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Abstract. We obtain an alternative combinatorial description of Igusa’s cubical cat-
egories of noncrossing partitions, using various classes of trees. We also count the
morphisms in these categories, according to the ranks of the source and target objects.

Résumé. Nous obtenons une description combinatoire alternative des catégories cu-
biques de partitions non-croisées d’Igusa, en utilisant diverses classes d’arbres. Nous
comptons aussi le nombre de morphismes dans ces catégories selon les rangs des objets
source et cible.
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Introduction

Kiyoshi Igusa has introduced in [4] interesting category of noncrossing partitions NPy,
one for each n > 1. The objects of the category NP, are noncrossing partitions of the set
{1,2,...,n} and morphisms are defined using forests of binary trees. This construction
was motivated by the general theory of pictures and picture groups, that can be associ-
ated to quivers of finite type. The category of noncrossing partitions is closely related to
the special case of the equi-oriented quiver of type A,.

This article started with the idea of counting the morphisms in this category. It turns
out that there is a nice answer. For our convenience, we will let NP, be the opposite
category of the category introduced by Igusa.

~ ~ ~ ~ ~ N ~ m
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Figure 1: A noncrossing partition of {1,...,22} in 10 blocks

A partition T = {7m,..., 71} of a linearly ordered set is called noncrossing if given
any two blocks 7t; # 7T of 7r, there does not exist a4,b in 71; and ¢,d in us such that
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a < c¢ < b <d WeletNC, be the set of noncrossing partitions of {1,---,n}, and
we represent them by a diagram with the numbers 1,2,...,n from left to right on an
horizontal line, as in Figure 1.

Let the rank rk(7r) of a noncrossing partition 7t be # minus the number of blocks of 7.
The bottom noncrossing partition {1},{2},...,{n} has rank 0 and the top noncrossing
partition {1,2,...,n} has rank n — 1. Then morphisms in NP, can only increase the
rank. Every morphism is a composition of morphisms increasing the rank by 1. This
category is therefore graded by the rank.

The total number of morphisms in N'P,, is given for small n > 1 by
1,4,21,126,818,5594, 39693, 289510, . . .

which is the sequence A3168 in the OEIS encyclopedia. These numbers count dissections
of polygons into even regions, and are also the number of sylvester classes of 2-packed
words, see eq. (184) in [7].

To refine this enumeration, one can count morphisms according to the difference of
ranks between their source and their target. The numbers forn =1, ...,5 are:

(1), (2,2), (511,5), (14,49,49,14), (42,204,326,204,42). (0.1)

Note the symmetry of these numbers, which is not obviously induced by a symmetry of
the category.

These numbers are related to the fact that the category NP, is a cubical category, as
explained in [4]. This implies that one can describe a classifying space for NP, which is
a cubical complex, in which the number of k-cubes is exactly the number of morphisms
in N'P,, increasing the rank by k. The symmetry observed in (0.1) may have a topological
explanation by mean of this cubical complex, but this is not clear to us.

To refine even further the enumeration, one can count all morphisms whose source
and target have fixed ranks. This gives triangles of numbers, the first few ones being

o () (.

Let /; ; be the number of morphisms from rank i to rank j.
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Theorem 1. Let n,i,jsatisfy 0 <i <j<n—1. Then

1/n n 2n—1i
W)


http://oeis.org/A003168
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It follows that the three border layers of these triangles of numbers are given by
the Narayana numbers (seq. A1263) for the diagonal, by sequence A108767 for the left
column and by sequence A33282 (counting dissections of a regular polygon according
to the number of regions, see [2]) for the top row.

Let now L, (1,v), Ay (u,v) be the generating polynomials

Ly(uw,0)= Y. fLu'o and  Ay(u,0) =L,(u—1,0).
0<i<j<n-—1

This change of variables allows to exhibit in A, a hidden ternary symmetry of IL,,. We
will prove in Section 2.3 that A, is a generating polynomial for ternary rooted trees with
parameters their numbers of left and right edges (In particular, the values A, (1,1) form
the sequence A1764). This implies immediately that A, has the following symmetries:

An(u,0) = (uo)" 1A, (1/0,1/u),
An(u,0) = 0" 1A, (uv,1/0).

