem 13. [7] The construction above gives a bijection HM: Bh Ñ
Ť

λ$h
“

PT pλqˆST pλq
‰

.

The bijection HM is called a mixed insertion. If HMpbq “ pT, Qq, denote PHMpbq “ T
and RHMpbq “ Q. Just as for the RSK-algorithm, the mixed insertion has the property of
preserving the recording tableau within each connected component of the crystal Bh.

Theorem 14. The recording tableau RHMp¨q is constant on each connected component of the
crystal Bh.

Let us fix a recording tableau Qλ P ST pλq. Define a map Ψλ : PT pλq Ñ Bh as
ΨλpTq “ HM´1

pT, Qλq. By Theorem 14, the set ImpΨλq consists of several connected
components of Bh. The map Ψλ can thus be taken as a crystal isomorphism, and we can
define the crystal operators and weight function on PT pλq as

eipTq :“ pΨ´1
λ ˝ ei ˝ΨλqpTq, fipTq :“ pΨ´1

λ ˝ fi ˝ΨλqpTq, wtpTq :“ pwt ˝ΨλqpTq. (3.4)
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Although it is not clear that the crystal operators constructed above are independent
of the choice of Qλ, in the next section we will construct explicit crystal operators on the
set PT pλq that satisfy the relations above and do not depend on the choice of Qλ.

Example 15. For T “
1 21 2 31 3

2 31 3
3

, choose Qλ “
1 2 3 4 5

6 7 8
9

. Then ΨλpTq “ 333332221 and

e1 ˝ΨλpTq “ 333331221. Thus, e1pTq “ pΨ´1
λ ˝ e1 ˝ΨλqpTq “

1 1 2 31 3
2 31 3

3
, f1pTq “ f2pTq “ 0.

To summarize, we obtain a crystal isomorphism between the crystal pPT pλq, ei, fi, wtq,

denoted again by PT pλq, and a direct sum
À

µ B
‘hλµ
µ . We will provide a combinatorial

description of the coefficients hλµ in the next section. This implies the relation on char-
acters of the corresponding crystals χPT pλq “

ř

µ hλµsµ. Thus we can rewrite (3.3) one
last time

FC
w pxq “

ÿ

λ

2`pλq
ˇ

ˇUT wpλq
ˇ

ˇ

ÿ

µ

hλµsµ “
ÿ

µ

´

ÿ

λ

2`pλq
ˇ

ˇUT wpλq
ˇ

ˇ hλµ

¯

sµ.

3.3 Explicit crystal operators on shifted primed tableaux

We consider the alphabet X1 “ t11 ă 1 ă 21 ă 2 ă 31 ă ¨ ¨ ¨ u of primed and unprimed
letters. It is useful to think about the letter pi` 1q1 as a number i` 0.5. Thus, we say that
letters i and pi` 1q1 differ by half a unit and letters i and pi` 1q differ by a whole unit.

Given an (unsigned) primed tableau T, the reading word rwpTq is constructed as:

1. List all primed letters in the tableau, column by column, in decreasing order within
each column, moving from the rightmost column to the left, and with all the primes
removed (i.e. all letters are increased by half a unit). (Call this part of the word the
primed reading word.)

2. Then list all unprimed elements, row by row, in increasing order within each row,
moving from the bottommost row to the top. (Call this part of the word the un-
primed reading word.)

To find the letter on which the crystal operator fi acts, apply the bracketing rule for
letters i and i` 1 within the reading word rwpTq. If all letters i are bracketed in rwpTq,
then fipTq “ 0. Otherwise, the rightmost unbracketed letter i in rwpTq corresponds to an
i or an i1 in T, which we call bold unprimed i or bold primed i respectively. If the bold
letter i is unprimed, denote the cell it is located in as x. If the bold letter i is primed, we
conjugate the tableau T first.

The conjugate of a primed tableau T is obtained by reflecting the tableau over the
main diagonal, changing all primed entries k1 to k and changing all unprimed elements
k to pk` 1q1 (i.e. increase the content of all boxes by half a unit). The main diagonal is
now the North-East boundary of the tableau. Denote the resulting tableau as T˚.
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Under the transformation T Ñ T˚, the bold primed i is transformed into bold un-
primed i. Denote the cell it is located in as x.

Given any cell z in a shifted primed tableau T (or conjugated tableau T˚), denote by
cpzq the content of z. Denote by zE the cell to the right of z, zW the cell to its left, zS the
cell below, and zN the cell above. Denote by z˚ the corresponding conjugated cell in T˚

(or in T). Now, consider the box xE (in T or in T˚) and notice that cpxEq ě pi` 1q1.

Crystal operator fi on primed tableaux:

1. If cpxEq “ pi` 1q1, the box x must lie outside of the main diagonal and the box right
below xE cannot have content equal to pi` 1q1. Change cpxq to pi` 1q1 and change
cpxEq to pi` 1q (i.e. increase the content of x and xE by half a unit).