It follows that
W, (0,1/u) = Ly ((v+1—u)/u,u).

By letting v = u = x, one gets that
XML, (x,1/x) = Lu(1/x, x)

which is the symmetry observed in (0.1).

A remark can be made about the Euler characteristic of the categories N'P,. This is
just x(N'Py) = (=1)""'L, (=1, —1) because of the known description of the classifying
space as a cubical complex. It turns out to give the aerated Catalan numbers:

1,0,-1,0,2,0,-5,0,14,0, —42,0,132,0, —429,0, 1430, . .. (0.3)

The full homology of the classifying space of NP, has been computed in terms of ballot
numbers in [5].

The paper is organized as follows: in the first section, we obtain an alternative, and
somewhat simpler, description of the categories N'P,,. This is based on the combinatorics
of Schroder trees, with an intermediate step using a description of noncrossing partitions
by bicolored trees. The second and last section uses this description and a method from
free probability to obtain the enumerative results explained above.

Formula (0.2) was found during the first author’s stay in Seoul in December 2014.
E. Chapoton has benefited from the support of the project Carma of the French ANR
(ANR-12-BS01-0017).
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1 A combinatorial model of the category

Let us sketch an overview of Igusa’s construction, see [4]; to compare with his nota-
tions we stress that we use the opposite category. The objects of the category NP, are
noncrossing partitions of size n. Then one attaches a set of edges E(7) to every 77, and
more generally a relative edge set E(7, jt) if 7t refines y. Morphisms are then defined as
certain subsets of E(7, i), and their composition uses a certain notion of compatibility
of edges. Igusa proceeds to prove that one thus obtains a cubical category with properties
ensuring that its classifying space BAN'P(n) is a K(7,1) space. Then the fundamental
group of BN'P(n) is computed and seen to be equal to the picture group G(A,_1).

The construction of the category NP, uses heavily the language of vector spaces and
linear maps. In this section we reformulate it using the language of trees, which gives a
pleasant description of morphism composition in particular.

1.1 Objects

Let BZC, be the set of plane rooted trees with n edges, canonically endowed with a
bipartite black and white coloring in which the root is white. Our starting point is to
encode 7 € NC,, with a tree t(71) € BZC, as follows. Black vertices of #(7r) correspond to
blocks of 71, while white vertices are associated to consecutive entries of a block, and an
extra one. Black to white edges go from a block to its consecutive entries, while white to
black edges go to the maximal blocks between the consecutive entries. The extra white
vertex on top is the root, and has edges to the maximal blocks.

This can be conveniently depicted when the noncrossing partition is drawn as in
Figures 1 and 2. Namely, one can put a black vertex at the middle of the unique top arch
of every block, and a white vertex at the middle of every bottom arch of every block.
The additional white vertex can be put above all the other vertices.

Proposition 2 ([3, Theorem 2.1]). The correspondence = — t(7t) is a bijection from NC, to
BIC, such that the number of blocks of 7t is equal to the number of black vertices of t(7r).

Note that the result in [3] is stated in terms of permutations. To connect it with our
formulation, recall that noncrossing partitions can be identified with minimal factoriza-
tions of the cyclic permutation (1,2, ...,n) as a product of two permutations (see [1]).

To recover the noncrossing partition 7 from the tree ¢(77), perform a counterclockwise
tour of the tree, starting at the root. During this tour, every edge will be covered exactly
once in each direction. Label the “white to black” edges by 1,2,...,n in the order in
which they are traversed during the tour. Then the labels around a black vertex form a
block of the noncrossing partition 7.

Let us give the correspondence between our setting and some notations of [4, §1]. A
parallel set of 7t corresponds to a subset of blocks which are children of a given white
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Figure 2: Correspondence: noncrossing partition and bicolored plane tree

vertex in t(77). The edge set E(7r) corresponds to all pairs of black vertices of ¢(7r) which
are adjacent to the same white vertex

1.2 Morphisms

Let 7, 4 € NC,,. There exists a morphism from 7t to y if and only if 7 is a refinement of y:
this means that every block of 7t is contained in a block of y, and write this as 77 < p.

Assume 7 = u, and let (yq,...,1;) be the blocks of u. Let 7/ be the noncrossing
partition induced by 7 on the block p;, which can be naturally considered as a single
block partition. A morphism from 7 to u is defined as a collection of morphisms from 7/
topjforj=1,...,k

In words, a general morphism from 7 to p can be recovered from morphisms be-
tween smaller noncrossing partitions with target a noncrossing partition with one block,
together with y serving as a pasting scheme. This will allow us to use methods of free
probability to count all morphisms, starting from the knowledge of morphisms to single
block partitions, see Section 2.2.

It is thus enough to define morphisms to the top partition {1, 2, ..., n}, which we will
call morphisms to the top for short. A binary tree B is a rooted planar binary tree, defined
recursively as either empty or a root vertex and a pair (left subtree, right subtree). Its size
is its number of vertices. In bicolored plane trees, we let d(w) be the number of children
of a vertex w. The following definition is illustrated in Figure 3, left.

Definition 3 ([4]). A morphism from 7t to the top is a collection of binary trees (By)w
indexed by the white vertices w € t(7), where By, has size d(w) .

Remark 4. An important remark is that the vertices of B, are naturally indexed by the
blocks of 7t corresponding to the d(w) children of w. For this, perform an infix traversal
of By, by recursively running through its vertices By, in the order: left subtree, then root,
then right subtree, and labeling the vertices with blocks along the way. In this manner
one sees that Definition 3 is the same as Igusa’s.
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Example 5. There is a single morphism from {1, ..., n} to itself (which must therefore be
the identity). By the definition of a general morphism, there is also a single morphism
from 7t to 7t for any 71 € NC,. Since morphisms only go from a partition to a coarser one,
it follows that there are |NC,| morphisms with the same starting and ending ranks.

Now consider the bottom partition 7, = {{1},{2},...,{n}}. The tree t(7,) is a
single white vertex with n children, so morphisms from 7, to the top are binary trees
with n vertices. These are counted by Catalan numbers, which also enumerates NC,,. This
shows that in each of the rows of (0.1) the leftmost and rightmost numbers are equal to
the same Catalan number. A more general symmetry will be proved in Section 2.3.

We will now explain how to encode these morphisms by Schrider trees, i.e. plane
rooted trees with no vertex of degree 1. So vertices are either leaves or inner vertices of
degree at least 2. To each inner vertex of out-degree d are attached d — 1 angular sectors
formed by consecutive outgoing edges. Note that if a Schroder tree has n angular sectors
then it has n + 1 leaves.

Let 7t € NC,, and t(7r) € BZC, its bicolored tree. Fix a morphism f from 7 to the top,
which by definition is a binary tree By, of size d(w) for each white vertex w € (7).

Let us give a recursive construction of the Schroder tree S(f), illustrated by Figure 3.
First consider the binary tree B, corresponding to the root r of t(7r). As explained after
Definition 3, the vertices of B, correspond to black vertices b; of f(7r) of outdegrees d;.
Add outgoing edges to each b; in B, so that its outdegree becomes d; + 2, where the
possible left or right edges present in B, must remain on the left or right. This results in
a tree By, see Figure 3.

Now each vertex b; has plane trees t{: € BIC attached to it in t(7r) with j = 1,...,d;.
By restriction each comes equipped with some of the binary trees B, and thus deter-
mines a morphism. By induction, we know how to associate with each such morphism

a Schroder tree Sf. We then graft this tree at the end of jth inner edge of the vertex b; in
B;, respecting the left-to-right ordering to get the desire S(f).