2. If cpxEq ‰ pi ` 1q1 or xE is empty, then there is a maximal connected ribbon (ex-
panding in South and West directions) with the following properties:

(a) The North-Eastern most box of the ribbon (the tail of the ribbon) is x.

(b) The contents of all boxes within a ribbon besides the tail are either pi` 1q1 or
pi` 1q.

Denote the South-Western most box of the ribbon (the head) as xH.

(a) If xH “ x, change cpxq to pi` 1q (i.e. increase the content of x by a whole unit).

(b) If xH ‰ x and xH is on the main diagonal (in case of a tableau T), change cpxq
to pi` 1q1 (i.e. increase the content of x by half a unit).

(c) Otherwise, the content cpxHq must be pi ` 1q1 due to the bracketing rule. We
change cpxq to pi` 1q1 and change cpxHq to pi` 1q (i.e. increase the content of
x and xH by half a unit).

In the case when the bold i in T is unprimed, we apply the above crystal operator
rules to T to find fipTq

Example 16. In the following examples, we mark the bold i (if it exists):
f2

´

1 21 2 31
2 31 3

¯

“ 0, f2

´

1 21 2 31
2 31 4

¯

“
1 21 31 3

2 31 4
, f2

´

1 1 2 2
3 41 4

¯

“
1 1 2 3

3 41 4
,

f2

˜

1 1 21 2 3
2 2 31

3 3

¸

“

1 1 21 31 3
2 2 31

3 3
, f2

˜

1 1 1 2 3
2 2 31

3 41

¸

“

1 1 1 31 3
2 2 3

3 41
.

In the case when the bold i is primed in T, we first conjugate T and then apply the
above crystal operator rules on T˚, before reversing the conjugation. Note that Case 2b
is impossible for T˚, since the main diagonal is now on the North-East.

Example 17. Let T “
1 21 2 3

3 41
4

, then T˚ “
21
2 41
31 4 51
41

and f2pTq “
1 2 31 3

3 41
4

.



Crystal analysis of type C Stanley symmetric functions 11

Theorem 18. For any b P Bh with PHMpbq “ T and fipbq ‰ 0, the operator fi defined on above
satisfies

PHMp fipbqq “ fipTq.

Also, fipbq “ 0 if and only if fipTq “ 0.

The crystal operators eipTq are defined similarly. Consider the reading word rwpTq
and apply the bracketing rule on the letters i and i` 1. If all letters i` 1 are bracketed in
rwpTq, then eipTq “ 0. Otherwise, the action of ei on T can be obtained from the action
of fi on ´T. For more details we refer to the long version of the paper.

Theorem 19. Given a primed tableau T with fipTq ‰ 0, the operators ei satisfy eip fipTqq “ T.

Corollary 20. For any b P Bh with HMpbq “ pT, Qq, the operator ei defined above satisfies
HMpeipbqq “ peipTq, Qq, given the left-hand side is well-defined.

The consequence of Theorem 18, as discussed in Section 3.2, is a crystal isomorphism

Ψλ : PT pλq Ñ
À

B‘hλµ
µ . Now, to determine the nonnegative integer coefficients hλµ, it

is enough to count the highest weight elements in PT pλq of given weight µ.

Proposition 21. A primed tableau T P PT pλq is a highest weight element if and only if its
reading word rwpTq is a Yamanouchi word. That is, for any suffix of rwpTq, its weight is a
partition.

Thus we define hλµ to be the number of primed tableaux T of shifted shape Spλq and
weight µ such that rwpTq is Yamanouchi.

Example 22. Let λ “ p5, 3, 2q and µ “ p4, 3, 2, 1q. There are three primed tableaux of
shifted shape Spp5, 3, 2qq and weight p4, 3, 2, 1q with a Yamanouchi reading word, namely
1 1 1 1 21

2 2 31
3 41

,
1 1 1 1 31

2 2 2
3 41

and
1 1 1 1 41

2 2 2
3 3

. Therefore hp5,3,2qp4,3,2,1q “ 3.

We summarize our results for the type C Stanley symmetric functions as follows.

Corollary 23. The expansion of FC
w pxq in terms of Schur symmetric functions is

FC
w pxq “

ÿ

λ

gwλsλpxq, where gwλ “
ÿ

µ

2`pµq
ˇ

ˇUT wpµq
ˇ

ˇ hµλ . (3.5)

Example 24. Consider the word w “ 0101 “ 1010. There is only one unimodal tableau
corresponding to w, namely P “ 1 0 1

0
, which belongs to UT 0101p3, 1q. Thus, gwλ “

4hp3,1qλ. There are only three possible highest weight primed tableaux of shape p3, 1q,
namely 1 1 1

2
, 1 1 21

2
and 1 1 31

2
, which implies that hp3,1qp3,1q “ hp3,1qp2,2q “ hp3,1qp2,1,1q “ 1

and hp3,1qλ “ 0 for other weights λ. The expansion of FC
0101pxq is thus

FC
0101 “ 4sp3,1q ` 4sp2,2q ` 4sp2,1,1q.
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