Proposition 6. The correspondence f — S(f) is a bijection between morphisms from any ele-
ment 7t of NC, to {1,...,n}, and Schrider trees with n angular sectors. Inner vertices of S(f)
are in bijection with blocks of 7t, and an inner vertex has degree d + 1 if the corresponding block
has size d.

Proof. By construction, the tree S(f) is a Schroder tree with n angular sectors, so the
correspondence is well-defined. We give the inverse bijection, and leave the easy details
to the reader. Given S a Schroder tree with n angular sectors, let us construct © € NC,
and a morphism f from 7 to the top. First, perform a tour of the tree S, and label the
angular sectors encountered on the way by 1 to n. The blocks of 7t are then read off
under the inner vertices. Now in S only consider edges between inner vertices which
are either the leftmost or rightmost ones. The connected components of the induced
subgraph are binary trees which determine the morphism f. O
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Figure 3: A morphism f = (7, (By)w) and the associated Schroder tree S(f). All
labelings are canonical and deduced from specific traversals of the trees.

By the previous proposition and the description of morphisms in general, a mor-
phism with target y will be encoded with a collection S(g) = (5(g)"); indexed by
the blocks of p. For instance the morphism f in the middle of Figure 4 has target
{11,7,8,9},{2,3},{4,5},{6},{10,11,12}}.

There is a direct way to connect the tree S(f) to what Igusa calls the “rooted tree
[T] generated by a morphism”. Indeed [T] is the tree formed by the inner edges of S(f)
(that is to say, the edges between inner vertices), where inner vertices are labeled by their
associated blocks. Equivalently, it is obtained by pruning all leaves of S(f).

1.3 Composition of morphisms

Suppose that one has a morphism f from 7 to p and then ¢ from u to the top. By
Proposition 6, g corresponds to a Schroder tree S(g) where the vertices b, are indexed
by the blocks yu; of u, while f corresponds to a collection of Schroder trees S(f)*i, one
for each block of u. Then the composition g o f is determined as follows: in the Schroder
tree of g, replace each vertex by, by the Schroder tree S¢(y;). The resulting Schroder tree
is a Schroder tree S(h) and one defines g o f := h.

For the general case when the target of g is a noncrossing partition v, one simply
extends the definition by applying the same rule on every block of v.

This composition of morphisms is closely related to an operad structure on Schroder
trees, defined similarly using substitution around vertices. This differs from the free
operad structure used in [6] in terms of grafting on leaves.

Let us just say a few words (not going into details) on how to identify this simple
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Figure 4: Composition of morphisms as a substitution in trees.

composition with the original, convoluted description of the composition in the category
NP, in [4]. There the composition of morphisms is defined using a notion of compat-
ibility on the relative edge sets E(7t, ), and morphisms are identified with maximal
compatible subsets of edges.

Then the composition g o f is given as the disjoint union of the edges of g and the
image of the edges of f by a natural isomorphism. With some care, this can be seen
to coincide with our substitution procedure, where the inner edges of S(g o f) either
come from the original inner edges of S(g) or from inner edges of f. We now give two
applications of our pictorial description of N'Py:

Composition is associative. As already mentioned, the definition of morphisms in [4]
is quite involved and in fact requires two technical lemmas proved in their own section
([4, §2]). From there, Igusa can show that his composition is associative.

Without giving a formal proof, note that associativity is clear from our description.
Keeping the notations f, g of Section 1.3, suppose we are given a third morphism e with
target 71, i.e. given by Schroder trees indexed by the blocks of 7r (which also index
vertices of S(f)). Then associativity is equivalent to the fact that, if one substitutes first
S(f) in S(g), and then S(e) in the tree S(g o f), the result is the same as substituting S(e)
in S(f) and then S(f oe) in the tree S(g). This is a rather clear property of any kind of
substitution in general.

NP, is a cubical category. The pictorial description of morphisms and their composi-
tion also sheds light on the results of [4, §3]. Given a morphism f : 7 — p in NP,
the category Fac(f) has as objects all triples (¢, g,h) where ¢ : m — ¢, h: { — u and
f =hog, and a morphism from (&, g, %) to (&', ¢’,h’) is a morphism ¢ : £ — &’ such that
¢ =¢pogand W op =h.

We claim that Fac(f) can be constructed as follows: Assume that f is a morphism to
the top of rank k, so that S(f) is a tree with k + 1 inner vertices. Pick any subset E of
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the k inner edges of S(f). From E a triple (¢F, g%, ht) of Fac(f) can be constructed as
follows: first S(ht) is obtained from S(f) by contracting all edges in E, and this naturally
determines §E. Now, for each inner edge not in E, cut it so as to detach the lower vertex.
In this manner S(f) is cut into connected components which are naturally indexed by
the blocks of ¢£, and this determines the morphism g*.

By the substitutive definition of composition, this procedure produces all objects of Fac(f).
Also one has a morphism from (¢E, ¢F, hE) to (¢F,¢F, ht) if and only if E C F, and this
morphism is then unique. These results extend automatically to the case where f is a
general morphism.

It is then fairly easy to see that NP, is a cubical category in the sense of [4, Definition
3.2]. We mention only points (2) and (3) in this definition, the others being immediate.
Point (2) states that Fac(f) is isomorphic to the poset category of {1,--- ,k} ordered by
inclusion, while point (3) demands that the forgetful functor (&, g, h) — ¢ from Fac(f)
to NP, be an embedding. Both of these facts follow directly from the combinatorial
description of Fac(f).

2 Enumerative aspects

2.1 Generating series for morphisms to the top

Let us proceed to find generating series for the number of morphisms to the noncrossing
partition with one block. We will use the Schroder tree model for such morphisms, and
we refer to Remark 7 for a proof based directly on Igusa’s definition.

For this, one will use two parameters z and u. The power of the parameter z records
the number of angular sectors in the tree, which is just n. The power of the parameter u
is the number of inner vertices in the tree, which is the number i of blocks in the source
noncrossing partition 7t.

Let Q be the class of nonempty Schroder trees counted according to their number of
angular sectors. Q admits the recursive description

Q =u(l+ Q)List>1 (Z(1+ Q)), 2.1)

where Z is the atom corresponding to an angular sector.
Let Q = Q(z,u) be the generating function of the class Q. One therefore has the

functional equation

~uz(1+ Q)2

1-z(1+Q)

By an algebraic manipulation, this is equivalent to the simpler equation

Q=z(1+Q)(u+(1+u)Q). (2.3)

Q (2.2)
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Remark 7. Let us sketch another proof of (2.3) that does not use Schroder trees. Let
Fuw (respectively F;) be the class of bicolored plane trees rooted at a white (respectively
black) vertex, enriched with a binary tree of size d(w) for any white vertex. Note that F,
is in fact the generating function for morphisms to the top by Definition 3. We consider
the associated generating functions Fy, F, where z counts the number of edges and u the
number of black vertices.

By decomposing at the root, one has the relations F, = - and F, = C (zFy). where
C(x) is the generating function for binary trees according to the number of vertices. Now
C satisfies C = 1/(1 — xC) so we get F, = % Solving for F, gives the equation
Fy, =1+ zF,(uF, + Fy, — 1), and so F, — 1 satisfies exactly the relation (2.3).

2.2 Free probability computations

Recall the following transform, occurring in free probability under the name of R-
transform, see for example [8]. We let R;;, M, for n > 1 be two sequences (with values in
a given ring) related by the following relations for n > 1:

Mu= Y Ry (2.4)

TENC,

where R is the product of Ry for k running over the block sizes of /7. Then the two
generating functions

R(z) =1+ ) Ryz" and M(z) =1+ ) M,z" (2.5)

n>1 n>1

are related by the equation
M(z) = R(zM(z)). (2.6)

The proof is based on the following fact: a partition in NC, has a unique decompo-
sition into one block {iy = 1,i,...,ix} containing 1, and k noncrossing partitions on
the intervals of integers [i; +1,i;41 — 1] for j = 1,...,k where it = n+ 1 by conven-
tion. Applying this decomposition to the terms in the right side of (2.4), one obtains the
equality of the coefficients of z"" on both sides of (2.6).

Let us now apply this statement to the counting of all morphisms in the category
NP,,. Define Homy, (i, j) to be the set of all morphisms in N'P,, going from a noncrossing
partition with 7 blocks to a noncrossing partition with j blocks. Recall that Q,(u) = [z"]Q
is a polynomial in u counting morphisms to the top according to the number of blocks of
the source partition. Equivalently, Q, is the coefficient of v in the following polynomial

Myu(u,0) := ) #Hom,, (i, j)u'v. (2.7)

1<j<i<n
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Now the description of general morphisms in terms of morphisms to the top (cf.
Section 1.2 implies the following relations for n > 1:

M, (u,v) = Y. " Qe

t=(711,...,70; ) ENCyy

Therefore the relations (2.4) are satisfied with My (u,v) and R,(u,v) := vQ,(u). The
corresponding generating function R = R(z,u,v) is given by R = 1 + vQ, and satisfies

R:1+vz<1+$> <u—|—(1—|—u)R;1). (2.8)

by (2.3). In this last equation, we perform the substitution z — zM. We can then use
use the R-transform (2.6) to get the following equation for M:

M -1 M—1
M:1+UZM(1+T> (M+(1+M) - ) (29)
To simplify this functional equation, notice that by (2.7) uv divides M,,. It is natural
to define H as -1, and substituting in (2.9) gives immediately

H=(1+uzH)(1+uvzH) (1+ (1+u)zH). (2.10)
Note that the coefficient H, of z" has the following expansion

H,= ), #Homy,1(i+1,j+ 1)u'v'.

0<j<i<n—1

2.3 Hidden symmetry of order three

We prove the symmetry of order 3 noticed in the introduction. First, let us substitute
u v 1/u, v — 1/v and finally z — wuvz in the equation (2.10) for H. This gives us an
equation for the generating series IL of the polynomials IL,, (1, v):

L=1+zL)(1+vzL)(1+ (14 u)vzLL). (2.11)

Let us now perform the substitution u — u — 1 to obtain an equation for the generating
series A of the polynomials A, (u,v):

A= (142zA)(1+vzA)(1+ uvzAh), (2.12)

The transformations for A,(u,v) given in the introduction are immediately deduced
from this functional equation, which describes ternary rooted trees according to their
total number of edges, where v is accounting for left edges and uv is accounting for
right edges. This has an evident invariance under the symmetric group of order 3,
permuting the three kinds of edges (namely left, middle and right).
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2.4 Proof of Theorem 1

Let us now proceed to compute the cardinalities # Hom,(i, j) by Lagrange inversion. Let
L = uzH so that [u'v/z"]L = #Hom,,(i,j + 1). From (2.10), one gets

L

Du+A+wl) = (2.13)

(1+oL)(1

+
Setting ¢(w) = (14 w)(1 4+ vw)(w + u(1+ w)), Lagrange inversion theorem says that

This implies that

[ulv/z"|L = %[w”_l] ((1 +w)" (7) w! (7) (1+ w)iw”_’) :

From there, one gets
.y 1/n\ /n n-+1i
Loyl 1 = —
o'zl n(i)(j)(i—j—l)' &1

This proves Theorem 1 since ¢; ; = #Hom,,(n — j,n — i) by definition.
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